
TWO PROBLEMS ASSOCIATED WITH CONVEX FINITE TYPE DOMAINS

Alexander Iosevih Eri Sawyer Andreas Seeger

Abstrat. We use saling properties of onvex surfaes of �nite line type to derive new estimates for

two problems arising in harmoni analysis. For Riesz means assoiated to suh surfaes we obtain sharp

L

p

estimates for p > 4, generalizing the Carleson-Sj�olin theorem. Moreover we obtain estimates for the

remainder term in the lattie point problem assoiated to onvex bodies; these estimates are sharp in

some instanes involving suÆiently at boundaries.

1. Introdution

Let 
 be a onvex domain in R

d

with smooth boundary. We assume that �
 is of �nite line

type, that is, at eah point eah tangent line has �nite order of ontat.

We disuss two problems in this paper. Both problems have in ommon that progress an be

made using some approximate saling properties of �
. We derive an extension of the Carleson-

Sj�olin theorem onerning L

p

onvergene results for Riesz means de�ned by a distane funtion

assoiated to 
; we assume that 1 � p � 4=3. We also give asymptotis for the number of integer

lattie points inside large dilates of 
; the bounds for the error terms are sharp in some ases where

there exist points with all lines tangent to the boundary having high order of ontat with �
.

1.1. Riesz means. We assume that the origin belongs to the interior of 
. Let � : R

d

! [0;1)

be homogeneous of degree 1 be the Minkowski funtional assoiated to 
; i.e. � is homogeneous of

degree one, so that �(�) = 1 if � 2 �
. The boundary �

�

:= �
 is then the unit sphere for the

generalized distane funtion �. The Bohner-Riesz operator assoiated to � is de�ned by

\

S

�;�

f(�) = (1� �(�))

�

+

b

f(�); (1.1)

here our de�nition of the Fourier transform is

b

f(�) =

R

f(y)e

�{hy;�i

dy. It is well known that if

1 � p <1 the L

p

boundedness of the Bohner-Riesz operator implies L

p

onvergene of the Riesz

means F

�1

[(1� �=t)

�

+

b

f ℄ to the limit f if f 2 L

p

and t!1.

A neessary ondition for L

p

boundedness is

� > �(p) = dj1=p� 1=2j � 1=2 (1.2)

Indeed in view of the ompat support of the multiplier it is neessary for L

p

boundedness that the

inverse Fourier transform of (1� �)

�

+

belongs to L

p

. Using standard asymptoti expansions one an

show (working near points on �

�

where the urvature does not vanish) that (1.2) is neessary for

F

�1

[(1� �)

�

+

℄ 2 L

p

.
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It is known [9℄, [29℄ that the validity of an L

2

restrition theorem for the Fourier transform

implies the L

p

boundedness of the Bohner-Riesz operator. Sine �

�

is of �nite type, say � n, it

follows from [3℄ that the Fourier transform of



d�(�) of a smooth density arried by �

�

is O(j�j

��

) for

some � with � � (d� 1)=n. Using the appropriate versions of the Stein-Tomas restrition theorem

([10℄) one an show that L

p

boundedness holds for 1 � p � 2(�+1)=(�+2) and � > �(p) (f. [29℄).

Note that 2(�+ 1)=(�+ 2) = (2n+ 2d� 2)=(2n+ d � 1) for the example x

d

=

P

d�1

i=1

x

n

i

with even

n, so that the range obtained in this way is small for large n.

Theorem 1.1. Suppose that d � 2, 1 � p � 4=3, � > d(1=p� 1=2)� 1=2 and that �

�

is of �nite

line type. Then S

�;�

is bounded on L

p

(R

d

).

It is onjetured that L

p

boundedness holds for the same range of exponents as for the sphere.

The onjeture for the sphere is that L

p

boundedness should hold for � > �(p) for p < 2d=(d+ 1).

This is urrently known only in two dimensions, see Carleson and Sj�olin [4℄. Sj�olin [28℄ extended

this result to arbitrary planar domains with smooth boundary, for some variants onerning onvex

domains in the plane with nonsmooth boundary see also the more reent paper by Ziesler and the

third author [27℄. For partial results in higher dimensions, in the ase that the Gau� urvature of

�

�

does not vanish, we refer to Bourgain [1℄ and for bakground to [29℄. Our proof of Theorem 1.1

uses a variant of C�ordoba's geometrial proof [6℄ of the Carleson-Sj�olin theorem and resaling.

1.2 Multitype and an estimate for the Fourier transform of surfae arried measure.

A preise estimate of the Fourier transforms of surfae arried measure is due to Bruna, Nagel

and Wainger [3℄. Let � = �
 and H

P

(�) the aÆne tangent plane at P 2 �, and let

B(P; Æ) = fy 2 � : dist(y;H

P

(�)) < Æg: (1.3)

Then

j



d�(�)j � C

�

jB(P

+

; j�j

�1

)j+ jB(P

�

; j�j

�1

)j

�

(1.4)

where P

�

are the points on � for whih � is a normal vetor and jBj denotes the surfae measure of

B. For many problems it is important to know not just the size of the balls but also the distribution

funtion of x 7! jB(x; Æ)j and how it relates to the notions of multitype and type. We review the

de�nition of multitype whih is impliit in Shulz [26℄, see also [17℄.

Consider a smooth real valued funtion � de�ned in a neighborhood of the origin in a d � 1-

dimensional Eulidean vetor spae E

d�1

so that �(0) = r�(0) = 0. We say that a vetor v in E

d�1

has ontat of order at least n+ 1 if

�(sv) = O(s

n+1

) if s! 0:

The sets

S

n

= fv 2 E

n

: v has ontat of order at least n+ 1g (1.5)

are linear subspaes of E

d�1

and there are even integers m

1

; : : : ;m

k

so that m

1

< � � � < m

k

,

1 � k � d� 1 and m

0

:= m

1

� 1 � 1 and

0 = S

m

k

( � � � ( S

m

0

:= E

d�1

; (1.6)
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moreover the sequene is maximal, in the sense that S

n

= S

m

k

if m

k�1

< n � m

k

: De�ne

a

i

= m

j

if d� 1� dimS

m

j�1

< i � d� 1� dimS

m

j

; j = 1; : : : ; k: (1.7)

The d� 1-tuple a = (a

1

; : : : ; a

d�1

) is then alled the multitype of � at 0.

