CLASSES OF SINGULAR INTEGRALS ALONG CURVES AND SURFACES
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ABSTRACT

This paper is concerned with singular convolution operators in R?, d > 2, with convolution
kernels supported on radial surfaces y; = I'(]y’|). We show that if I'(s) = log s then L? boundedness
holds if and only if p = 2. This statement can be reduced to a similar statement about the multiplier
m(r,m) = |7|7" in R?. We also construct smooth I' for which the corresponding operators are
bounded for py < p < 2 but unbounded for p < py, for given py € [1,2). Finally we discuss some
examples of singular integrals along convex curves in the plane, with odd extensions.

1. Introduction. This paper is primarily concerned with singular integral operators 1" in dimen-
sions d > 2 defined for f € C§°(R?) by

(1.1) Tf(a',xa) = p-v-/f(:r:’ —yea = L(ly']) J%l_)l dy’

where 2’ € R¥"1. We assume that I' : (0,00) — R is a smooth function, 2 € L%(S?~2) for some
q > 1 and

(1.2) /S Q(0)do(9) = 0.

We include the case d = 2 with the interpretation of S® = {—1,1} and the surface measure being
counting measure.

It is easy to see using (1.2) that the principal value integral (1.1) exists everywhere for f € C§°.
The question is for which p € (1,00) the operator 1" extends to a bounded operator on L?(R?). If
we consider the case of convex I it is known that then L? boundedness implies L? boundedness for
1 < p < oo (see [10], [2] for the case d = 2 and [8] for the case d > 3, at least in the case of smooth
). Moreover it was shown in [8] (again assuming that (2 is smooth and I' is C! in (0, 00)) that in
dimension d > 3 the operators 7" are bounded in L?(R?), without any convexity assumption on I'.
Our primary concern here is whether 7" extends to a bounded operator on LP without any further
restriction on I'. Our first theorem shows that this is not the case, in fact in our example I' is
chosen to be concave.
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Theorem 1.1. Suppose that Q € L9(S%"2) where ¢ > 1 and suppose that the cancellation
property (1.2) holds. Suppose I'(t) = logt. Then T extends to a bounded operator on LP(R?) if
and only if p = 2 or Q = 0 almost everywhere.

Remark. The analogous maximal operator M, defined as the pointwise supremum of averages over
{(z+y',log(lz+9']): || < h}, h >0, is unbounded on all LP spaces, see the argument in [14, p.
1291]. Moreover the L? estimate may fail if the standard homogeneous Calderén-Zygmund kernels
Qy'/1y'|)|y'|*~¢ are replaced by other (standard) singular kernels, such as the kernel for fractional
integration of imaginary order, see Remark 2.3 below.

We shall see that the unboundedness of T' for p # 2 follows from a negative result for a Fourier
multiplier on R?. In what follows M? denotes the class of Fourier multipliers of L? and ||m||az» is
the LP operator norm of the convolution operator with Fourier multiplier m.

Proposition 1.2. Let x be a bounded function in C*(R) and define

(1.3) h(r,m) = x(n)|7|~*".
Then h € MP(R?) if and only if p =2 or x = 0.
If x4+ denotes the characteristic function of (0,00), then the same statement holds with h(r,n)
replaced by ha (,1) = h(r,7)x+ (£7).
Remark. This result should be compared with the fact that for every n the multiplier 7 — |7|=%

is a multiplier in MP(R) for 1 < p < oo (it is the multiplier corresponding to fractional integration
of imaginary order; the L boundedness follows from the Marcinkiewicz multiplier theorem).

In our second theorem we exhibit operators 1" with a prescribed range of LP boundedness.

Theorem 1.3. Suppose 1 < r < 2. There is a function I' defined on [0,00) with I'(0) = 0, such
that the symmetric extension I'(|z|) to R9~1 is smooth and such that the following holds.

Letd > 2 and T be as in (1.1), where Q € L1(S%~2) for some q > 1 and the cancellation property
(1.2) is assumed. Then T extends to a bounded operator on LP(R?) if and only ifr < p < r/(r—1)
or ) = 0 almost everywhere.

Remarks. (i) Let 1 < r < 2. A slight modification of our construction yields I' such that 7" is
bounded on LP(R?) if and only if r < p < r/(r — 1) or Q@ =0 a.e.

