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Abstra
t

This paper is 
on
erned with singular 
onvolution operators in R

d

, d � 2, with 
onvolution

kernels supported on radial surfa
es y

d

= �(jy

0

j). We show that if �(s) = log s then L

p

boundedness

holds if and only if p = 2. This statement 
an be redu
ed to a similar statement about the multiplier

m(�; �) = j� j

�i�

in R

2

. We also 
onstru
t smooth � for whi
h the 
orresponding operators are

bounded for p

0

< p � 2 but unbounded for p � p

0

, for given p

0

2 [1; 2). Finally we dis
uss some

examples of singular integrals along 
onvex 
urves in the plane, with odd extensions.

1. Introdu
tion. This paper is primarily 
on
erned with singular integral operators T in dimen-

sions d � 2 de�ned for f 2 C

1

0

(R

d

) by

(1.1) Tf(x

0

; x

d

) = p.v.

Z

f(x

0

� y

0

; x

d

� �(jy

0

j))


(y

0

)

jy

0

j

d�1

dy

0

where x

0

2 R

d�1

. We assume that � : (0;1) ! R is a smooth fun
tion, 
 2 L

q

(S

d�2

) for some

q > 1 and

(1.2)

Z

S

d�2


(�)d�(�) = 0:

We in
lude the 
ase d = 2 with the interpretation of S

0

= f�1; 1g and the surfa
e measure being


ounting measure.

It is easy to see using (1.2) that the prin
ipal value integral (1.1) exists everywhere for f 2 C

1

0

.

The question is for whi
h p 2 (1;1) the operator T extends to a bounded operator on L

p

(R

d

). If

we 
onsider the 
ase of 
onvex � it is known that then L

2

boundedness implies L

p

boundedness for

1 < p <1 (see [10℄, [2℄ for the 
ase d = 2 and [8℄ for the 
ase d � 3, at least in the 
ase of smooth


). Moreover it was shown in [8℄ (again assuming that 
 is smooth and � is C

1

in (0;1)) that in

dimension d � 3 the operators T are bounded in L

2

(R

d

), without any 
onvexity assumption on �.

Our primary 
on
ern here is whether T extends to a bounded operator on L

p

without any further

restri
tion on �. Our �rst theorem shows that this is not the 
ase, in fa
t in our example � is


hosen to be 
on
ave.
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Theorem 1.1. Suppose that 
 2 L

q

(S

d�2

) where q > 1 and suppose that the 
an
ellation

property (1.2) holds. Suppose �(t) = log t. Then T extends to a bounded operator on L

p

(R

d

) if

and only if p = 2 or 
 = 0 almost everywhere.

Remark. The analogous maximal operatorM




de�ned as the pointwise supremum of averages over

f(x+ y

0

; log(jx+ y

0

j) : jy

0

j � hg, h > 0, is unbounded on all L

p

spa
es, see the argument in [14, p.

1291℄. Moreover the L

2

estimate may fail if the standard homogeneous Calder�on-Zygmund kernels


(y

0

=jy

0

j)jy

0

j

1�d

are repla
ed by other (standard) singular kernels, su
h as the kernel for fra
tional

integration of imaginary order, see Remark 2.3 below.

We shall see that the unboundedness of T for p 6= 2 follows from a negative result for a Fourier

multiplier on R

2

. In what follows M

p

denotes the 
lass of Fourier multipliers of L

p

and kmk

M

p

is

the L

p

operator norm of the 
onvolution operator with Fourier multiplier m.

Proposition 1.2. Let � be a bounded fun
tion in C

1

(R) and de�ne

(1.3) h(�; �) = �(�)j� j

�i�

:

Then h 2M

p

(R

2

) if and only if p = 2 or � � 0.

If �

+

denotes the 
hara
teristi
 fun
tion of (0;1), then the same statement holds with h(�; �)

repla
ed by h

�

(�; �) = h(�; �)�

+

(��).

