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Abstrat

This paper is onerned with singular onvolution operators in R

d

, d � 2, with onvolution

kernels supported on radial surfaes y

d

= �(jy

0

j). We show that if �(s) = log s then L

p

boundedness

holds if and only if p = 2. This statement an be redued to a similar statement about the multiplier

m(�; �) = j� j

�i�

in R

2

. We also onstrut smooth � for whih the orresponding operators are

bounded for p

0

< p � 2 but unbounded for p � p

0

, for given p

0

2 [1; 2). Finally we disuss some

examples of singular integrals along onvex urves in the plane, with odd extensions.

1. Introdution. This paper is primarily onerned with singular integral operators T in dimen-

sions d � 2 de�ned for f 2 C

1

0

(R

d

) by

(1.1) Tf(x

0

; x

d

) = p.v.

Z

f(x

0

� y

0

; x

d

� �(jy

0

j))


(y

0

)

jy

0

j

d�1

dy

0

where x

0

2 R

d�1

. We assume that � : (0;1) ! R is a smooth funtion, 
 2 L

q

(S

d�2

) for some

q > 1 and

(1.2)

Z

S

d�2


(�)d�(�) = 0:

We inlude the ase d = 2 with the interpretation of S

0

= f�1; 1g and the surfae measure being

ounting measure.

It is easy to see using (1.2) that the prinipal value integral (1.1) exists everywhere for f 2 C

1

0

.

The question is for whih p 2 (1;1) the operator T extends to a bounded operator on L

p

(R

d

). If

we onsider the ase of onvex � it is known that then L

2

boundedness implies L

p

boundedness for

1 < p <1 (see [10℄, [2℄ for the ase d = 2 and [8℄ for the ase d � 3, at least in the ase of smooth


). Moreover it was shown in [8℄ (again assuming that 
 is smooth and � is C

1

in (0;1)) that in

dimension d � 3 the operators T are bounded in L

2

(R

d

), without any onvexity assumption on �.

Our primary onern here is whether T extends to a bounded operator on L

p

without any further

restrition on �. Our �rst theorem shows that this is not the ase, in fat in our example � is

hosen to be onave.
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Theorem 1.1. Suppose that 
 2 L

q

(S

d�2

) where q > 1 and suppose that the anellation

property (1.2) holds. Suppose �(t) = log t. Then T extends to a bounded operator on L

p

(R

d

) if

and only if p = 2 or 
 = 0 almost everywhere.

Remark. The analogous maximal operatorM



de�ned as the pointwise supremum of averages over

f(x+ y

0

; log(jx+ y

0

j) : jy

0

j � hg, h > 0, is unbounded on all L

p

spaes, see the argument in [14, p.

1291℄. Moreover the L

2

estimate may fail if the standard homogeneous Calder�on-Zygmund kernels


(y

0

=jy

0

j)jy

0

j

1�d

are replaed by other (standard) singular kernels, suh as the kernel for frational

integration of imaginary order, see Remark 2.3 below.

We shall see that the unboundedness of T for p 6= 2 follows from a negative result for a Fourier

multiplier on R

2

. In what follows M

p

denotes the lass of Fourier multipliers of L

p

and kmk

M

p

is

the L

p

operator norm of the onvolution operator with Fourier multiplier m.

Proposition 1.2. Let � be a bounded funtion in C

1

(R) and de�ne

(1.3) h(�; �) = �(�)j� j

�i�

:

Then h 2M

p

(R

2

) if and only if p = 2 or � � 0.

If �

+

denotes the harateristi funtion of (0;1), then the same statement holds with h(�; �)

replaed by h

�

(�; �) = h(�; �)�

+

(��).

Remark. This result should be ompared with the fat that for every � the multiplier � 7! j� j

�i�

is a multiplier in M

p

(R) for 1 < p <1 (it is the multiplier orresponding to frational integration

of imaginary order; the L

p

boundedness follows from the Marinkiewiz multiplier theorem).

In our seond theorem we exhibit operators T with a presribed range of L

p

boundedness.

Theorem 1.3. Suppose 1 < r � 2. There is a funtion � de�ned on [0;1) with �(0) = 0, suh

that the symmetri extension �(jx

0

j) to R

d�1

is smooth and suh that the following holds.

Let d � 2 and T be as in (1.1), where 
 2 L

q

(S

d�2

) for some q > 1 and the anellation property

(1.2) is assumed. Then T extends to a bounded operator on L

p

(R

d

) if and only if r � p � r=(r�1)

or 
 = 0 almost everywhere.

Remarks. (i) Let 1 � r < 2. A slight modi�ation of our onstrution yields � suh that T is

bounded on L

p

(R

d

) if and only if r < p < r=(r � 1) or 
 = 0 a.e.