(ii) Examples where the mazimal operator associated to the curve is bounded on some L? spaces
but not on others have been constructed by M. Christ [4], see also Vance, Wright and Wainger [15]
and unpublished work by Wierdl. Examples of this kind for singular integral operators seem to
be new; however in [3] an example of a convex I' was constructed, so that the Hilbert transform
associated to the odd extension was bounded only on L?(R?).

(iii) In an appendix (§5) we include some observations related to the examples in [3] and [4],
dealing with singular integrals with convolution kernels supported on curves {(¢,7(¢))} in the plane;
here  is the odd extension of a convex function on (0, co).

2. L2%-estimates. We shall now consider the case
I'(t) = logt

and show that T is bounded on L? (provided that Q € L4, ¢ > 1). This is achieved by showing
that

o QL ’
mR(ﬁ)z/ o—i((@ &) +eatog o) 2@ /12]) )
o’ |<R

|qu—1

R , ’ dr
(2.1) = / e~ talogT / e~ %00 (0)do () —
0 Sd—2 T
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is bounded uniformly in £ and R and converges to a bounded function as R — oco. By changing
variables r — r|¢’| and using the cancellation of {2 we see that

(2.2) mp(€) = e’ log|£’|MR|£’|(§,/|§,|a§d)
with
R
(2.3) Mi(0,64) = / e italonT / (=000 _ 1)Q(0)do (6)
0 Sd—2 'S
for ¥ € S92,

We split Mp = 32 &R where

i=1%1

R
el = [ e | (e=4r90) — 1)2(0)do ()
0 6:r[(6,0)|<1 r
R , dr
(2.4) ER (0, ) / J-italog / =800 () dor(6) 2
0 6:r|(8,9)|>1 r

7

R
) d
ER(0,84) = — / e=italogT / Q(6)do(0) L.
0 0:r[(0,9)|>1

First observe that
min{|(0,9)|"*,R} ' dr
» Sd < e vV —1|—do < (C.
R0, ¢ (0 iro,v) l|—-do(6) < C
0

To estimate £F interchange the order of the integration and observe that after a change of
variables s = r[(f,9)| in the inner integral we have

ER(9,¢0) = / Q8108 10Ny (¢4, R|(6, 9)])do (0)
(6,9)> R~
4 / Q)65 10Ny _ (¢4, BI(9, 0)])do (0)
(0,9)<—-R-1!

where

N
. ds
(25) w3, N) = [ exp(-iCs + 71og )
1
We show that v is uniformly bounded in v and N > 1.
Assume first that |y| > 1/2. Then we split the integral (2.5) into three parts depending on

whether |y| > 5s or s < |y|/5 or |y|/b < s < 5Jy|. The integral over s € [|v|/5,5]y|] is trivially
bounded.

If N > 5|y| then we integrate by parts to get

/N C_i(ﬂ:s+710g3)§ — /N d(ei(:Fs+'ylogs))
5 57|

Iyl s Fis — 1y
—i(£ —i(* N
= Z(e Z( N+710gN) - ¢ Z( 5’y+710g57)) :F’L/ e_i(i5+710g3) ds
YFN Y F 59l 51| (v £s)?



and this is bounded (since |y| > 1/2).
We treat the integral f1|7|/5 e~H(Estrlogs) ds gimilarly. If || < 1/2 and N > 1 then

N N
(2.6) / e i(Estylog 545 = +i(eTIVN==L —eF) & (iy + 1) / eTiss—11 2
1 s 1

which is bounded. This shows that |EF(d,£4)] = O(1), uniformly in R.
Finally to estimate ££(19, &) we observe that

R

: d
el = - ) [ )
[(6,9)|>1/R r=[(6,0)| " r

= —83‘,'?1 (9,&q) + 53{?2(197 £a)

where
R . dr
E31(9,€q) 2/ 9(9)/ e~ taloeT — 4o ()
’ §a-2 r=1(6,0)] r
R ; dr
83{?2(197§d) :/ 9(9)/ e—ZEdlogT_do_(o)
[(6,9)|<1/R r=[(6,9)|7* r
Now
R — 0,9 i€q 1— (8,9 itq
efc)=- [ 00 O doy = [ a0 O o0
Sz —i&q Sa—2 —i€a

where we have used the cancellation of 2 again. We see that

e~ alog(6,9)] _ 1
ol < [ () 4o ()

gd—2 1€al
< / 12(0) | Tog (6, 9)| " dor(9)
gd—2

and the last integral is bounded uniformly in ¥ because of our assumption 2 € L?. Moreover by a
straightforward estimate

ER,(9,64) < / 192(0)][log R + log (6, 9)| "] dor(0)
' 1(0,9)|<1/R

<2 [ 1000 1og|0.0) " do (o).