Remark. This result should be 
ompared with the fa
t that for every � the multiplier � 7! j� j

�i�

is a multiplier in M

p

(R) for 1 < p <1 (it is the multiplier 
orresponding to fra
tional integration

of imaginary order; the L

p

boundedness follows from the Mar
inkiewi
z multiplier theorem).

In our se
ond theorem we exhibit operators T with a pres
ribed range of L

p

boundedness.

Theorem 1.3. Suppose 1 < r � 2. There is a fun
tion � de�ned on [0;1) with �(0) = 0, su
h

that the symmetri
 extension �(jx

0

j) to R

d�1

is smooth and su
h that the following holds.

Let d � 2 and T be as in (1.1), where 
 2 L

q

(S

d�2

) for some q > 1 and the 
an
ellation property

(1.2) is assumed. Then T extends to a bounded operator on L

p

(R

d

) if and only if r � p � r=(r�1)

or 
 = 0 almost everywhere.

Remarks. (i) Let 1 � r < 2. A slight modi�
ation of our 
onstru
tion yields � su
h that T is

bounded on L

p

(R

d

) if and only if r < p < r=(r � 1) or 
 = 0 a.e.

(ii) Examples where the maximal operator asso
iated to the 
urve is bounded on some L

p

spa
es

but not on others have been 
onstru
ted by M. Christ [4℄, see also Van
e, Wright and Wainger [15℄

and unpublished work by Wierdl. Examples of this kind for singular integral operators seem to

be new; however in [3℄ an example of a 
onvex � was 
onstru
ted, so that the Hilbert transform

asso
iated to the odd extension was bounded only on L

2

(R

2

).

(iii) In an appendix (x5) we in
lude some observations related to the examples in [3℄ and [4℄,

dealing with singular integrals with 
onvolution kernels supported on 
urves f(t; 
(t))g in the plane;

here 
 is the odd extension of a 
onvex fun
tion on (0;1).

2. L

2

-estimates. We shall now 
onsider the 
ase

�(t) = log t

and show that T is bounded on L

2

(provided that 
 2 L

q

, q > 1). This is a
hieved by showing

that

m

R

(�) =

Z

jx

0

j�R

e

�i(hx

0

;�

0

i+�

d

log jx

0

j)


(x

0

=jx

0

j)

jx

0

j

d�1

dx

0

=

Z

R

0

e

�i�

d

log r

Z

S

d�2

e

�ihr�;�

0

i


(�)d�(�)

dr

r

(2.1)

2



is bounded uniformly in � and R and 
onverges to a bounded fun
tion as R ! 1. By 
hanging

variables r 7! rj�

0

j and using the 
an
ellation of 
 we see that

(2.2) m

R

(�) = e

i�

d

log j�

0

j

M

Rj�

0

j

(�

0

=j�

0

j; �

d

)

with

(2.3) M

R

(#; �

d

) =

Z

R

0

e

�i�

d

log r

Z

S

d�2

(e

�ihr�;#i

� 1)
(�)d�(�)

dr

r

for # 2 S

d�2

.

We split M

R

=

P

3

i=1

E

R

i

where

(2.4)

E

R

1

(#; �

d

) =

Z

R

0

e

�i�

d

log r

Z

�:rjh�;#ij�1

(e

�ihr�;#i

� 1)
(�)d�(�)

dr

r

E

R

2

(#; �

d

) =

Z

R

0

e

�i�

d

log r

Z

�:rjh�;#ij�1

e

�ihr�;#i


(�)d�(�)

dr

r

E

R

3

(#; �

d

) = �

Z

R

0

e

�i�

d

log r

Z

�:rjh�;#ij�1


(�)d�(�)

dr

r

:

First observe that

jE

R

1

(#; �

d

)j �

Z

j
(�)j

Z

minfjh�;#ij

�1

;Rg

0

je

�ihr�;#i

� 1j

dr

r

d�(�) � C:

To estimate E

R

2

inter
hange the order of the integration and observe that after a 
hange of

variables s = rjh�; #ij in the inner integral we have

E

R

2

(#; �

d

) =

Z

h�;#i�R

�1


(�)e

i�

d

log jh�;#ij

u

+

(�

d

; Rjh�; #ij)d�(�)

+

Z

h�;#i��R

�1


(�)e

i�

d

log jh�;#ij

u

�

(�

d

; Rjh�; #ij)d�(�)

where

(2.5) u

�

(
;N) =

Z

N

1

exp(�i(�s+ 
 log s))

ds

s

We show that u is uniformly bounded in 
 and N � 1.