(ii) Examples where the maximal operator assoiated to the urve is bounded on some L

p

spaes

but not on others have been onstruted by M. Christ [4℄, see also Vane, Wright and Wainger [15℄

and unpublished work by Wierdl. Examples of this kind for singular integral operators seem to

be new; however in [3℄ an example of a onvex � was onstruted, so that the Hilbert transform

assoiated to the odd extension was bounded only on L

2

(R

2

).

(iii) In an appendix (x5) we inlude some observations related to the examples in [3℄ and [4℄,

dealing with singular integrals with onvolution kernels supported on urves f(t; (t))g in the plane;

here  is the odd extension of a onvex funtion on (0;1).

2. L

2

-estimates. We shall now onsider the ase

�(t) = log t

and show that T is bounded on L

2

(provided that 
 2 L

q

, q > 1). This is ahieved by showing

that

m

R

(�) =

Z

jx

0

j�R

e

�i(hx

0

;�

0

i+�

d

log jx

0

j)


(x

0

=jx

0

j)

jx

0

j

d�1

dx

0

=

Z

R

0

e

�i�

d

log r

Z

S

d�2

e

�ihr�;�

0

i


(�)d�(�)

dr

r

(2.1)

2



is bounded uniformly in � and R and onverges to a bounded funtion as R ! 1. By hanging

variables r 7! rj�

0

j and using the anellation of 
 we see that

(2.2) m

R

(�) = e

i�

d

log j�

0

j

M

Rj�

0

j

(�

0

=j�

0

j; �

d

)

with

(2.3) M

R

(#; �

d

) =

Z

R

0

e

�i�

d

log r

Z

S

d�2

(e

�ihr�;#i

� 1)
(�)d�(�)

dr

r

for # 2 S

d�2

.

We split M

R

=

P

3

i=1

E

R

i

where

(2.4)

E

R

1

(#; �

d

) =

Z

R

0

e

�i�

d

log r

Z

�:rjh�;#ij�1

(e

�ihr�;#i

� 1)
(�)d�(�)

dr

r

E

R

2

(#; �

d

) =

Z

R

0

e

�i�

d

log r

Z

�:rjh�;#ij�1

e

�ihr�;#i


(�)d�(�)

dr

r

E

R

3

(#; �

d

) = �

Z

R

0

e

�i�

d

log r

Z

�:rjh�;#ij�1


(�)d�(�)

dr

r

:

First observe that

jE

R

1

(#; �

d

)j �

Z

j
(�)j

Z

minfjh�;#ij

�1

;Rg

0

je

�ihr�;#i

� 1j

dr

r

d�(�) � C:

To estimate E

R

2

interhange the order of the integration and observe that after a hange of

variables s = rjh�; #ij in the inner integral we have

E

R

2

(#; �

d

) =

Z

h�;#i�R

�1


(�)e

i�

d

log jh�;#ij

u

+

(�

d

; Rjh�; #ij)d�(�)

+

Z

h�;#i��R

�1


(�)e

i�

d

log jh�;#ij

u

�

(�

d

; Rjh�; #ij)d�(�)

where

(2.5) u

�

(;N) =

Z

N

1

exp(�i(�s+  log s))

ds

s

We show that u is uniformly bounded in  and N � 1.

Assume �rst that jj > 1=2. Then we split the integral (2.5) into three parts depending on

whether jj � 5s or s < jj=5 or jj=5 < s < 5jj. The integral over s 2 [jj=5; 5jj℄ is trivially

bounded.

If N > 5jj then we integrate by parts to get

Z

N

5jj

e

�i(�s+ log s)

ds

s

=

Z

N

5jj

d(e

i(�s+ log s)

)

�is� i

= i

�

e

�i(�N+ logN)

 �N

�

e

�i(�5+ log 5)

 � 5jj

�

� i

Z

N

5jj

e

�i(�s+ log s)

ds

( � s)

2

3



and this is bounded (sine jj � 1=2).

We treat the integral

R

jj=5

1

e

�i(�s+ log s)

ds

s

similarly. If jj < 1=2 and N � 1 then

(2.6)

Z

N

1

e

�i(�s+ log s)

ds

s

= �i(e

�iN

N

�i�1

� e

�i

)� (i + 1)

Z

N

1

e

�is

s

�i�2

ds

whih is bounded. This shows that jE

R

2

(#; �

d

)j = O(1), uniformly in R.