To illustrate the above de�nitions onsider a onvex body whose boundary passes through the

origin and nearby is given by the equation x

d

=

P

d�1

i=1

jx

i

j

a

i

where the a

i

are even integers, with

a

i

� a

i+1

, 1 � i � d � 2. In this ase the multitype is (a

1

; : : : ; a

d�1

) and the subspaes S

m

above

are S

m

= span(fe

i

: a

i

> mg) (and S

m

= f0g if m � a

d�1

.)

We now �x P 2 �, hoose a unit normal n

P

and parametrize � near P as a graph over its

tangent plane at P . Thus the parametrization is given by

v = �(v) 7! P + v +�(v)n

P

(1.8)

for v 2 T

P

�, and � is a onvex funtion vanishing of seond order at the origin. We perform the

above onstrution for �(v) de�ned on E

d�1

= T

P

� and obtain a ag of subspaes

0 = S

m

k

P

( � � � ( S

m

0

P

= T

P

�: (1.9)

Let W

j

be the orthogonal omplement of S

m

j

P

in S

m

j�1

P

, j = 1; : : : ; k, then

T

P

� =W

1

� � � � �W

k

(1.10)

We denote by �

P

j

the orthonormal projetion on T

P

� to W

j

. We also have a similar deomposition

and projetions �

P

j

to W

�

j

on T

�

P

�, here we let W

�

j

the spae of linear funtionals on W

j

extended

by 0 on the orthogonal omplement of W

j

. We an extend these projetions to linear maps on

T

�

P

R

d

' (R

d

)

�

by de�ning �

P

j

n

P

= 0.

On T

�

P

� we de�ne a nonisotropi distane funtion �

�

by

�

�

(�) =

k

X

j=1

j�

P

j

�j

m

j

m

j

�1

; (1.11)

here j � j denotes the Eulidean distane in W

j

. If � 2 T

�

P

R

d

is taken from a suitable oni neighbor-

hood of n

P

and �

P

denotes the projetion to T

�

P

� we de�ne

�

P

(�) = �

�

�

�

P

�

h�; n

P

i

�

: (1.12)

Finally we set for l � d� 2

�

l

(P ) =

d�1

X

i=l

a

�1

i

=

k

X

j=1

dimS

m

j�1

P

� dimS

m

j

P

m

j

(1.13)

and write �(P ) � �

1

(P ). An alternative desription of �(P ) (see [16℄) is

�(P ) = supfq : dist(�; H

P

�) 2 L

q

(�)g; (1.14)

in fat for q = �(P ) the funtion dist(�; H

P

�)

�1

belongs to the spae L

q;1

(�).

Our result for the Fourier transform of surfae arried measure is
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Proposition 1.2. Let P 2 �
. Then there is a neighborhood U of P and a oni neighborhood V

of f�n

P

g in R

d

so that for all � 2 C

1

0

(U) and all � 2 V with j�j � 1 we have

j

d

�d�(�)j . k�k

C

N minfj�j

��

; j�j

�

1

2

��

2

[�

P

(�)℄

���

2

�

1

2

g;

here k�k

C

N = max

��N

k�

(�)

k

L

1

(U)

and N is suÆiently large.

In this statement N > d+m

k

will suÆe. Note the proposition is an improvement over previous

results only in the ase where all the prinipal urvatures vanish (and thus a

1

> 2).

1.3. A lattie point estimate.

Let

N




(t) = ard(t
 \ Z

d

): (1.15)

It is well known (and elementary) that N




(t) is asymptoti to t

d

vol(
) as t!1 and that the error

term

E




(t) = N (t) � t

d

vol(
) (1.16)

as O(t

d�1

). Moreover if �
 has suitable urvature properties then the error term improves; in

partiular if the Fourier transform of the surfae measure on the boundary satis�es



d�(�) = O(j�j

��

)

then the lassial method (see e.g. [11℄, [13, Theorem 7.7.16℄ and [24℄) yields E




(t) = O(t

d�1�

�

d��

).

This estimate however is not sharp, and several authors beginning with van der Corput have obtained

improvements for the ase of nonvanishing Gau� urvature; see the monographs by Kr�atzel [18℄ and

Huxley [14℄, and in partiular the papers by Kr�atzel and Nowak [20℄ and reent improvements by W.

M�uller [22℄ for results on general onvex bodies with nonvanishing urvature in higher dimensions.

In [24, I℄, [25℄ Randol obtained better estimates for the ase of onvex domains in the plane with

�nite type boundary; these are sharp for 
 = fx : x

k

1

+x

k

2

� 1g where k � 4 is even. See also Nowak

[23℄ for more re�ned results. Generalizations to domains of the form 
 = fx : x

k

1

+ :::+ x

k

d

� 1g are

in [24, II℄, [19℄.

Here we give a version for general onvex bodies with �nite type boundary in higher dimensions.

Let �(P ) = �

1

(P ) and �

2

(P ) as in (1.13) above.

Theorem 1.3. Let

� = min

P2�


�(P ); � =

1

2

+ min

P2�


�

2

(P ):

Then there is a onstant C depending on 
 so that

jE




(t)j � C




(1 + t

d�1��

+ t

d�1�

�

d��

): (1.17)

Spei�ally, if � is the set of all points P 2 �
 at whih all prinipal urvatures vanish then

E




(t) =

X

P2�

t

d�1��(P )

G

P

(t) +O(t

d�1�

�

d��

) (1.18)

where G

P

(t) is bounded as t!1. If the normal line determined by n

P

oinides with Re

i

for some

i 2 f1; : : : ; dg then lim sup

t!1

jG

P

(t)j > 0.

We note that the number �=(d � �) is greater then (2d � 1)

�1

sine � > 1=2. In partiular

if the Gau� urvature only vanishes at one point at the surfae and if � < �=(d � �) then there
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is A 2 SO(d) so that lim sup

t!1

t

��d+1

jE

A


(t)j is positive (for other model ases ompare [19℄,

[23℄). Note that the sum in (1.18) over P 2 �, sine � is a disrete subset of �
 (as noted in [16℄,

f. the proof of Lemma 2.2. below). We remark that it is well known that for almost all rotations

A 2 SO(d) the error terms E

A


(t) improve, see [5℄, [31℄, [32℄, [23℄, [15℄ and [2℄.

We shall derive the estimate for the Fourier transform in Proposition 1.2 in the next setion. x3

ontains the appliation to the lattie point problem. In x4 and x5 we prove results on Bohner-Riesz

multipliers; here we �rst onsider the ase of one nonvanishing prinipal urvature and then in x5

the ase of onvex domains.

Notation: Given two quantities A, B we write A . B if there is an absolute positive onstant C

so that A � CB. We write A � B if A . B and B . A.