We have shown that Mg is bounded uniformly in (9,£;). An examination of the above argument
also shows that if |{4| < J and J > 1 then for J < R < R’

|Mpg(9,8q) — MR/ (9,8a)|

Solf RN+ los |60 i)+

AO) (RI(0, 9)]) " do(0)]
[{6,9)|> R+

which is O(R™1*1/9(1 + log R)). Therefore limp_,oo Mpjer(€'/]€'],€4) exists and the convergence

is uniform with respect to (¢',¢;) in compact subsets of (R4~ \ {0}) x R. Since each Mp, is easily
seen to be a smooth function on S4~! x R we have proved
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Proposition 2.1. Suppose that I'(t) = logt, € LY(S%2), ¢ > 1, and that (1.2) holds. Then T
is bounded on L?(R?) and the Fourier transform of its convolution kernel is given by

m(€) = s IEN (¢ /1€, €q)

where M is a bounded continuous function on S% 2 x R.

Remark 2.2. If Q is odd then T is L? bounded if (1.2) holds and § is merely in L'(S%=2). To see
this one uses the method of rotations (see [1]). Define

Hof(2) = pv. [ fa' = 10,5~ og]t) T

then one can see by transferring our result in two dimensions to d dimensions that Hy is bounded
on L*(R%) with operator norm independent of . If Q is odd then T' = ¢ [, » Q(0)Hgdo(0) and
the L? boundedness of T' follows. For general  satisfying (1.2) the assumption € Llog L(S9~2)
yields L? boundedness of 7.

Remark 2.5. For a # 0 let my (1) = |7|"* and ko = F~'[m,], then k, is a standard singular
integral kernel on R?~! (although not homogeneous of degree 1 — d). For f € C§°(R?) define

Haf (@) = [ £ = b0 = log |t ka(t)dr
Then H,, is unbounded on L%(R?). To see this observe that the associated multiplier

Ca/ e=i((€'2" ) H(Eta) log o)) 7 1= g
Rd-1

is unbounded as £; — —a.

For later use we shall now show that for £; # 0 the function M is actually differentiable as a
function of £4; in particular we shall need that

8M(19, gd)
(2.7) €a 98,
The proof of (2.7) follows the lines above. Differentiation with respect to &4 gives another factor
of —ilogr in the formulas (2.4). In the estimation of £F(¥,&;) this yields an additional factor
of log |(8,9)| ™" which is harmless in view of our assumption © € L4(89-2). In the estimation
of EE(99,¢4) we shall only need to consider the term corresponding to (2.6) since we assume that
|€4) < 1/2, and we get boundedness of the derivative (again the calculation yields an additional
factor of log |(#,9)| ™). The term corresponding to EX(1,¢,) has to be handled with some care; it
is a difference of 552(19, &q) and gfl (9,&4) given by

<O if0< &g <1/2.

R
ER(9,¢4) = —i / Q(6) / e—zfdlog’“loﬂdrda(e)
’ §a-2 r=1(6,0) 7" r
~ ] R i logr
ER(0,69) = —i / Q(0) / e=icalogr 08T 4 o)
16,0)|<1/R r=](0,0)] r

Now for £; # 0
L log 1—i 1 1 —i 1
/ e~ a longdr =it R (log R —14&; ") —i&, o~ (loga —i&; ).

Using this for a = |(0, 19)|_1 we may copy the argument for Efl (9,€4q), Ef2 (9,&4) above, producing
an additional factor of §d_1. Moreover the limiting argument above can be carried over as long as
we stay away from &; = 0. This yields (2.7).