Finally to estimate E

R

3

(#; �

d

) we observe that

E

R

3

(#; �

d

) = �

Z

jh�;#ij�1=R


(�)

Z

R

r=jh�;#ij

�1

e

�i�

d

log r

dr

r

d�(�)

= �E

R

3;1

(#; �

d

) + E

R

3;2

(#; �

d

)

where

E

R

3;1

(#; �

d

) =

Z

S

d�2


(�)

Z

R

r=jh�;#ij

�1

e

�i�

d

log r

dr

r

d�(�)

E

R

3;2

(#; �

d

) =

Z

jh�;#ij�1=R


(�)

Z

R

r=jh�;#ij

�1

e

�i�

d

log r

dr

r

d�(�)

Now

E

R

3;1

(#; �

d

) = �

Z

S

d�2


(�)

R

�i�

d

� jh�; #ij

i�

d

�i�

d

d�(�) = �

Z

S

d�2


(�)

1� jh�; #ij

i�

d

�i�

d

d�(�)

where we have used the anellation of 
 again. We see that

jE

R

3;1

(#; �

d

)j �

Z

S

d�2

j
(�)j

je

�i�

d

log jh�;#ij

� 1j

j�

d

j

d�(�)

�

Z

S

d�2

j
(�)j log jh�; #ij

�1

d�(�)

and the last integral is bounded uniformly in # beause of our assumption 
 2 L

q

. Moreover by a

straightforward estimate

E

R

3;2

(#; �

d

) �

Z

jh�;#ij�1=R

j
(�)j

�

logR + log jh�; #ij

�1

�

d�(�)

� 2

Z

S

d�2

j
(�)j log jh�; #ij

�1

d�(�):

We have shown that M

R

is bounded uniformly in (#; �

d

). An examination of the above argument

also shows that if j�

d

j � J and J � 1 then for J � R � R

0

jM

R

(#; �

d

)�M

R

0

(#; �

d

)j

� C

J

h

Z

jh�;#ij�10JR

�1

j
(�)j(1 + log jh�; #ij

�1

)d�(�) +

Z

jh�;#ij�R

�1

j
(�)j(Rjh�; #ij)

�1

d�(�)

i

whih is O(R

�1+1=q

(1 + logR)). Therefore lim

R!1

M

Rj�

0

j

(�

0

=j�

0

j; �

d

) exists and the onvergene

is uniform with respet to (�

0

; �

d

) in ompat subsets of (R

d�1

n f0g)� R. Sine eah M

R

is easily

seen to be a smooth funtion on S

d�1

� R we have proved

4



Proposition 2.1. Suppose that �(t) = log t, 
 2 L

q

(S

d�2

), q > 1, and that (1.2) holds. Then T

is bounded on L

2

(R

d

) and the Fourier transform of its onvolution kernel is given by

m(�) = e

i�

d

log(j�

0

j)

M(�

0

=j�

0

j; �

d

)

where M is a bounded ontinuous funtion on S

d�2

� R.

Remark 2.2. If 
 is odd then T is L

2

bounded if (1.2) holds and 
 is merely in L

1

(S

d�2

). To see

this one uses the method of rotations (see [1℄). De�ne

H

�

f(x) = p.v.

Z

f(x

0

� t�; x

d

� log jtj)

dt

t

;

then one an see by transferring our result in two dimensions to d dimensions that H

�

is bounded

on L

2

(R

d

) with operator norm independent of �. If 
 is odd then T = 

R

S

d�2


(�)H

�

d�(�) and

the L

2

boundedness of T follows. For general 
 satisfying (1.2) the assumption 
 2 L logL(S

d�2

)

yields L

2

boundedness of T .

Remark 2.3. For � 6= 0 let m

�

(�) = j� j

i�

and k

�

= F

�1

[m

�

℄, then k

�

is a standard singular

integral kernel on R

d�1

(although not homogeneous of degree 1� d). For f 2 C

1

0

(R

d

) de�ne

H

�

f(x) =

Z

f(x

0

� t; x

d

� log jtj)k

�

(t)dt:

Then H

�

is unbounded on L

2

(R

d

). To see this observe that the assoiated multiplier



�

Z

R

d�1

e

�i(h�

0

;x

0

i)+(�

d

+�) log jx

0

j)

jx

0

j

1�d

dx

0

is unbounded as �

d

! ��.