Assume �rst that j
j > 1=2. Then we split the integral (2.5) into three parts depending on

whether j
j � 5s or s < j
j=5 or j
j=5 < s < 5j
j. The integral over s 2 [j
j=5; 5j
j℄ is trivially

bounded.

If N > 5j
j then we integrate by parts to get

Z

N

5j
j

e

�i(�s+
 log s)

ds

s

=

Z

N

5j
j

d(e

i(�s+
 log s)

)

�is� i


= i

�

e

�i(�N+
 logN)


 �N

�

e

�i(�5
+
 log 5
)


 � 5j
j

�

� i

Z

N

5j
j

e

�i(�s+
 log s)

ds

(
 � s)

2
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and this is bounded (sin
e j
j � 1=2).

We treat the integral

R

j
j=5

1

e

�i(�s+
 log s)

ds

s

similarly. If j
j < 1=2 and N � 1 then

(2.6)

Z

N

1

e

�i(�s+
 log s)

ds

s

= �i(e

�iN

N

�i
�1

� e

�i

)� (i
 + 1)

Z

N

1

e

�is

s

�i
�2

ds

whi
h is bounded. This shows that jE

R

2

(#; �

d

)j = O(1), uniformly in R.

Finally to estimate E

R

3

(#; �

d

) we observe that

E

R

3

(#; �

d

) = �

Z

jh�;#ij�1=R


(�)

Z

R

r=jh�;#ij

�1

e

�i�

d

log r

dr

r

d�(�)

= �E

R

3;1

(#; �

d

) + E

R

3;2

(#; �

d

)

where

E

R

3;1

(#; �

d

) =

Z

S

d�2


(�)

Z

R

r=jh�;#ij

�1

e

�i�

d

log r

dr

r

d�(�)

E

R

3;2

(#; �

d

) =

Z

jh�;#ij�1=R


(�)

Z

R

r=jh�;#ij

�1

e

�i�

d

log r

dr

r

d�(�)

Now

E

R

3;1

(#; �

d

) = �

Z

S

d�2


(�)

R

�i�

d

� jh�; #ij

i�

d

�i�

d

d�(�) = �

Z

S

d�2


(�)

1� jh�; #ij

i�

d

�i�

d

d�(�)

where we have used the 
an
ellation of 
 again. We see that

jE

R

3;1

(#; �

d

)j �

Z

S

d�2

j
(�)j

je

�i�

d

log jh�;#ij

� 1j

j�

d

j

d�(�)

�

Z

S

d�2

j
(�)j log jh�; #ij

�1

d�(�)

and the last integral is bounded uniformly in # be
ause of our assumption 
 2 L

q

. Moreover by a

straightforward estimate

E

R

3;2

(#; �

d

) �

Z

jh�;#ij�1=R

j
(�)j

�

logR + log jh�; #ij

�1

�

d�(�)

� 2

Z

S

d�2

j
(�)j log jh�; #ij

�1

d�(�):

We have shown that M

R

is bounded uniformly in (#; �

d

). An examination of the above argument

also shows that if j�

d

j � J and J � 1 then for J � R � R

0

jM

R

(#; �

d

)�M

R

0

(#; �

d

)j

� C

J

h

Z

jh�;#ij�10JR

�1

j
(�)j(1 + log jh�; #ij

�1

)d�(�) +

Z

jh�;#ij�R

�1

j
(�)j(Rjh�; #ij)