3.1. The model multiplier in two dimensions. We now give a proof of Proposition 1.2.
Clearly h € M5 since h is bounded. Let 1 < p < 2 and assume that x is not identically zero. We
argue by contradiction and assume that h € M?. Our proof is related to an argument by Littman,
McCarthy and Riviere [9].

We may choose an interval I = («g, 1) so that x(n) # 0 if n belongs to the closure of I. Let
® € S(R) so that the Fourier transform D is compactly supported in I but does not identically
vanish. Let 5 be a C* function so that 3 is supported in {7 : |7| < 1}, B(7) =1if |7] < 1/2.

Let

gx(r) = 3 2 g o2yt oton ),

Then it is easy to see by the sharp form of the Marcinkiewicz multiplier theorem ([13, p. 109])
that
lgn||are < Cp for 1 < p < o0.

Let

N
hy(rn) =Y B()B(r — 2 )e™
k=10

then hy = gyh and therefore
lhn || are < Cpllh|| are.

However we shall show that

(3.1) |hn||lare > eNY/P=1/2
so h cannot be in MP.
Define fy by
— N k.~
In(mm) =Y Blr—e*)¥(n)
k=10

where U is compactly supported but equals 1 on the support of :I\>, so & =0 x0T,
Then by Littlewood-Paley theory

ol 1 2 1/2 1/2
Wl = || (32 17281E) |~ a2,
k=10 P
But N
F U fxle) = 3 F B ) e, - 2)
k=10

and since ® # 0 is a Schwartz function it is easy to see that

1F " hn flll, > eNYP.

This yields (3.1) and therefore the desired contradiction. The above argument also proves the
corresponding staement for the multiplier A4 and then also for A_. [



3.2. Failure of LP-boundedness in Theorem 1.1. We now show that if I'(¢) = logt and if
T is bounded on L?(R?) then p = 2, assuming that €2 is not identically 0. By the Riesz-Thorin
theorem we may assume that 1 < p < oo. Let x4 be the characteristic function of (0,00). If m is
the corresponding multiplier then we know by de Leeuw’s theorem [7] that for almost all ¢ € S92
the function (7,7) = x+(7)m(79,7n) is a Fourier multiplier on L?(R?).

Now m(79,n) = |7|"" M (9, n) for T > 0, by Proposition 2.1. Let Kq be the kernel Q(z'/|z'|)|2|*~¢
on R?~1. Then its Fourier transform in R¢~! is homogeneous of degree zero and equals M (¢'/|¢'], 0).
The latter cannot be zero almost everywhere by uniqueness of Fourier transforms. Therefore there
is 9 € S92 such that m(79,7) is a Fourier multiplier on L?(R?) and such that M (9,0) # 0. Since
M is continuous in 7 there is 0 < € < 1/2 and ¢ > 0 so that |[M(d,7n)| > ¢ for ¢/2 < n < e. Let x
be a C'*° function supported in (€/2, €), not identically zero.

From (2.7) we see that n — x(n)[M (9,7)]~! is a Fourier multiplier on L?, with bounds uniform
in 9. Therefore x(n)x (7)|7|*" is a Fourier multiplier on L?(R?) and by Proposition 1.2 this implies
that p=2. O

4. Examples for specific LP spaces. In this section we give a proof of Theorem 1.3. For each
Po, with 1 < po < 2, we construct an even function I' € C°°(R) such that I'(0) = 0 and I'(¢) = 0
for ¢ > 1, and such that the operator T as in (1.1) is bounded on L?(R?) if and only if py < p < p))
or =0 a.e.

Let ¢ € C*°(R) so that (¢) =1ift > 1/4 and ((t) = 0ift < —1/4. Let 6 = {J,,} be a sequence
of positive numbers, so that |0,,| < 1 and lim,,—, o 0, = 0.

Let {7y,}52, be a sequence of positive numbers such that v,41 < 7,/10 for all n > 1. Our
function I is then defined by

(A1) D) = @0t = 277 (1= 62))C2" T (27 (L4 0,) — [2])).

Then for n > 1

rg=4 ™ " 27 (L= G + 62277 72) < 1] < 27 (14 6, — 6, — 6,27772)
0 if 2_(n+1)2(1 + 5n+1 + 5n+12—n—3) < |t| < 2—n2(1 B 5n B 5n2_”_2)

and I'(t) = 0 for |¢| > 2.