For later use we shall now show that for �

d

6= 0 the funtion M is atually di�erentiable as a

funtion of �

d

; in partiular we shall need that

(2.7)

�

�

�

�

d

�M(#; �

d

)

��

d

�

�

�

� C if 0 < j�

d

j � 1=2:

The proof of (2.7) follows the lines above. Di�erentiation with respet to �

d

gives another fator

of �i log r in the formulas (2.4). In the estimation of E

R

1

(#; �

d

) this yields an additional fator

of log jh�; #ij

�1

whih is harmless in view of our assumption 
 2 L

q

(S

d�2

). In the estimation

of E

R

2

(#; �

d

) we shall only need to onsider the term orresponding to (2.6) sine we assume that

j�

d

j � 1=2, and we get boundedness of the derivative (again the alulation yields an additional

fator of log jh�; #ij

�1

). The term orresponding to E

R

3

(#; �

d

) has to be handled with some are; it

is a di�erene of

e

E

R

3;2

(#; �

d

) and

e

E

R

3;1

(#; �

d

) given by

e

E

R

3;1

(#; �

d

) = �i

Z

S

d�2


(�)

Z

R

r=jh�;#ij

�1

e

�i�

d

log r

log r

r

dr d�(�)

e

E

R

3;2

(#; �

d

) = �i

Z

jh�;#ij�1=R


(�)

Z

R

r=jh�;#ij

�1

e

�i�

d

log r

log r

r

dr d�(�)

Now for �

d

6= 0

Z

R

r=a

e

�i�

d

log r

log r

r

dr = i�

�1

d

R

�i�

d

(logR � i�

�1

d

)� i�

�1

d

a

�i�

d

(log a� i�

�1

d

):

Using this for a = jh�; #ij

�1

we may opy the argument for E

R

3;1

(#; �

d

), E

R

3;2

(#; �

d

) above, produing

an additional fator of �

�1

d

. Moreover the limiting argument above an be arried over as long as

we stay away from �

d

= 0. This yields (2.7).

5



3.1. The model multiplier in two dimensions. We now give a proof of Proposition 1.2.

Clearly h 2 M

2

sine h is bounded. Let 1 < p < 2 and assume that � is not identially zero. We

argue by ontradition and assume that h 2M

p

. Our proof is related to an argument by Littman,

MCarthy and Rivi�ere [9℄.

We may hoose an interval I = (�

0

; �

1

) so that �(�) 6= 0 if � belongs to the losure of I. Let

� 2 S(R) so that the Fourier transform

b

� is ompatly supported in I but does not identially

vanish. Let � be a C

1

funtion so that � is supported in f� : j� j � 1g, �(�) = 1 if j� j � 1=2.

Let

g

N

(�; �) =

N

X

k=10

b

�(�)

�(�)

�(� � e

2

k

)e

�i�(2

k

�log �)

:

Then it is easy to see by the sharp form of the Marinkiewiz multiplier theorem ([13, p. 109℄)

that

kg

N

k

M

p

� C

p

for 1 < p <1:

Let

h

N

(�; �) =

N

X

k=10

b

�(�)�(� � e

2

k

)e

�i�2

k

then h

N

= g

N

h and therefore

kh

N

k

M

p

� C

p

khk

M

p

:

However we shall show that

(3.1) kh

N

k

M

p

� N

1=p�1=2

so h annot be in M

p

.

De�ne f

N

by



f

N

(�; �) =

N

X

k=10

�(� � e

2

k

)

b

	(�)

where

b

	 is ompatly supported but equals 1 on the support of

b

�, so � = � �	.

Then by Littlewood-Paley theory

kf

N

k

p

�







�

N

X

k=10

jF

�1

[�℄j

2

�

1=2







p

� N

1=2

:

But

F

�1

[h

N



f

N

℄(x) =

N

X

k=10

F

�1

[�

2

℄(x

1

)e

ix

1

e

2

k

�(x

2

� 2

k

)

and sine � 6= 0 is a Shwartz funtion it is easy to see that

kF

�1

[h

N



f

N

℄k

p

� N

1=p

:

This yields (3.1) and therefore the desired ontradition. The above argument also proves the

orresponding staement for the multiplier h

+

and then also for h

�

. �

6



3.2. Failure of L

p

-boundedness in Theorem 1.1. We now show that if �(t) = log t and if

T is bounded on L

p

(R

d

) then p = 2, assuming that 
 is not identially 0. By the Riesz-Thorin

theorem we may assume that 1 < p <1. Let �

+

be the harateristi funtion of (0;1). If m is

the orresponding multiplier then we know by de Leeuw's theorem [7℄ that for almost all # 2 S

d�2

the funtion (�; �)! �

+

(�)m(�#; �) is a Fourier multiplier on L

p

(R

2

).

Nowm(�#; �) = j� j

i�

M(#; �) for � > 0, by Proposition 2.1. LetK




be the kernel 
(x

0

=jx

0

j)jx

0

j

1�d

on R

d�1

. Then its Fourier transform in R

d�1

is homogeneous of degree zero and equalsM(�

0

=j�

0

j; 0).

The latter annot be zero almost everywhere by uniqueness of Fourier transforms. Therefore there

is # 2 S

d�2

suh that m(�#; �) is a Fourier multiplier on L

p

(R

2

) and suh thatM(#; 0) 6= 0. Sine

M is ontinuous in � there is 0 < � < 1=2 and  > 0 so that jM(#; �)j �  for �=2 � � � �. Let �

be a C

1

funtion supported in (�=2; �), not identially zero.