Aknowledgement: We thank the referee for pointing out some misprints and for making a

suggestion onerning the exposition.

2. An estimate for Fourier transforms of surfae arried measures

We begin by reviewing some fats about lasses of onvex funtions in [3℄, [26℄, [16℄, [17℄.

Let B

T

� R

n

denote the open ball of radius T entered at 0; it is always assumed that T � 1.

Fix a ag V of subspaes 0 = V

k

( � � � ( V

0

of E

d�1

, with V

0

= E

d�1

, and let m = (m

1

; : : : ;m

k

)

be a k-tuple of even positive integers with m

1

< � � � < m

k

. For 0 < b � M , N 2 Z

+

, N > m

k

, let

S

d�1

T

(b;M;V;m;N) be the lass of all C

N

(B

T

) funtions g with the property that

g(0) = rg(0) = 0

d

2

(dt)

2

g(x+ t�)

�

�

t=0

� 0 for all � 2 S

d�2

; x 2 B

T

max

2�j�m

l

�

�

�

�

d

dt

�

j

g(x+ t�)

�

�

t=0

�

�

�

� b for all � 2 S

d�2

\ V

l�1

; x 2 B

T

max

j�j�N

�

�

�

�

�

�x

�

�

g(x)

�

�

�

�M for all x 2 B

T

:

(2.1)

Here S

d�2

denotes the unit sphere in E

d

. We also de�ne a(V;m) = (a

1

(V;m); : : : ; a

l

(V;m)) by

a

i

(V;m) = m

j

(V;m) if d� 1� dimV

j�1

< i � d� 1� dimV

j

; (2.2)

in analogy to (1.7).

Now if P 2 � (with � = �
 as in the introdution) and E

d�1

= T

P

� then let V

j

= S

m

j

P

� T

P

�

as in (1.5). Let � be as in (1.8). Then there is T > 0 and a neigborhood U of 0 so that for all w 2 U

the funtions y 7! �(w+ y)�	(w)�hy;r

w

�(w)i belong to S

n

T

(b;M;V;m;N); moreover there are

positive onstants 

0

; C

0

; C

1

so that

B(w; Æ) = fy : j�(y)� �(w)� hr

w

�(w); y � wij � Æg (2.3)

belongs to B

T

if Æ � 

0

T

m

k

and satis�es

meas(B(w; Æ)) � CÆ

�

; (2.4)

see Proposition 2.1 in [17℄.
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Lemma 2.1. Suppose that � 2 S

d�1

T

(b;M;V;m;N) and suppose that a = (a

1

; : : : ; a

d�1

) is the mul-

titype at the origin. Let 	

w

(y) = �(y)��(w)�hr

w

�(w); y�wi and let a(w) = (a

1

(w); : : : ; a

d�1

(w))

be the multitype of 	

w

at the origin. Then there is a neighborhood U of the origin so that a

i

(w) � a

i

for i = 1; : : : ; d� 1 and all w 2 U .

Proof. Let S

m

i

be as in (1.5) and let ` > dimS

m

i

. Reall that S

n

= S

m

j�1

for m

j

< n � m

j�1

.

Using ontinuity and ompatness arguments together with the de�nition of the spaes S

m

i

we see

that there is a neighborhood U �

e

U of the origin so that for every w 2

e

U , every y 2 U and every

`-tuple of orthonormal vetors fu

1

; : : : ; u

`

g

`

X

i=1

X

s�m

j

�

�

(hu

i

;r

y

i)

s

	

w

(y)

�

�

� b

0

> 0: (2.5)

The result of the Lemma follows quikly from the de�nition of the multitype. �

We now let � denote the graph of �. On T

0

� = R

d�1

we de�ne a nonisotropi distane funtion

� by

�(y) =

k

X

j=1

j�

j

yj

m

j

; (2.6)

note that that the unit ball for �

�

in (1.11) is the polar set for the unit ball for �.

The following Lemma gives an improvement of estimates in [16℄ and [17℄. A resaling argument

is used as in those papers; the present improvement is obtained using a more areful argument for

the resaled piees.

Lemma 2.2. Let � be a onvex smooth funtion de�ned in a neighborhood of the origin in R

d�1

,

so that �(0) = r�(0) = 0. Let V be the ag of subspaes fS

m

j

g de�ned as in (1.5). Let a be the

multitype of � near 0, B(w; Æ) as in (2.3) and � as in (2.6). Let � =

P

d�1

i=1

a

�1

i

, �

2

=

P

d�1

i=2

a

�1

i

.

Then there is a neighborhood U of the origin and Æ

0

> 0 so that for all 0 < Æ � Æ

0

and all w 2 U

meas(B(w; Æ)) � CÆ

�

[�(w)℄

���

; � � � �

1

2

+ �

2

:

Proof. We may assume that a

1

> 2 sine otherwise the theorem follows already from the estimate

(2.4). Let fu

1

; : : : ; u

d�1

g an orthonormal basis of R

d�1

so that

S

m

j

= spanfu

i

; d� 1� dimS

m

j

< i � d� 1g (2.7)

for j = 0; : : : ; k�1. By performing a rotation we may assume that the u

i

are the standard oordinate

vetors.

De�ne dilations A

t

by

A

t

x = (t

1

a

1

x; : : : ; t

1

a

d�1

x): (2.8)

Aording to [26℄, [16℄ we may split

�(x) = Q(x) +R(x)
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where Q is a onvex polynomial satisfying

Q(A

t

x) = tQ(x) (2.9)

and

0 < jQ(x)j � C

1

jxjjrQ(x)j � C

2

jxj

2

X

i;j

�

�

�

�

2

Q

�x

i

�x

j

(x)

�

�

�

: (2.10)

and the remainder term R satis�es

�

�

�

s

�1

�

j�j

�x

�

�

R(A

s

x)

�

�

�

�

. s

1=m

(2.11)

for jxj � T and all multiindies � = (�

1

; : : : ; �

d�1

) with j�j � N . Sine Q is positive away from the

origin and homogeneous with respet to dilations (A

t

) we have that

Q(y) � �(y)

where � is as in (2.6); in fat �(y) �

P

d�1

i=1

jhy; u

i

ij

a

i

:

Set �

`

(y) = 2

`

�(A

2

�`y) and note that �

`

(y) = Q(y) +R

`

(y) where R

`

and its derivatives tend

to zero uniformly on ompat sets, as `!1.