Theorem 4.1. Let I' be as in (4.1), T and Q as in §1, 1 < p < oo and let s(p) = |1/p — 1/2|71.
Then T is bounded on LP if and only if § € £*®) or Q = 0 almost everywhere.

Theorem 1.3 is an immediate consequence, except for the fact that the even function I' may
not be smooth at the origin. This however can be achieved by an appropriate choice of +,, for
example, v, < y,_1exp(—2"0,; 1) for all n > 2.

Proof of Theorem 4.1. Let I, = [27™" (1 — 6,),2"" (1 + 6,)] and

Q(y’
T, f(z) =/ fl@" =y zq —%)%dy'-
ly'|€ln ly/|

It is easy to see that T =Y >° T, +H+Y .., K, where the L? operator norm of K,, is O(2™"), for
1 < p < 0o and where H is the extension to L?(R?) of a variant of a Calderén-Zygmund operator
acting in the z’ variables; the L? boundedness for 1 < p < oo follows from [1]. It therefore suffices
to examine the operator ) T),.



Let Lj denote the standard Littlewood-Paley operator on R*1 | i.e.,

Lif(€) = o2 |E)f(€)

where ¢ is a C§° function supported on <t < 2 such that Y2 ¢(27%|t]) =1 for ¢t # 0.
Then for some € > 0, depending on p > 1 and ¢ > 1

(4.2) | LkgnTyl|ze < Amin{27 ¢l 5,};
see e.g. [6].
2 ~ 2 ~
Define A,, = S0 L, A, = notnt2 g i, so that A, A, = A,. Observe by (4.2) that
Jj=n?—-n+1"J j=n?-n-—1"]

00
Z ||Tn - TnAn“LP—)LP <00

n=1

for all p € (1,00). The L? boundedness of T', under the assumption d € ¢%, follows by a well known
argument using Littlewood-Paley theory (see [12] and [5]). For convenience we include the short
proof. Without loss of generality assume 1 < p < 2. By Littlewood-Paley theory (or Calderén-
Zygmund theory for vector-valued singular integrals [13, ch. II]) the inequality [[{Anf}|Le(e2) <
C||fll, holds for all p € (1,00), similarly the corresponding inequality involving A,. Since the L?
operator norm of 7T}, is O(d,) we see that

| S Auran

| < CT BT oy < Ol T | poany = Col{Zan Y

p » 1/p , ,
< CP(Z ||Tn||LP—>LP||Anf||p) < Op||5||25 {Anf}He2(Lp) < Cp||5||lS {Anf}HLp(e2)

< Cyllollesl1£11p-

We now turn to the proof of the converse. We fix p € (1,2) and assume that 7" is bounded on
LP and that €2 does not vanish on a set of positive measure; we then have to prove that § € £°.
Let

ma(€)= [y Dl ay
ly'|€1n
Since by (4.1) the operator ) T), is bounded on L?,

m(€, &) =Y e ammmy, ()

n

is a bounded multiplier on LP(R?). Since we assume that  does not vanish on some set of positive
measure, it follows that there is an open set U on which the Fourier transform Qdo does not vanish,
in fact we may assume that |Q2do(£)| > A > 0 for £ € U. By de Leeuw’s theorem [6] there is = € U

so that .
u(r,n) = Z e m, (T2)
n

is a multiplier in MP (R?).



Since we assume that lim,,_, , ,, = 0 we can choose a positive integer K so that the closed ball of
radius 0, and center Z is contained in U for all # > K. Let § € C*°(R) with § supported in [1/2, 2]

so that #(t) = 1 in a neighborhood of 1. By the Marcinkiewicz multiplier theorem ZéV:K B(T— 252)
is in M"(R) for every r, 1 < r < oo, uniformly in N (here and in what follows we assume that
N > K). Therefore the norms in M?(R?) of the multipliers ZéV:K >, emm,, (TE)B(T — 2% are
uniformly bounded.

It follows from (4.2) that the M, (R?) norm of m, (7E)8(r — 2¢°) is 02~ ~""l), where € =
e(r,q) > 0if r > 1, ¢ > 1. Therefore ZIZZ\J:K Dokt e, (12)8(r — 2¢°) is a Fourier multiplier of
L"(R?) for all 7 € (1,00) with bound uniformly in N. Consequently, by our assumption

N
on(rm) = 3 eMmy(rE)B(r — 2¥)
=K

is a Fourier multiplier of L?(R?).