From (2.7) we see that � 7! �(�)[M(#; �)℄

�1

is a Fourier multiplier on L

p

, with bounds uniform

in #. Therefore �(�)�

+

(�)j� j

i�

is a Fourier multiplier on L

p

(R

2

) and by Proposition 1.2 this implies

that p = 2. �

4. Examples for spei� L

p

spaes. In this setion we give a proof of Theorem 1.3. For eah

p

0

, with 1 < p

0

� 2, we onstrut an even funtion � 2 C

1

(R) suh that �(0) = 0 and �(t) = 0

for t � 1, and suh that the operator T as in (1.1) is bounded on L

p

(R

d

) if and only if p

0

� p � p

0

0

or 
 = 0 a.e.

Let � 2 C

1

(R) so that �(t) = 1 if t > 1=4 and �(t) = 0 if t < �1=4. Let Æ = fÆ

n

g be a sequene

of positive numbers, so that jÆ

n

j � 1 and lim

n!1

Æ

n

= 0.

Let f

n

g

1

n=1

be a sequene of positive numbers suh that 

n+1

� 

n

=10 for all n � 1. Our

funtion � is then de�ned by

(4.1) �(t) =

1

X

n=1



n

�(2

n

2

+n

Æ

�1

n

(jtj � 2

�n

2

(1� Æ

n

)))�(2

n

2

+n

Æ

�1

n

(2

�n

2

(1 + Æ

n

)� jtj)):

Then for n � 1

�(t) =

(



n

if 2

�n

2

(1� Æ

n

+ Æ

n

2

�n�2

) � jtj � 2

�n

2

(1 + Æ

n

� Æ

n

� Æ

n

2

�n�2

)

0 if 2

�(n+1)

2

(1 + Æ

n+1

+ Æ

n+1

2

�n�3

) � jtj � 2

�n

2

(1� Æ

n

� Æ

n

2

�n�2

)

and �(t) = 0 for jtj � 2.

Theorem 4.1. Let � be as in (4.1), T and 
 as in x1, 1 < p < 1 and let s(p) = j1=p� 1=2j

�1

.

Then T is bounded on L

p

if and only if Æ 2 `

s(p)

or 
 = 0 almost everywhere.

Theorem 1.3 is an immediate onsequene, exept for the fat that the even funtion � may

not be smooth at the origin. This however an be ahieved by an appropriate hoie of 

n

, for

example, 

n

� 

n�1

exp(�2

n

Æ

�1

n

) for all n � 2.

Proof of Theorem 4.1. Let I

n

= [2

�n

2

(1� Æ

n

); 2

�n

2

(1 + Æ

n

)℄ and

T

n

f(x) =

Z

jy

0

j2I

n

f(x

0

� y

0

; x

d

� 

n

)


(y

0

)

jy

0

j

d�1

dy

0

:

It is easy to see that T =

P

1

n=1

T

n

+H+

P

1

n=1

K

n

where the L

p

operator norm ofK

n

is O(2

�n

), for

1 � p � 1 and where H is the extension to L

p

(R

d

) of a variant of a Calder�on-Zygmund operator

ating in the x

0

variables; the L

p

boundedness for 1 < p <1 follows from [1℄. It therefore suÆes

to examine the operator

P

n

T

n

.
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Let L

k

denote the standard Littlewood-Paley operator on R

d�1

, i.e.,

d

L

k

f(�) = �(2

�k

j�

0

j)

^

f(�)

where � is a C

1

0

funtion supported on

1

2

� t � 2 suh that

P

1

k=�1

�(2

�k

jtj) = 1 for t 6= 0.

Then for some � > 0, depending on p > 1 and q > 1

(4.2) kL

k+n

T

n

k

L

p

� Aminf2

��jkj

; Æ

n

g;

see e.g. [6℄.

De�ne �

n

=

P

n

2

+n

j=n

2

�n+1

L

j

,

e

�

n

=

P

n

2

+n+2

j=n

2

�n�1

L

j

, so that �

n

e

�

n

= �

n

. Observe by (4.2) that

1

X

n=1

kT

n

� T

n

�

n

k

L

p

!L

p

<1

for all p 2 (1;1). The L

p

boundedness of T , under the assumption Æ 2 `

s

, follows by a well known

argument using Littlewood-Paley theory (see [12℄ and [5℄). For onveniene we inlude the short

proof. Without loss of generality assume 1 < p � 2. By Littlewood-Paley theory (or Calder�on-

Zygmund theory for vetor-valued singular integrals [13, h. II℄) the inequality kf�

n

fgk

L

p

(`

2

)