Denote by a(w) = (a

1

(w); : : : ; a

d�1

(w)) the multitype of Q at w. Then a(0) = a and by Lemma

2.1 there is M > 0 so that a

i

(w) � a

i

for 0 � �(w) � 2

�M+2

and, by (2.10/11), a

1

(w) = 2 for

0 < �(w) � 2

�M+2

; note that nothing is said about the position of the spaes S

m

(w). Now for

any point w there is an open ball U(w) of radius T (w)=4 and a ag V(w) onsisting of l(w) nested

subspaes and an l(w)-tuple m(w) so that for x 2 U(w) the funtions

h 7! Q

x

(h) = Q(x+ h)�Q(x)� hrQ(x); hi

belong to a lass S

d�1

T (w)

(b(w);M(w);V(w);m(w); N) so that a

i

(V(w);m(w)) � a

i

and

a

1

(V(w);m(w)) = 2.

By the metri property of the nonisotropi balls B(w; Æ) there are onstants C

2

� C

1

� 1 and

Æ

1

� 1 so that

B(y; Æ) � fx : C

�1

1

�(y) � �(x) � C

1

�(y)g if �(y) � C

2

Æ; (2.12)

we may assume that C

1

� 2

2M+4

.

We shall now show that there are onstants 

0

> 0, C

0

> 1 so that for 2

�`

� 

0

jB(y; Æ)j � Æ

�

2

`(���)

if 2

�l�M

� �(y) � 2

�l�M+1

; Æ � C

�1

0

2

�M�`

; 0 � � � �

2

+

1

2

: (2.13)

Let

W = fy : C

�2

1

2

�M�2

� �(y) � C

�1

1

2

�M+2

g (2.14)

whih beause of C

1

� 2

2M+4

is ontained in the open ball of radius 2

�M

entered at the origin. We

may over the ompat annulus W by �nitely many open balls U

i

with enter w

i

2 W and radius

T (w

i

)=4 so that Q

x

2 S

d�1

T (w

i

)

(b(w

i

);M(w

i

);V(w

i

);m(w

i

); N) provided that jx� w

i

j � T (w

i

)=2.

7



Sine �

`

onverges to Q in the C

N

-topology uniformly on ompat sets. There is a positive

onstant 

0

so that for 2

�`

� 

0

the funtions

h 7! �

`

(x+ h)� �

`

(x)� hr�

`

(x); hi (2.15)

belong to S

d�1

T (w

i

)

(

b(w

i

)

2

; 2M(w

i

);V(w

i

);m(w

i

); N) if jx�w

i

j � T (w

i

)=2. By the �nite type property

there is a Æ

0

> 0 so that for  � Æ

0

and x 2 U

i

the aps

W

`

(x; ) � fz : j�

`

(z)� �

`

(x)� hr�

`

(x); z � xij � g

are ontained in the double of U

i

; moreover we have

jW

`

(x; )j � C

1

2

+�

2

;  � Æ

0

; (2.16)

by the analogue of (2.4) with exponent 1=2 + �

2

; here C is independent of `.

Now in order to show that (2.13) holds we assume that C

�1

1

2

�l�M

� �(y) � C

�1

1

2

�l�M+1

and

observe that the image of B(y; Æ) under the linear transformation A

2

` is W

`

(A

2

`y; 2

`

Æ) whih is on-

tained in W , in fat in a U

i

if 2

`

Æ � Æ

0

. Sine detA

2

` = 2

`�

we have jB(y; Æ)j . 2

�`�

jW

`

(A

2

`y; 2

`

Æ)j

and (2.13) follows.

Finally if Æ � C

�1

0

2

�M�`

we use jB(y; Æ)j = O(Æ

�

) instead and observe that in this range

Æ

�

2

`(���)

. Æ

�

, provided that � � �. This together with (2.13) proves the asserted statement. �

Lemma 2.3. Let �, V, a, U be as in Lemma 2.2, N > d+ a

d�1

. For � 2 R

d

de�ne

F (�) =

Z

�(y)e

�{(h�

0

;yi+�

d

�(y))

dy:

There is a neighborhood

e

U � U of the origin and a oni neighborhood V of e

d

so that for � 2 V

jF (�)j � Ck�k

C

N j�j

��

�

X

j

h

�

j

�

j�

d

j

i

m

j

m

j

�1

�

���

; � � � �

1

2

+ �

2

; (2.17)

Proof. We may assume that (2.7) holds and that the u

i

's form the standard basis in R

d�1

. Observe

that then

X

j

j�

j

�j

m

j

m

j

�1

�

d�1

X

i=1

j�

i

j

a

0

i

with a

0

i

= a

i

=(a

i

� 1).

Assume that s=2 � �(x) � 2s and s is small. Then jA

1=s

xj � 1 and jQ

x

i

(A

1=s

x)j � C. But

Q

x

i

(A

1=s

x) = s

�1+1=a

i

Q

x

i

(x) so that jQ

x

i

(x)j . s

1�

1

a

i

: Similarly by (2.11) the remainder term R

x

i

satis�es the same estimate so that

j�

x

i

(x)j .

�

d�1

X

k=1

jx

k

j

a

k

�

1�

1

a

i

for small x and therefore

d�1

X

i=1

j�

x

i

(x)j

a

0

i

.

d�1

X

k=1

jx

k

j

a

k

:

Now let x(�) be the unique point at whih � is normal to the graph of �. By the Bruna-Nagel-Wainger

estimate for the Fourier transform (1.4) and Lemma 2.2 we have that

jF (�)j . j�j

��

�(x(�))

���

and sine x(�) is determined by �

i

=�

d

= ��

x

i

(x(�)) for i = 1; : : : ; d � 1, the estimate (2.17) fol-

lows. �

8



3. Lattie point estimates

In this setion we prove Theorem 1.3. We use a variant of the lassial proof (see Randol [24℄

for the two-dimensional ase). Choose � 2 C

1

0

(R

d

) so that � is nonnegative, �(x) = 0 if jxj � 1

and

R

�(x)dx = 1. De�ne �

"

(x) = "

�d

�("

�1

x). We work with the "-regularization �




� �

"

of the

harateristi funtion of 
 and de�ne

N

"

(t) =

X

k2Z

d

�

t


� �

"t

(k):

By the Poisson summation formula

N

"

(t) =

X

k2Z

d

t

d

�




(2�tk)

b

�(2�"tk)

= t

d

vol(
) +R

"

(t) (3.1)

where

R

"

(t) =

X

k 6=0

t

d

�




(2�tk)

b

�(2�"tk):

By the divergene theorem

�




(�) =

Z




e

�{hx;�i

dx = {

d

X

i=1

�

i

j�j

2

F

i

(�) (3.2)

where

F

i

(�) =

Z

�

n

i

(y)e

�{hy;�i

d�(y) (3.3)

and n

i

denotes the i

th

omponent of the outer normal vetor n

P

.