�1

d�(�)

i

whi
h is O(R

�1+1=q

(1 + logR)). Therefore lim

R!1

M

Rj�

0

j

(�

0

=j�

0

j; �

d

) exists and the 
onvergen
e

is uniform with respe
t to (�

0

; �

d

) in 
ompa
t subsets of (R

d�1

n f0g)� R. Sin
e ea
h M

R

is easily

seen to be a smooth fun
tion on S

d�1

� R we have proved
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Proposition 2.1. Suppose that �(t) = log t, 
 2 L

q

(S

d�2

), q > 1, and that (1.2) holds. Then T

is bounded on L

2

(R

d

) and the Fourier transform of its 
onvolution kernel is given by

m(�) = e

i�

d

log(j�

0

j)

M(�

0

=j�

0

j; �

d

)

where M is a bounded 
ontinuous fun
tion on S

d�2

� R.

Remark 2.2. If 
 is odd then T is L

2

bounded if (1.2) holds and 
 is merely in L

1

(S

d�2

). To see

this one uses the method of rotations (see [1℄). De�ne

H

�

f(x) = p.v.

Z

f(x

0

� t�; x

d

� log jtj)

dt

t

;

then one 
an see by transferring our result in two dimensions to d dimensions that H

�

is bounded

on L

2

(R

d

) with operator norm independent of �. If 
 is odd then T = 


R

S

d�2


(�)H

�

d�(�) and

the L

2

boundedness of T follows. For general 
 satisfying (1.2) the assumption 
 2 L logL(S

d�2

)

yields L

2

boundedness of T .

Remark 2.3. For � 6= 0 let m

�

(�) = j� j

i�

and k

�

= F

�1

[m

�

℄, then k

�

is a standard singular

integral kernel on R

d�1

(although not homogeneous of degree 1� d). For f 2 C

1

0

(R

d

) de�ne

H

�

f(x) =

Z

f(x

0

� t; x

d

� log jtj)k

�

(t)dt:

Then H

�

is unbounded on L

2

(R

d

). To see this observe that the asso
iated multiplier




�

Z

R

d�1

e

�i(h�

0

;x

0

i)+(�

d

+�) log jx

0

j)

jx

0

j

1�d

dx

0

is unbounded as �

d

! ��.

For later use we shall now show that for �

d

6= 0 the fun
tion M is a
tually di�erentiable as a

fun
tion of �

d

; in parti
ular we shall need that

(2.7)

�

�

�

�

d

�M(#; �

d

)

��

d

�

�

�

� C if 0 < j�

d

j � 1=2:

The proof of (2.7) follows the lines above. Di�erentiation with respe
t to �

d

gives another fa
tor

of �i log r in the formulas (2.4). In the estimation of E

R

1

(#; �

d

) this yields an additional fa
tor

of log jh�; #ij

�1

whi
h is harmless in view of our assumption 
 2 L

q

(S

d�2

). In the estimation

of E

R

2

(#; �

d

) we shall only need to 
onsider the term 
orresponding to (2.6) sin
e we assume that

j�

d

j � 1=2, and we get boundedness of the derivative (again the 
al
ulation yields an additional

fa
tor of log jh�; #ij

�1

). The term 
orresponding to E

R

3

(#; �

d

) has to be handled with some 
are; it

is a di�eren
e of

e

E

R

3;2

(#; �

d

) and

e

E

R

3;1

(#; �

d

) given by

e

E

R

3;1

(#; �

d

) = �i

Z

S

d�2


(�)

Z

R

r=jh�;#ij

�1

e

�i�

d

log r

log r

r

dr d�(�)

e

E

R

3;2

(#; �

d

) = �i

Z

jh�;#ij�1=R


(�)

Z

R

r=jh�;#ij

�1

e

�i�

d

log r

log r

r

dr d�(�)

Now for �

d

6= 0

Z

R

r=a

e

�i�

d

log r

log r

r

dr = i�

�1

d

R

�i�

d

(logR � i�

�1

d

)� i�

�1

d

a

�i�

d

(log a� i�

�1

d

):

Using this for a = jh�; #ij

�1

we may 
opy the argument for E

R

3;1

(#; �

d

), E

R

3;2

(#; �

d

) above, produ
ing

an additional fa
tor of �

�1

d

. Moreover the limiting argument above 
an be 
arried over as long as

we stay away from �

d

= 0. This yields (2.7).
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3.1. The model multiplier in two dimensions. We now give a proof of Proposition 1.2.