�

Ckfk

p

holds for all p 2 (1;1), similarly the orresponding inequality involving

e

�

n

. Sine the L

p

operator norm of T

n

is O(Æ

n

) we see that







X

n

e

�

n

T

n

�

n

f







p

� C

p





fT

n

�

n

fg





L

p

(`

2

)

� C

p





fT

n

�

n

fg





L

p

(`

p

)

= C

p





fT

n

�

n

fg





`

p

(L

p

)

� C

p

�

X

n

kT

n

k

p

L

p

!L

p

k�

n

fk

p

p

�

1=p

� C

0

p

kÆk

`

s





f�

n

fg





`

2

(L

p

)

� C

0

p

kÆk

`

s





f�

n

fg





L

p

(`

2

)

� C

00

p

kÆk

`

s

kfk

p

:

We now turn to the proof of the onverse. We �x p 2 (1; 2) and assume that T is bounded on

L

p

and that 
 does not vanish on a set of positive measure; we then have to prove that Æ 2 `

s

.

Let

m

n

(�

0

) =

Z

jy

0

j2I

n

e

ih�

0

;y

0

i


(y

0

=jy

0

j)jy

0

j

1�d

dy

0

:

Sine by (4.1) the operator

P

n

T

n

is bounded on L

p

,

m(�

0

; �

d

) =

X

n

e

i�

d



n

m

n

(�

0

)

is a bounded multiplier on L

p

(R

d

). Sine we assume that 
 does not vanish on some set of positive

measure, it follows that there is an open set U on whih the Fourier transform

d


d� does not vanish,

in fat we may assume that j

d


d�(�)j � A > 0 for � 2 U . By de Leeuw's theorem [6℄ there is � 2 U

so that

u(�; �) =

X

n

e

i�

n

m

n

(��)

is a multiplier in M

p

(R

2

).
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Sine we assume that lim

n!1

Æ

n

= 0 we an hoose a positive integerK so that the losed ball of

radius Æ

`

and enter � is ontained in U for all ` � K. Let � 2 C

1

(R) with � supported in [1=2; 2℄

so that �(t) = 1 in a neighborhood of 1. By the Marinkiewiz multiplier theorem

P

N

`=K

�(��2

`

2

)

is in M

r

(R) for every r, 1 < r < 1, uniformly in N (here and in what follows we assume that

N � K). Therefore the norms in M

p

(R

2

) of the multipliers

P

N

`=K

P

n

e

i�

n

m

n

(��)�(� � 2

`

2

) are

uniformly bounded.

It follows from (4.2) that the M

r

(R

2

) norm of m

n

(��)�(� � 2

`

2

) is O(2

��j`

2

�n

2

j

), where � =

�(r; q) > 0 if r > 1, q > 1. Therefore

P

N

`=K

P

n6=`

e

i�

n

m

n

(��)�(� � 2

`

2

) is a Fourier multiplier of

L

r

(R

2

) for all r 2 (1;1) with bound uniformly in N . Consequently, by our assumption

v

N

(�; �) =

N

X

`=K

e

i�

`

m

`

(��)�(� � 2

`

2

)

is a Fourier multiplier of L

p

(R

2

).

Now let

A

`

=

Z

1+Æ

`

1�Æ

`

Z

S

d�2


(�)e

irh�;�i

d�r

�1

dr

b

`

(�) =

Z

1+Æ

`

1�Æ

`

Z

S

d�2


(�)

�

e

ir2

�`

2

�h�;�i

� e

irh�;�i

�

d�r

�1

dr

then

v

N

(�; �) =

N

X

`=1

e

i�

`

�

A

`

+ b

`

(�)):

Observe that for ` � K

(4.3) jA

`

j � A log

�

1 + Æ

`

1� Æ

`

�

� AÆ

`

:

Moreover �(��2

`

2

)b

`

is a Fourier multiplier of L

1

(R), with bound independent of `. The L

1

norm

of this funtion is O(2

�`

2

) and therefore by interpolation the multiplier

P

N

`=K

�(� � 2

`

2

)b

`

belongs

to M

r

(R) for r 2 (1;1), with norm bounded in N . We onlude that

w

N

(�; �) =

N

X

`=K

e

i�

`

�(� � 2

`

2

)A

`

belongs to M

p

(R

2

) with norm independent of N .

Let  be a nonnegative smooth funtion not identially zero, with support in [�1=2; 1=2℄ and

let  

N

(y) = 

�1=p

N+1

 (

�1

N+1

y).