Let � be the set of points P 2 � at whih all prinipal urvatures vanish. As notied in [16℄ it

follows from (2.10/11) that the set � is disrete, thus �nite by ompatness. For every P 2 � we

hoose a narrow oni symmetri neighborhood V

P

of the normals f�n

P

g, a small neighborhood U

P

of P in � and a C

1

0

funtion �

P

whose restrition to � vanishes o� U and so that �

P

equals one in a

neighborhood of P . We may arrange these neighborhoods so that the sets V

P

\ f� : j�j � 1g, P 2 �

are pairwise disjoint and that the normals to all points in a neighborhood of U

P

are ontained in

V

P

(thus the U

P

's are disjoint too).

De�ne

F

i;P

(�) =

Z

�

�

P

(y)n

i

(y)e

�{hy;�i

d�(y)

If the ones V

P

are hosen suÆiently narrow, we have

F

i;P

(�) .

(

minfj�j

��(P )

; �

�(

1

2

+�

2

(P ))

g�

P

(

�

P

�

hn

P

;�i

) if � 2 V

P

C

N

j�j

�N

if � =2 V

P

:

(3.4)

The estimate for � 2 V

P

follows from Proposition 1.2, and the estimate for � =2 V

P

follows by a

simple integration by parts; namely if t 7! (t) parametrizes � near P then jh

0

(t); �ij � j�j for

(t) 2 U

P

and � =2 V

P

.
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Moreover by the Bruna-Nagel-Wainger estimate we have

jF

i

(�)�

X

P2�

F

i;P

(�)j . j�j

��

; � =

1

2

+ inf

P2�

�

2

(P ) (3.5)

here we used the de�nition of � and the fat that �

P

equals one near P .

We now estimate the remainder term R

"

(t) where " � 1=t will be suitably hosen. Let dist

1

denote the distane taken with respet to the `

1

metri in R

d

, or Z

d

. For P 2 � let

A

P

= fk 2 V

P

\ Z

d

: k 6= 0; dist

1

(k;Rn

P

) � 3=4g

B

P

= fk 2 V

P

\ Z

d

: k 6= 0; dist

1

(k;Rn

P

) > 3=4g

C = fk 2 Z

d

: k 6= 0; k =2 [

P2�

V

P

g:

Let

A

i

P

(t) =

X

k2A

P

t

d

b

�(2�"tk)

2�k

i

j2�kj

2

F

i;P

(2�tk)

B

i

P

(t) =

X

k2B

P

t

d

b

�(2�"tk)

2�k

i

j2�kj

2

F

i;P

(2�tk)

C

i

P

(t) =

X

k2C

t

d

b

�(2�"tk)

2�k

i

j2�kj

2

F

i;P

(2�tk)

D

i

(t) =

X

k 6=0

t

d

b

�(2�"tk)

2�k

i

j2�kj

2

(F

i

(2�tk)�

X

P2�

F

i;P

(2�tk))

then

R

"

(t) =

d

X

i=1

(D

i

(t) +

X

P2�

(A

i

P

(t) +B

i

P

(t) + C

i

P

(t))): (3.6)

When evaluating A

i

P

we essentially sum over integers in a tubular neighborhood of a line and

by the estimate (2.4) we ertainly get

jA

i

P

(t)j .

X

k2A

P

t

d

jtkj

�1��

. t

d�1��

: (3.7)

Next for the estimation of D

i

P

we use the rapid deay estimate in (3.4) to obtain

jD

i

P

(t)j .

X

k 6=0

t

d

jtkj

�N

. t

d�N

(3.8)

and for C

i

P

we use (3.5) whih yields

jC

i

P

(t)j . C

N

X

k 6=0

t

d

(1 + j"tkj)

�N

(1 + jtkj)

���1

. "

�+1�d

(3.9)

Finally

jB

i

P

(t)j .

X

k 6=0

k2V

P

t

d

jtkj

�

3

2

��

2

(P )

�

P

�

�

P

k

hk;n

P

i

�

(1 + j"tkj)

�N

10



and we laim that for � � 1

X

jkj��

k2V

P

t

d

jtkj

�

3

2

��

2

(P )

�

P

�

�

P

k

hk;n

P

i

�

(1 + j"tkj)

�N

. �

d�

3

2

��

2

(P )

minf1; (�"t)

�N

g (3.10)

whih implies

jB

i

P

(t)j . "

3

2

+�

2

(P )�d

. "

�(d�1��)

: (3.11)

We verify (3.10). Let a = a(P ) be the multitype at P . In view of dist(k;Rn

P

) � 3=4 it is

straightforward to hek that

�

P

�

�

P

k

hk;n

P

i

�

� �

P

�

�

P

�

h�;n

P

i

�

if j� � kj

1

� 1=2, k 2 B

P

:

Thus we may replae the sum in (3.10) by an integral. After performing a suitable rotation in this

integral we have to show that

Z

j�

d

j��

Z

j�

0

j��

j�j

�3=2��

2

(P )

�

d�1

X

i=1

j�

i

j

a

0

i

j�j

a

0

i

�

���

2

(P )�

1

2

d�

0

d�

d

. �

d�

3

2

��

2

(P )

: (3.12)

Now (

P

d�1

i=1

(j�

i

j=j�j)

a

0

i

)

���

2

�

1

2

. (j�

1

j=j�j)

a

0

1

(1=a

1

�1=2)

with a

0

1

(1=a

1

� 1=2) > �1, and therefore the

integral in (3.12) is bounded by

�

d�1�3=2��

2

(P )

Z

j�

1

j��

(j�

1

j=j�j)

a

0

1

(1=a

1

�1=2)

d�

1

. �

d�3=2��

2

(P )

:

This shows (3.10).

To �nish the proof we note that

N

"

(t(1� C")) � N




(t) � N

"

(t(1 + C"))

where C is a onstant depending only on the geometry of 
. Thus, by taking into aount the

leading term in (3.1) we see that

E




(t) . (t

d�1��

+ t

d

"+ "

�(d�1��)

)

and the desired estimate follows if we hoose " = t

�d=(d��)

. This ompletes the proof of (1.17).