Clearly h 2 M

2

sin
e h is bounded. Let 1 < p < 2 and assume that � is not identi
ally zero. We

argue by 
ontradi
tion and assume that h 2M

p

. Our proof is related to an argument by Littman,

M
Carthy and Rivi�ere [9℄.

We may 
hoose an interval I = (�

0

; �

1

) so that �(�) 6= 0 if � belongs to the 
losure of I. Let

� 2 S(R) so that the Fourier transform

b

� is 
ompa
tly supported in I but does not identi
ally

vanish. Let � be a C

1

fun
tion so that � is supported in f� : j� j � 1g, �(�) = 1 if j� j � 1=2.

Let

g

N

(�; �) =

N

X

k=10

b

�(�)

�(�)

�(� � e

2

k

)e

�i�(2

k

�log �)

:

Then it is easy to see by the sharp form of the Mar
inkiewi
z multiplier theorem ([13, p. 109℄)

that

kg

N

k

M

p

� C

p

for 1 < p <1:

Let

h

N

(�; �) =

N

X

k=10

b

�(�)�(� � e

2

k

)e

�i�2

k

then h

N

= g

N

h and therefore

kh

N

k

M

p

� C

p

khk

M

p

:

However we shall show that

(3.1) kh

N

k

M

p

� 
N

1=p�1=2

so h 
annot be in M

p

.

De�ne f

N

by




f

N

(�; �) =

N

X

k=10

�(� � e

2

k

)

b

	(�)

where

b

	 is 
ompa
tly supported but equals 1 on the support of

b

�, so � = � �	.

Then by Littlewood-Paley theory

kf

N

k

p

�










�

N

X

k=10

jF

�1

[�℄j

2

�

1=2










p

� N

1=2

:

But

F

�1

[h

N




f

N

℄(x) =

N

X

k=10

F

�1

[�

2

℄(x

1

)e

ix

1

e

2

k

�(x

2

� 2

k

)

and sin
e � 6= 0 is a S
hwartz fun
tion it is easy to see that

kF

�1

[h

N




f

N

℄k

p

� 
N

1=p

:

This yields (3.1) and therefore the desired 
ontradi
tion. The above argument also proves the


orresponding staement for the multiplier h

+

and then also for h

�

. �

6



3.2. Failure of L

p

-boundedness in Theorem 1.1. We now show that if �(t) = log t and if

T is bounded on L

p

(R

d

) then p = 2, assuming that 
 is not identi
ally 0. By the Riesz-Thorin

theorem we may assume that 1 < p <1. Let �

+

be the 
hara
teristi
 fun
tion of (0;1). If m is

the 
orresponding multiplier then we know by de Leeuw's theorem [7℄ that for almost all # 2 S

d�2

the fun
tion (�; �)! �

+

(�)m(�#; �) is a Fourier multiplier on L

p

(R

2

).

Nowm(�#; �) = j� j

i�

M(#; �) for � > 0, by Proposition 2.1. LetK




be the kernel 
(x

0

=jx

0

j)jx

0

j

1�d

on R

d�1

. Then its Fourier transform in R

d�1

is homogeneous of degree zero and equalsM(�

0

=j�

0

j; 0).

The latter 
annot be zero almost everywhere by uniqueness of Fourier transforms. Therefore there

is # 2 S

d�2

su
h that m(�#; �) is a Fourier multiplier on L

p

(R

2

) and su
h thatM(#; 0) 6= 0. Sin
e

M is 
ontinuous in � there is 0 < � < 1=2 and 
 > 0 so that jM(#; �)j � 
 for �=2 � � � �. Let �

be a C

1

fun
tion supported in (�=2; �), not identi
ally zero.