Now let � = f�

`

g be a sequene in `

2=p

, so that k�k

`

2=p

� 1. Note that 2=p = (s=p)

0

. We test

w

N

on f

N

with

b

f

N

(�; �) =

N

X

`=K

j�

`

j

1=p

�(� � 2

`

2

)

b

 

N

(�);

then by Littlewood-Paley theory

kf

N

k

L

p

� C







�

N

X

`=K

j�

`

j

2=p

jF

�1

[�℄j

2

�

1=2







L

p

� C

0

9



where C

0

is independent of N . On the other hand, for (x; y) 2 R

2

,

F

�1

[w

N



f

N

℄(x; y) =

N

X

`=K

A

`

j�

`

j

1=p

F

�1

[�

2

℄(x)e

i2

`

2

x

 

N

(y � 

`

):

Sine 

N+1

� 

`

=10, ` = K; : : : ; N , the supports of the funtions  

N

(y�

`

) are disjoint. Therefore

�

N

X

`=K

jA

`

j

p

j�

`

j

�

1=p

� CkF

�1

[w

N



f

N

℄k

p

� Ckw

N

k

M

p

kf

N

k

p

� C

0

uniformly in N . This implies by (4.3) that

sup

k�k

`

(s=p)

0

�1

1

X

`=K

jÆ

`

j

p

j�

`

j <1:

By the onverse of H�older's inequality it follows that fÆ

p

n

g 2 `

s=p

and therefore Æ 2 `

s

. �

5. Appendix: Odd extensions of onvex urves in the plane. Here we inlude some obser-

vations onerning odd urves (t; (t)) where  is onvex in (0;1). Our examples are modi�ations

of those in [3℄ and [4℄. For r > 0, � � 0, and j � 1 set �

�;j

= �4

�j

j

��1

for a small � to be hosen

later and

(5.1) 

r;�

(t) = (2j)

r

4

j

+ ((2j + 2)

r

+ �

�;j

)(t� 4

j

) for 4

j

� t � 4

j

(1 + j

��

):

For 4

j

(1 + j

�

) � t � 4

j+1

, extend 

r;�

so 

00

r;�

(t) is onstant in this interval, 

0

r;�

is ontinuous at

4

j

(1+ j

��

) and 

r;�

(t) is ontinuous for t � 4. Similarly extend 

r;�

to [0; 4℄ with onstant positive

urvature so that 

r;�

(0) = 0. A alulation shows that 

r;�

is onvex for t > 0. Finally extend 

r;�

as an odd funtion. The perturbation by �

�;j

in (5.1) is onvenient in order that arguments in [4℄

to study maximal funtions should apply to singular integral operators. We onsider

H

r;�

f(x; y) = p.v.

Z

f(x� t; y � 

r;�

(t))t

�1

dt:

Proposition 5.1.

(i) For any � � 0 and r > 0 , kH

r;�

fk

L

2

� Akfk

L

2

.

(ii) If p

0

=

2�+2

2�+1

, then for any r > 0, kH

r;�

fk

L

p

� A

p

kfk

L

p

for p

0

< p < p

0

0

.

(iii) If r = 1 and

4

3

� p < 2, H

r;�

is unbounded on L

p

if � <

1

p

�

1

2

.

(iv) If r = 1 and p �

4

3

, H

r;�

is unbounded on L

p

if � �

3

p

� 2.

(v) If r is a positive integer, then H

r;�

is unbounded on L

p

if p <

r+2

r+1+�

.

Remarks. Consider the maximal funtion sup

h>0

h

�1

R

h

0

jf(x� t; y�

r;�

(t))jdt. Then the operator

M is unbounded on L

p

if p <

r+2

r+1+�

. This is a slight improvement over a result in [4℄. More

generally if r =

m

n

with m and n positive integers then one an show that M is unbounded if

p <

m+2

m+1+n�

. One ahieves this by restriting the values of j's in the argument below to be n-th

powers. Obviously many questions remain open.
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Proof of Proposition 5.1. Clearly (i) follows from [10℄ sine h

r;�

(t) = t

0

r;�

(t) � 

r;�

(t) is doubling

(see also [3℄, [16℄ for a more geometri proof of this result). In partiular note that if I

j;�

=

[4

j

; 4

j

(1+j

��

)℄ then 

r;�

(t) = s

j

t�h

j

where s

j

= (2j+2)

r

+�

�;j

and h

j

= 4

j

[(2j+2)

r

�(2j)

r

+�

�;j

℄.

Now set I

j;�

= ft : jtj 2 I

j;�

g and let

G

j

f(x; y) =

Z

I

j;�

f(x� t; y � 

r;�

(t))t

�1

dt

Then H

r;�

=

P

1

j=1

G

j

+ E. In view of the urvature properties of 

r;�

in the omplement of

[

j

I

j;�

(where h is \in�nitesimally doubling") the method of [3℄ may be applied to yield the L

q

boundedness of E for all q 2 (1;1).