Lower bounds. To show (1.18) we work with our hoie " = "(t) = t

�d=(d��)

. For (1.18) we simply

set

G

P

(t) =

d

X

i=1

t

�(P )�d�1

A

i

P

(t)

whih we already showed to be bounded above. However we have to verify the laim that

lim sup

t21

jG

P

(t)j > 0 in the ase where n

P

= �e

i

.

We now assume that n

P

= e

i

(the ase n

P

= �e

i

is handled in the same way). Then de�ne

G

P

(t) = t

�(P )+1�d

X

�2Znf0g

(2�)

�1

t

d

b

�(2�t

��=(d��)

�e

i

)sign(�)j�j

�1

F

i;P

(2�t�e

i

):

11



We split this sum into parts G

P

(t) = I(t) + II(t) where

I

P

(t) = (2�)

�1

t

�(P )+1

X

�2Znf0g

sign(�)j�j

�1

F

i;P

(2�t�e

i

)

II

P

(t) = (2�)

�1

t

�(P )+1

X

�2Znf0g

(1�

b

�(2�t

��=(d��)

�e

i

))sign(�)j�j

�1

F

i;P

(2�t�e

i

):

For the estimation of II we note that j(1�

b

�(2�t

��=(d��)

�e

i

))j . minf1; t

��=(d��)�

g with and

sine F

i;P

(2�t�e

i

) = O((t�)

��

we get the estimate

jII(t)j . t

�

�

d��

:

To examine I(t) we parametrize by our assumption on n

P

= e

i

F

i;P

(2�t�e

i

) = e

�{�hP;e

i

i

Z

y

0

2R

d�1

�

0

(y

0

)(1 + jr�(y

0

)j

2

)

1=2

e

{��(y

0

)

dy

0

where � � �

P

is onvex, vanishes of seond order at the origin of R

d�1

and has multitype a(P )

there; �

0

is smooth, ompatly supported and equal to one in a neighborhood of the origin. By

the onvexity hP; n

P

i = hP; e

i

i 6= 0. To examine the integral we may use an asymptoti expansion

derived in Shulz [26℄ (stated there for � ! 1, but the statement for � ! �1 follows similarly).

We obtain

F

i;P

(2�t�e

i

) = e

�2�{t�hP;e

i

i

�

��



0

(P )e

�i

2�

sign(�)

+ O(�

����

)

where 

0

(P ) > 0 and � is the reiproal of the least ommon multiple of a

1

; : : : ; a

n

. Thus

I(t) = 

0

(P )�

�1

X

�>0

j�j

���1

sin

�

2��thP; e

i

i � �=(2�)

�

+O(�

���1��

):

The sum de�nes a periodi funtion whih is not identially zero, by the uniqueness theorem

for Fourier series. Combining this with the estimation for the error term II(t) we see that

lim sup

t!1

jG

P

(t)j > 0.

Remark. For almost all rotations the estimates for the error term improves. There is r > 2 so that

jE

A


(t)j � C(A)t

d�1�

d�1

d+1

log

1=r

(2 + t)

(indeed C is in L

q

(SO(d)) for q < r. As in [2℄ this is proved using a result on the maximal funtion

M(�) = sup

r>0

r

(d+1)=2

j�




(r�)j

whih was shown by Svensson [30℄ to be in L

q

0

(S

d�1

) for some q

0

> 2 (under our assumption of

�nite line type, see also Randol [25℄ for a similar result with additional real analytiity assumption).

Indeed, let R

";A

(t) =

P

k 6=0

�




(2�tAk)

b

�(2�"tk) and

M

j

(A) = sup

2

j

�t�2

j+1

jR

"

j

;A

(t)j; with "

j

= 2

�2jd=(d+1)
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then for q � q

0

kM

j

k

L

q

(SO(d))

� 2

jd

X

k 6=0

(1 + j"

j

2

j

jkj)

�N

(2

j

jkj)

�(d+1)=2

(

Z

jM(A

k

jkj

)j

q

dA)

1=q

. 2

j(d�1�

d�1

d+1

)

kMk

L

q

(S

d�1

)

by the (standard) hoie of "

j

. But

jE

A


(t)jt

�(d�1�

d�1

d+1

)

log

�1=r

(2 + t) . 1 +

�

X

j>0

jM

j

(A)2

�j(d�1�

d�1

d+1

)

(1 + j)

�1=r

j

q

�

1=q

whih is in L

q

(SO(d)) for r < q

0

.

We remark that the methods in W. M�uller's paper [22℄ ould be used to improve the above

bound to jE

A


(t)j � C(A)t

d�1�

d�1

d+1

��

where � = �(
) > 0 and C is �nite almost everywhere.

4. Bohner-Riesz multipliers - the ase of one nonvanishing prinipal urvature

In this setion we shall prove a general theorem onerning multipliers of Bohner-Riesz type

assoiated to surfaes with at least one nonvanishing prinipal urvature. Then, in the subsequent

setion, we shall dedue Theorem 1.1 by resaling arguments.

In what follows M

p

will be the spae of Fourier multipliers on L

p

(R

d

); kmk

M

p

is the operator

norm of the operator T

m

de�ned by

d

T

m

f(�) = m(�)

b

f(�).

We split variables in R

d

as � = (

e

�; �

d

) and in the statement of the Proposition we further split

e

� = (�

1

; �

0

) 2 R � R

d�2

. The proof of the following result uses the ideas from the two-dimensional

ase, see [9℄, [6℄.

Proposition 4.1. Let " > 0, N � d+ 1 + 2=" and let g 2 C

N

(R

d�1

). Suppose that there is a ube

U entered at the origin and a > 0 so that

�

2

g

��

2

1

(�

1

; �

0

) � a

in U . Let � be supported in U and let � be a smooth funtion supported in (1=2; 2). Let 0 < Æ � 1

and

m

Æ

(�) = �(�)�(Æ

�1

(�

d

� g(�

1

; �

0

))):

Then

km

Æ

k

M

4

� C

"

Æ

�

d�2

4

�"

;

where C

"

depends only on a, ", U , the C

N

(U) norms of the funtions g, � and the C

d+1

norm of �.

Proof. We may assume that U is the unit ube, and that the support of � has small diameter. We

deomposem

Æ

=

P

k

m

Æ;k

where k = (k

2

; : : : ; k

d�1

) ranges over (d�2)-tuples of integers k

i

� CÆ

�1=2

and

m

Æ;k

(�) = m

Æ

(�)

d�1

Y

i=2

 (Æ

�1=2

�

i

� k

i

)
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for suitable  2 C

1

0

satisfying

P

1

n=�1

 (s�n) = 1, so that supp  � [�1; 1℄. Let

e

 2 C

1

0

([�2; 2℄)

so that

e

 is equal to 1 on the support of  .