Now let
140, o
Ae = / / Q(H)ezr(:,9>d0r—ldr
1-9, Sd—2
1+6, e o
bg(T) = / / 9(9) [ezr2 T(E,0) 61T<:’9)]d6'7“—1dr
1-9, Sd—2
then

N
on(T,m) = Z el (Ag + be(7)).

=1
Observe that for £ > K

14 6y
1-4,

Moreover B(- — 2¢ )by is a Fourier multiplier of L!(R), with bound independent of £. The L™ norm

of this function is O(2=¢") and therefore by interpolation the multiplier Zé\f: 5B — 2¢°)b, belongs
to M, (R) for r € (1,00), with norm bounded in N. We conclude that

N
wy(r,m) = Y @M B(r - 25) A
(=K

belongs to M?(R?) with norm independent of NV.
Let 1 be a nonnegative smooth function not identically zero, with support in [—1/2,1/2] and
—1 _
let Y () = TN TP (TR 19)-
Now let a = {a;} be a sequence in £2/?, so that ||c||s2/» < 1. Note that 2/p = (s/p)’. We test
wy on fy with

N
Fy(mm) =" laelPB(r — 25 ) (n);
(=K

then by Littlewood-Paley theory

<!

Lp

al 1/2
I fxllze < CH( ) |a£|2/p|f—1[ﬁ]|2> ‘
=K
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where C’ is independent of N. On the other hand, for (z,y) € R2,

N 2
F unInl(z,y) = Y AdaeM?FHE% () “pn(y — 7).
=K

Since yy4+1 < v¢/10, ¢ = K, ..., N, the supports of the functions 9 (y —y¢) are disjoint. Therefore

N 1/p —
(3 14elael) ™ < CIF T Fally < Cllwnllass | fxl < €
(=K

uniformly in N. This implies by (4.3) that

o0

sup Z |0¢|Pcve] < 0.
llell s /pyr <1 g

By the converse of Holder’s inequality it follows that {62} € £%/? and therefore § € ¢5. O

5. Appendix: Odd extensions of convex curves in the plane. Here we include some obser-
vations concerning odd curves (t,y(t)) where «y is convex in (0, 00). Our examples are modifications
of those in [3] and [4]. For r > 0, € > 0, and j > 1 set a,; = 7477j! for a small 7 to be chosen
later and

(5.1) Yre(t) = (2)747 + (2 +2)" + acj)(t — 47) for 47 <t < 47(1+57°).

For 47(1+4 j<) <t < 47!, extend . so 7/ .(t) is constant in this interval, 7, . is continuous at
49(1+77°) and v, ¢(t) is continuous for ¢ > 4. Similarly extend ~, . to [0,4] with constant positive
curvature so that v, ((0) = 0. A calculation shows that v, . is convex for ¢ > 0. Finally extend ;. ,
as an odd function. The perturbation by « ; in (5.1) is convenient in order that arguments in [4]
to study maximal functions should apply to singular integral operators. We consider

Hyf(z,y) = p.v. / flz =ty —yre(t)t1dt.

Proposition 5.1.
(i) For any € > 0 and r > 0, ||Hy o f||L2 < A f]|L2.
(ii) If py = gz_ﬁ, then for any r > 0, ||Hy e f|lLr < Apl|fllLe for po < p < pj.
(iii) If r = 1 and % <p <2, H,, is unbounded on L? if € < 1—11 _

2
(iv) Ifr =1 and p < 3, H, . is unbounded on L? if ¢ < ]—3; -2

3
r+2
r+l+e”

(v) If r is a positive integer, then H, . is unbounded on L? if p <

Remarks. Consider the maximal function sup, o h™! foh |f(z —t,y—re(t))|dt. Then the operator
M is unbounded on LP if p < —2+2. This is a slight improvement over a result in [4]. More

r+1+e€’
generally if r = ™ with m and n positive integers then one can show that M is unbounded if
p < mTffne One achieves this by restricting the values of j’s in the argument below to be n-th

powers. Obviously many questions remain open.
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Proof of Proposition 5.1. Clearly (i) follows from [10] since A, (1) = t,. . (t) — 7re(t) is doubling