From (2.7) we see that � 7! �(�)[M(#; �)℄

�1

is a Fourier multiplier on L

p

, with bounds uniform

in #. Therefore �(�)�

+

(�)j� j

i�

is a Fourier multiplier on L

p

(R

2

) and by Proposition 1.2 this implies

that p = 2. �

4. Examples for spe
i�
 L

p

spa
es. In this se
tion we give a proof of Theorem 1.3. For ea
h

p

0

, with 1 < p

0

� 2, we 
onstru
t an even fun
tion � 2 C

1

(R) su
h that �(0) = 0 and �(t) = 0

for t � 1, and su
h that the operator T as in (1.1) is bounded on L

p

(R

d

) if and only if p

0

� p � p

0

0

or 
 = 0 a.e.

Let � 2 C

1

(R) so that �(t) = 1 if t > 1=4 and �(t) = 0 if t < �1=4. Let Æ = fÆ

n

g be a sequen
e

of positive numbers, so that jÆ

n

j � 1 and lim

n!1

Æ

n

= 0.

Let f


n

g

1

n=1

be a sequen
e of positive numbers su
h that 


n+1

� 


n

=10 for all n � 1. Our

fun
tion � is then de�ned by

(4.1) �(t) =

1

X

n=1




n

�(2

n

2

+n

Æ

�1

n

(jtj � 2

�n

2

(1� Æ

n

)))�(2

n

2

+n

Æ

�1

n

(2

�n

2

(1 + Æ

n

)� jtj)):

Then for n � 1

�(t) =

(




n

if 2

�n

2

(1� Æ

n

+ Æ

n

2

�n�2

) � jtj � 2

�n

2

(1 + Æ

n

� Æ

n

� Æ

n

2

�n�2

)

0 if 2

�(n+1)

2

(1 + Æ

n+1

+ Æ

n+1

2

�n�3

) � jtj � 2

�n

2

(1� Æ

n

� Æ

n

2

�n�2

)

and �(t) = 0 for jtj � 2.

Theorem 4.1. Let � be as in (4.1), T and 
 as in x1, 1 < p < 1 and let s(p) = j1=p� 1=2j

�1

.

Then T is bounded on L

p

if and only if Æ 2 `

s(p)

or 
 = 0 almost everywhere.

Theorem 1.3 is an immediate 
onsequen
e, ex
ept for the fa
t that the even fun
tion � may

not be smooth at the origin. This however 
an be a
hieved by an appropriate 
hoi
e of 


n

, for

example, 


n

� 


n�1

exp(�2

n

Æ

�1

n

) for all n � 2.

Proof of Theorem 4.1. Let I

n

= [2

�n

2

(1� Æ

n

); 2

�n

2

(1 + Æ

n

)℄ and

T

n

f(x) =

Z

jy

0

j2I

n

f(x

0

� y

0

; x

d

� 


n

)


(y

0

)

jy

0

j

d�1

dy

0

:

It is easy to see that T =

P

1

n=1

T

n

+H+

P

1

n=1

K

n

where the L

p

operator norm ofK

n

is O(2

�n

), for

1 � p � 1 and where H is the extension to L

p

(R

d

) of a variant of a Calder�on-Zygmund operator

a
ting in the x

0

variables; the L

p

boundedness for 1 < p <1 follows from [1℄. It therefore suÆ
es

to examine the operator

P

n

T

n

.
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Let L

k

denote the standard Littlewood-Paley operator on R

d�1

, i.e.,

d

L

k

f(�) = �(2

�k

j�

0

j)

^

f(�)

where � is a C

1

0

fun
tion supported on

1

2

� t � 2 su
h that

P

1

k=�1

�(2

�k

jtj) = 1 for t 6= 0.

Then for some � > 0, depending on p > 1 and q > 1

(4.2) kL

k+n

T

n

k

L

p

� Aminf2

��jkj

; Æ

n

g;

see e.g. [6℄.