For the remaining assertions of the proposition it suÆes to onsider G =

P

j

G

j

. To prove (ii)

we onsider the analyti family G

z

=

P

j

j

z

G

j

. If Re(z) < �1, G

z

is learly bounded in L

1

. (ii)

follows by analyti interpolation if we an show that G

z

is bounded in L

2

for Re(z) < �. This

however follows by Fourier transform estimates following [11℄ or [16℄. One derives the estimate

j



G

j

(�)j � C

1

minfj

��

; 4

j

j�

1

+ �

2

(s

j

� 4

�j

h

j

)j+ C

2

j�

2

j4

�j

h

j

; 4

�j

j�

1

+ �

2

s

j

j

�1

g

The �rst estimate is obvious, the seond estimate uses the oddness of  and the estimate j sin aj �

jaj and the third uses an integration by parts. It is now straightforward to bound the sum

P

1

j=1

jj

z



G

j

(�)j provided that Re(z) < �.

To obtain onlusion (v) we follow Christ [4℄. We test G on the harateristi funtion f

N

of a

union of small retanglesR

(a;b)

entered at lattie points (a; b) with 0 � a � 2

N

and 0 � b � N

r

2

N

,

R

a;b

=

�

(x; y) : a�N

�r�1

� � x � a+N

�r�1

�; b �N

�1

� � y � b+N

�1

�

	

here � is small (to be hosen). We let for eah pair of positive integers ` and j

S

`;j

=

�

(x; y) j 0 � x � 2

N

; 0 � y � N

r

2

N

; jy � (2j + 2)

r

x� `j � N

�1

�

	

:

Then jS

`;j

j � �2

N

(2N)

�1

if j � N=4 and ` � N

r

2

N

=10, moreover if j

0

6= j, jS

`;j

\ S

`

0

;j

0

j �

A�

2

N

�2r�2

�

�

j

�r

� (j

0

)

�r

�

�

�1

� A

0

�

2

N

�2

jj

r

� (j

0

)

r

j

�1

:

Fixing `; j, and j

0

, the number of strips S

`

0

;j

0

that interset S

`;j

is at most 2

N

jj

r

� (j

0

)

r

j. Sine

there are at most N values of j

0

, the measure of the union of all strips interseting a given S

`;j

is at most A�jS

`;j

j, with A an absolute onstant not depending on �. We are going to restrit j

to N=5 � j � N=4. We estimate Gf

N

for points (x; y) in S

`;j

suh that (x; y) is in no S

`

0

;j

0

with

j

0

6= j and suh that the vertial distane from (x; y) to the top of S

`;j

is between 10

�5

�=N and

10

�6

�=N . If we �rst hoose � suÆiently small and then � = �=100, we will be estimating Gf

N

on

a positive fration of S

`;j

. In evaluating Gf

N

at suh points (x; y) the ontribution to Gf

N

from

piees of 

r;�

with slopes other than (2j+ 2)

r

is zero. The ontribution Gf

N

at suh points omes

from two strips

S

`+(2j)

r

2

2j

;j

and S

`�(2j)

r

2

2j

;j

:

The ontribution from S

`�(2j)

r

2

2j

;j

is at least 10

�2

j

��

N

�r�1

. The absolute value of the ontribu-

tion from S

`+(2j)

r

2

2j

;j

is at most 10

�3

j

��

N

�r�1

. Thus if G is bounded in L

p

N

�(r+1)p

j

�p�

�

�

�

[

`;j

S

`;j

�

�

�

� Ajsupp(f

N

)j:
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ThereforeN

�(r+1)p

j

�p�

NN

r

2

N

(2

N

=N) � AN

r

2

2N

N

�r�2

whih implies for N !1 the neessary

ondition p �

r+2

�+r+1

.

Note that (iv) is a speial ase of (v). Finally (iii) follows along the same lines as in x7 of [3℄.

Let

b

�

(k) =

Z

4

k

(1+k

��

)

4

k

sinf�[�

�;k

(t� 4

k

)� 4

k+1

℄g

dt

t

= �(log 2)k

��

sin(4

k+1

�) +O(k

�1

)

then it suÆes to show that the sequene b

�

does not belong to M

p

(Z) (the lass of Fourier

multipliers for Fourier series in L

p

(T)), uniformly for � � � � 3�. The error O(k

�1

) represents the

Fourier oeÆients of an L

2

funtion and belongs to M

r

(Z) for all r 2 [1;1℄. Now the argument

in [3℄ shows b

�

=2M

p

(Z) if fk

���1=p

0

log

�1

kg =2 `

2

(Z) whih is true if � < 1=p� 1=2. �
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