Denote by T

k

the onvolution operator with Fourier multiplier m

Æ;k

and by R

k

the onvolution

operator with Fourier multiplier

e

 (Æ

�1=2

�

0

� k). Note that kR

k

k

L

p

!L

p

� C, 1 � p � 1. Then for

2 � p � 1







X

k

R

k

g

k







p

.

�

X

k





g

k





p

0

p

�

1=p

0

whih follows for p =1 from Minkowski's inequality and for p = 2 by orthogonality; for 2 < p <1

one uses interpolation. Sine T

k

= R

k

T

k

R

k

it follows that







X

k

T

k







L

4

!L

4

� CÆ

�(d�2)=4

sup

k

kT

k

k

L

4

!L

4

and therefore it suÆes to show that

kT

k

k

L

4

!L

4

. Æ

�"

: (4.1)

The estimate (4.1) is proved using arguments in C�ordoba [6℄ whih we will sketh. For � 2 Z

we de�ne operators T

k;�

and S

�

by

d

S

�

f(�) =

e

 (Æ

�1=2

�

1

� �) and

\

T

k;�

f(�) =  (Æ

�1=2

�

1

� �)

d

T

k

f(�).

Then T

k

=

P

�

T

k;�

S

�

f where the sum is extended over integers � with j�j � Æ

�1=2

sine we assume

that the support of � is small.

Now







X

�

T

k;�

S

�

f







2

4

=







X

�;�

0

(T

k;�

S

�

f)(T

k;�

0

S

�

0

f)







2

�

X

`:2

`

Æ

1=2

�1







X

(�;�

0

):

j���

0

j�2

`

(T

k;�

S

�

f)(T

k;�

0

S

�

0

f)







2

(4.2)

It an be heked that the family of funtions (T

k;�

S

�

f)(T

k;�

0

S

�

0

f) has an orthogonality property

whih implies that







X

(�;�

0

)

j���

0

j�2

`

(T

k;�

S

�

f)(T

k;�

0

S

�

0

f)







2

.







�

X

�

jT

k;�

S

�

f j

2

�

1=2







2

4

: (4.3)

The proof of (4.3) is based on an idea of C. Fe�erman [9℄; in higher dimensions one uses the following

Lemma 4.2. Suppose that a

0

2 R

d�2

, ja

0

j � 1, and the vetors

e

�, e�,

e

�, e! satisfy

(i) � + � �

e

� � e! = 0,

(ii) �

1

> �

1

> 0, �

1

< !

1

< 0,

(iii) j

e

�j; je�j; j

e

� j; je!j 2 [2

`�1

Æ

1=2

; 2

`+1

Æ

1=2

℄,

(iv) �

0

, �

0

, �

0

and !

0

belong to the ube of sidelength 4Æ

1=2

entered at a

0

.

Then

g(

e

�) + g(e�)� g(

e

�)� g(e!) � 2

`

Æ

1=2

�

j�

1

� �

1

j+ j�

1

� !

1

j

�

(4.4)
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In (4.4),  depends only on the lower bound of g

�

1

�

1

and the C

4

norm of g in supp �.

Sketh of Proof. A Taylor expansion about the origin yields

g(

e

�) + g(e�)� g(

e

�)� g(e!) = I + II + III + IV

where

I =

1

2

g

�

1

�

1

(0)(�

2

1

+ �

2

1

� �

2

1

� !

2

1

)

II =

1

2

�

�

1

hg

�

1

�

0

(0); �

0

i+ �

1

hg

�

1

�

0

(0); �

0

i � �

1

hg

�

1

�

0

(0); �

0

i � !

1

hg

�

1

�

0

(0); !

0

i

�

III =

1

2

�

h�

0

; g

�

0

�

0

(0)�

0

i+ h�

0

; g

�

0

�

0

(0)�

0

i � h�

0

; g

�

0

�

0

(0)�

0

i � h!

0

; g

�

0

�

0

(0)!

0

i

�

IV = r(

e

�) + r(e�)� r(

e

�)� r(e!)

where r vanishes of third order at the origin. (4.4) is proved by verifying

I � 2

`

Æ

1=2

(j�

1

� �

1

j+ j�

1

� !

1

j)

II � C2

`

Æ

III � CÆ

IV � C2

2`

Æ(j�

1

� �

1

j+ j�

1

� !

1

j):

The straightforward alulation is omitted; we note that formula (6.30) in [21℄ turns out to be useful

in order to arry it out. �

Proof of Proposition 2.1, ont. By (4.3) it remains to show that







�

X

�

jT

k;�

S

�

f j

2

�

1=2







4

. Æ

�"

kfk

4

: (4.5)

Let �

k

(t) = (�r

e

�

g(t; Æ

1=2

k); 1) whih gives a one parameter family of vetors normal to �

�

.

For � � 2 let R

k;�

be the set of all ylinders whose base is a d� 2 dimensional ball of radius s

and whose height is �s (any s > 0), so that the axis is parallel to �

k

(t) for some jtj � 1.

De�ne the maximal funtion

M

k;�

f(x) = sup

x2R

R2R

k;�

1

jRj

Z

R

jf(y)jdy:

Then arguing as in [6℄ and using standard estimates for the kernel of T

k;�

we see that

Z

X

�

jT

k;�

S

�

f(x)j

2

w(x)dx .

Z

X

�

jS

�

f(x)j

2

M

k;Æ

�1=2

w(x)dx:

The L

p

norm of (

P

�

jS

�

f j

2

)

1=2

is bounded by the L

p

norm of f , for p � 2 (see [6℄) and therefore

we an �nish our proof by using duality and showing that

kM

k;�

fk

2

� C

"

�

"

kfk

2

(4.6)
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uniformly in k.

If we knew that for every � the funtion t 7! h�;�

k

(t)i hanged sign at most M times then

it would follow from a result by C�ordoba [7℄ that (4.6) holds with �

"

replaed by C

1

M [log�℄

C

2

.

This hypothesis may not be satis�ed, but we an get around this point by a simple approximation.

Namely devide [�1; 1℄ into �

"=2

intervals [a

j

; b

j

℄ of lengths �

�"=2

. Let P

k;j

(t) be the vetor valued

Taylor polynomial of degree [2="℄ of r

e

�

g(�; Æ

1=2

k) expanded about a

j

, and let �

k;j

(t) = (�P

k;j

(1); 1).