De�ne �

n

=

P

n

2

+n

j=n

2

�n+1

L

j

,

e

�

n

=

P

n

2

+n+2

j=n

2

�n�1

L

j

, so that �

n

e

�

n

= �

n

. Observe by (4.2) that

1

X

n=1

kT

n

� T

n

�

n

k

L

p

!L

p

<1

for all p 2 (1;1). The L

p

boundedness of T , under the assumption Æ 2 `

s

, follows by a well known

argument using Littlewood-Paley theory (see [12℄ and [5℄). For 
onvenien
e we in
lude the short

proof. Without loss of generality assume 1 < p � 2. By Littlewood-Paley theory (or Calder�on-

Zygmund theory for ve
tor-valued singular integrals [13, 
h. II℄) the inequality kf�

n

fgk

L

p

(`

2

)

�

Ckfk

p

holds for all p 2 (1;1), similarly the 
orresponding inequality involving

e

�

n

. Sin
e the L

p

operator norm of T

n

is O(Æ

n

) we see that










X

n

e

�

n

T

n

�

n

f










p

� C

p







fT

n

�

n

fg







L

p

(`

2

)

� C

p







fT

n

�

n

fg







L

p

(`

p

)

= C

p







fT

n

�

n

fg







`

p

(L

p

)

� C

p

�

X

n

kT

n

k

p

L

p

!L

p

k�

n

fk

p

p

�

1=p

� C

0

p

kÆk

`

s







f�

n

fg







`

2

(L

p

)

� C

0

p

kÆk

`

s







f�

n

fg







L

p

(`

2

)

� C

00

p

kÆk

`

s

kfk

p

:

We now turn to the proof of the 
onverse. We �x p 2 (1; 2) and assume that T is bounded on

L

p

and that 
 does not vanish on a set of positive measure; we then have to prove that Æ 2 `

s

.

Let

m

n

(�

0

) =

Z

jy

0

j2I

n

e

ih�

0

;y

0

i


(y

0

=jy

0

j)jy

0

j

1�d

dy

0

:

Sin
e by (4.1) the operator

P

n

T

n

is bounded on L

p

,

m(�

0

; �

d

) =

X

n

e

i�

d




n

m

n

(�

0

)

is a bounded multiplier on L

p

(R

d

). Sin
e we assume that 
 does not vanish on some set of positive

measure, it follows that there is an open set U on whi
h the Fourier transform

d


d� does not vanish,

in fa
t we may assume that j

d


d�(�)j � A > 0 for � 2 U . By de Leeuw's theorem [6℄ there is � 2 U

so that

u(�; �) =

X

n

e

i�


n

m

n

(��)

is a multiplier in M

p

(R

2

).
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Sin
e we assume that lim

n!1

Æ

n

= 0 we 
an 
hoose a positive integerK so that the 
losed ball of

radius Æ

`

and 
enter � is 
ontained in U for all ` � K. Let � 2 C

1

(R) with � supported in [1=2; 2℄

so that �(t) = 1 in a neighborhood of 1. By the Mar
inkiewi
z multiplier theorem

P

N

`=K

�(��2

`

2

)

is in M

r

(R) for every r, 1 < r < 1, uniformly in N (here and in what follows we assume that

N � K). Therefore the norms in M

p

(R

2

) of the multipliers

P

N

`=K

P

n

e

i�


n

m

n

(��)�(� � 2

`

2

) are

uniformly bounded.

It follows from (4.2) that the M

r

(R

2

) norm of m

n

(��)�(� � 2

`

2

) is O(2

��j`

2

�n

2

j

), where � =

�(r; q) > 0 if r > 1, q > 1. Therefore

P

N

`=K

P

n6=`

e

i�


n

m

n

(��)�(� � 2

`

2

) is a Fourier multiplier of

L

r

(R

2

) for all r 2 (1;1) with bound uniformly in N . Consequently, by our assumption

v

N

(�; �) =

N

X

`=K

e

i�


`

m

`

(��)�(� � 2

`

2

)

is a Fourier multiplier of L

p

(R

2

).