(see also [3], [16] for a more geometric proof of this result). In particular note that if I; =

[47,49(1457¢)] then v, (t) = s;t—h; where s; = (2+2)" 4+, ; and h; = 49[(25+2)"— (2)" + cxe ;).
Now set Z; c = {t : [t| € Ij ¢} and let

Gof (@) = | fla =ty = et

Then H, . = Z;; Gj + E. In view of the curvature properties of <, . in the complement of
U;Z; (where h is “infinitesimally doubling”) the method of [3] may be applied to yield the L?
boundedness of E for all ¢ € (1, 00).

For the remaining assertions of the proposition it suffices to consider G =}, G;. To prove (ii)
we consider the analytic family G, = >, j*G;. If Re(z) < —1, G, is clearly bounded in L. (ii)
follows by analytic interpolation if we can show that G, is bounded in L? for Re(z) < e. This
however follows by Fourier transform estimates following [11] or [16]. One derives the estimate

|G(6)] < Crmin{j ™% 471€1 + Ea(s; — 477hy)| + Col€al4 T hy; 4771€1 + Eas5] 71}

The first estimate is obvious, the second estimate uses the oddness of v and the estimate |sina| <
|a| and the third uses an integration by parts. It is now straightforward to bound the sum
Z;il 177G (&)| provided that Re(z) < e.

To obtain conclusion (v) we follow Christ [4]. We test G on the characteristic function fy of a
union of small rectangles R, ) centered at lattice points (a, b) with 0 < a < 2 and 0 < b < N2V,

R.p = {(:r,y) ca—NT""lo<z<a+N"lob-N1lo<y< b-l-N_lU}
here o is small (to be chosen). We let for each pair of positive integers ¢ and j
S8 = {(z,y) |0<z <2V, 0<y < N2V |y — (2j + 2)"x — £| < N~'o}.

Then |S%7| > 02V (2N)~1 if j < N/4 and ¢ < N72V/10, moreover if j' # j, |S4I N 8§¥'7"| <
AO,2N—2T—2 ‘j—r _ (jl)—r‘_l < AIO.2N—2|jr _ (jl)r|—l.

Fixing £, j, and 5/, the number of strips S¢" that intersect S%7 is at most 2V |5 — (j')"|. Since
there are at most N values of j/, the measure of the union of all strips intersecting a given SJ
is at most Ac|S%7|, with A an absolute constant not depending on o. We are going to restrict j
to N/5 < j < N/4. We estimate Gfy for points (z,y) in S©7 such that (z,y) is in no S with
4" # j and such that the vertical distance from (z,y) to the top of S%J is between 10~°7/N and
10757 /N. If we first choose o sufficiently small and then 7 = ¢ /100, we will be estimating G fy on
a positive fraction of S, In evaluating G'fy at such points (z,y) the contribution to G fy from
pieces of 7, . with slopes other than (2j + 2)" is zero. The contribution G fx at such points comes
from two strips

S+ g g2

The contribution from St=(20)"27.5 ig at least 10=2j=¢N~"~1. The absolute value of the contribu-
tion from S*T2)"27.3 is at most 10735 ~¢N~"~1. Thus if G is bounded in L?

N~ (r+hp j—pe

Js"| < Alsupp(f)l
4,
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Therefore N~ ("+0rj—pe N NT2N (2N /N) < AN722N N=7=2 which implies for N — oo the necessary

s r+2
condition p > —=F.

Note that (iv) is a special case of (v). Finally (iii) follows along the same lines as in §7 of [3].
Let

44k . painy At
(k)= | sin{nla (¢ - 4°) - 412

k
= —(log2)k~¢sin(4**1n) + O(k™1)

then it suffices to show that the sequence b, does not belong to MP(Z) (the class of Fourier
multipliers for Fourier series in L?(T)), uniformly for 7 < n < 37. The error O(k™!) represents the
Fourier coefficients of an L? function and belongs to M,.(Z) for all r € [1,00]. Now the argument
in [3] shows b, ¢ MP(Z) if {k=<"1/" log™" k} ¢ £2(Z) which is true if e < 1/p — 1/2. O
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