Then j�

k

(t)� �

k;j

(t)j � C�

�1

for t 2 [a

j

; b

j

℄.

Let R

k;�;j

be the set of all ylinders whose base is a d � 2-dimensional ball of radius s whose

height is �s, so that the axis is parallel to �

k;j

(t) for some jtj � 1. If M

k;�;j

denotes the assoiated

maximal operator then it is immediate that M

k;�

f �

P

j

M

k;�;j

f where the sum ontains only

O(�

"=2

) terms. C�ordoba's result yields the L

2

bound C

"

[log�℄

C

2

for eah M

k;�;j

. This �nishes the

proof of (4.6). �

5. Proof of Theorem 1.1

The L

1

version of the theorem is well known, and therefore by an interpolation argument one

has to show the boundedness on L

4=3

(R

d

), or, equivalently, on L

4

(R

d

).

We split (1� �(�))

�

+

= h

0

(�(�)) + h

1

(�(�)) where h

0

is supported in ft : t � 1� �

0

g for suitable

small �

0

and h

1

is supported in ft : t > 1� 2�

0

g. Then h

0

(�(�)) is a Fourier multiplier in M

1

; the

mild singularity at the origin an be handled e.g. by an averaging argument in [8, p. 248℄, replaing

� by �

N

for large N .

Let �

0

2 �

�

. It suÆes to show that there exists a neighborhood V of �

0

(in R

d

) so that

h

1

(�(�))e� is a multiplier on R

d

for � > (d � 2)=4 if e� 2 C

1

and supported in V . The multiplier

norm is invariant under rotations and we may assume that �

�

an be parametrized as a graph

�

d

= G(

e

�),

e

� 2 R

d�1

near �

0

, so that �(�) < 1 if �

d

> G(

e

�). We write

�(�)h

1

(�(�)) = �(�)H(�)(�

d

�G(

e

�))

�

+

where H(�) =

�

1� �(�)

�

d

�G(

e

�)

�

�

:

A Taylor expansion of � about �

d

= G(

e

�) shows that H is smooth on supp �; therefore by the algebra

property of M

p

it suÆes to show that e�(�)(�

d

�G(�

1

; �

0

))

�

+

belongs to M

4

if supp e� is suÆiently

lose to �

0

.

Let a = (a

1

; : : : ; a

d�1

) be the multitype of �

�

at �

0

, in the sense of x1.2. By an aÆne trans-

formation we may assume that �

0

= 0, G(0) = rG(0) = 0 and that G = Q + R where Q and R

are as in the proof of Lemma 2.2: The funtion Q is mixed homogeneous of degree (a

1

; : : : ; a

d�1

),

i.e. if A

s

(

e

�) = (s

1

a

1

�

1

; : : : ; s

1

a

d�1

�

d�1

) then Q satis�es Q(A

s

(

e

�)) = sQ(

e

�). The remainder term R

satis�es

�

�

�

s

�1

�

j�j

��

�

�

R(A

s

e

�)

�

�

�

�

� C

M;N

s

1=m

for small x and s and all multiindies � = (�

1

; : : : ; �

d�1

)

with j�j � N . In partiular jR(

e

�)j � Q(

e

�)=10 if Q(

e

�) � 2

�r

0

+2

for suitably large r

0

.

Next we set R

r

(

e

�) = 2

r

R(A

2

�r

e

�), so that G

r

= Q + R

r

tends to G in the C

1

topology, as

r ! 1. Sine the Hessian of Q has rank 1 where 1=4 < Q(

e

�) � 4 (see (2.10)) the same is true for

G

r

= Q + R

r

if r is large; we may assume that the matrix norm of (Q + R

r

)

00

is bounded below

uniformly in r if r � r

0

.
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Let �

1

be supported in (1=2; 2) suh that

P

k�0

�

1

(2

k

s) = 1 for 0 < s � 1. Then we have to

show a bound for the M

4

norm of

�

j

(�) = e�(�)�

1

(2

j

(�

d

�G(�

1

; �

0

)))(�

d

�G(�

1

; �

0

))

�

+

:

Here we may assume that e�(�) = 0 when Q(

e

�) � 2

�r

0

.

We now perform a further deomposition in terms of G(

e

�). Let � 2 C

1

0

(R) so that �(s) = 1 if

jsj � 1=2 and �(s) = 0 if jsj � 1; also let �

0

= � and for integer r > 0 let �

r

(s) = �(2

�r

s)��(2

�r+1

s).

Let

�

j;n

(�) = �

j

(�)�

n

(2

j

G(

e

�))

so that �

j;n

is supported where j�

d

�G(

e

�)j � 2

�j

and G(

e

�) � 2

n�j

if n � 0 and G(

e

�) . 2

�j

if n = 0.

Using the assumption on the support of the uto� funtion e� we see that �

j;n

= 0 for j � n+ r

0

.

For the piees �

j;n

we employ a saling argument (for a similar argument in two dimensions see

[12℄). For the saling we use the dilations � 7! (A

2

n�j
(

e

�); 2

n�j

�

d

). De�ne for n > 0

e�

j;n

(

e

�; �

d

) = �

1

(2

n

(�

d

�G

j�n

(�

1

; �

0

)))(�

d

�G

j�n

(�

1

; �

0

))

�

+

�

1

(G

j�n

(

e

�));

for n = 0 we use the same formula but with �

1

replaed by � = �

0

. Then

�

j;n

(A

2

n�j

e

�; 2

n�j

�

d

) = 2

(n�j)�

e�(A

2

n�j

e

�; 2

n�j

�

d

)e�

j;n

(

e

�; �

d

)

so that

k�

j;n

k

M

p

. 2

(n�j)�

ke�

j;n

k

M

p

It is now easy to see that the C

4

norm of e�

j;0

is . 2

�j�

and e�

j;0

is supported in a �xed ball

with diameter independent of j.

Therefore

ke�

j;0

k

M

p

. 2

�j�

; 1 � p � 1:

Note that for j � n � r

0

the multipliers e�

j;n

are supported where 1=4 < Q(

e

�) < 4, and by

onstrution the matrix norm of G

00

j�n

is in this region bounded above and below, for j � n � r

0

.

We may apply Proposition 4.1 (with Æ = 2

�n

), to see that for 0 < n � j � r

0

ke�

j;n

k

M

4

. 2

(n�j)�

2

�n(��

d�2

4

)

and the assertion of Theorem 1.1 follows by summing over 0 < n � j � r

0

, j > 0. �
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