Now let

A

`

=

Z

1+Æ

`

1�Æ

`

Z

S

d�2


(�)e

irh�;�i

d�r

�1

dr

b

`

(�) =

Z

1+Æ

`

1�Æ

`

Z

S

d�2


(�)

�

e

ir2

�`

2

�h�;�i

� e

irh�;�i

�

d�r

�1

dr

then

v

N

(�; �) =

N

X

`=1

e

i�


`

�

A

`

+ b

`

(�)):

Observe that for ` � K

(4.3) jA

`

j � A log

�

1 + Æ

`

1� Æ

`

�

� AÆ

`

:

Moreover �(��2

`

2

)b

`

is a Fourier multiplier of L

1

(R), with bound independent of `. The L

1

norm

of this fun
tion is O(2

�`

2

) and therefore by interpolation the multiplier

P

N

`=K

�(� � 2

`

2

)b

`

belongs

to M

r

(R) for r 2 (1;1), with norm bounded in N . We 
on
lude that

w

N

(�; �) =

N

X

`=K

e

i�


`

�(� � 2

`

2

)A

`

belongs to M

p

(R

2

) with norm independent of N .

Let  be a nonnegative smooth fun
tion not identi
ally zero, with support in [�1=2; 1=2℄ and

let  

N

(y) = 


�1=p

N+1

 (


�1

N+1

y).

Now let � = f�

`

g be a sequen
e in `

2=p

, so that k�k

`

2=p

� 1. Note that 2=p = (s=p)

0

. We test

w

N

on f

N

with

b

f

N

(�; �) =

N

X

`=K

j�

`

j

1=p

�(� � 2

`

2

)

b

 

N

(�);

then by Littlewood-Paley theory

kf

N

k

L

p

� C










�

N

X

`=K

j�

`

j

2=p

jF

�1

[�℄j

2

�

1=2










L

p

� C

0
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where C

0

is independent of N . On the other hand, for (x; y) 2 R

2

,

F

�1

[w

N




f

N

℄(x; y) =

N

X

`=K

A

`

j�

`

j

1=p

F

�1

[�

2

℄(x)e

i2

`

2

x

 

N

(y � 


`

):

Sin
e 


N+1

� 


`

=10, ` = K; : : : ; N , the supports of the fun
tions  

N

(y�


`

) are disjoint. Therefore

�

N

X

`=K

jA

`

j

p

j�

`

j

�

1=p

� CkF

�1

[w

N




f

N

℄k

p

� Ckw

N

k

M

p

kf

N

k

p

� C

0

uniformly in N . This implies by (4.3) that

sup

k�k

`

(s=p)

0

�1

1

X

`=K

jÆ

`

j

p

j�

`

j <1:

By the 
onverse of H�older's inequality it follows that fÆ

p

n

g 2 `

s=p

and therefore Æ 2 `

s

. �

5. Appendix: Odd extensions of 
onvex 
urves in the plane. Here we in
lude some obser-

vations 
on
erning odd 
urves (t; 
(t)) where 
 is 
onvex in (0;1). Our examples are modi�
ations

of those in [3℄ and [4℄. For r > 0, � � 0, and j � 1 set �

�;j

= �4

�j

j

��1

for a small � to be 
hosen

later and

(5.1) 


r;�

(t) = (2j)

r

4

j

+ ((2j + 2)

r

+ �

�;j

)(t� 4

j

) for 4

j

� t � 4

j

(1 + j

��

):

For 4

j

(1 + j

�

) � t � 4

j+1

, extend 


r;�

so 


00

r;�

(t) is 
onstant in this interval, 


0

r;�

is 
ontinuous at

4

j

(1+ j

��

) and 


r;�

(t) is 
ontinuous for t � 4. Similarly extend 


r;�

to [0; 4℄ with 
onstant positive


urvature so that 


r;�

(0) = 0. A 
al
ulation shows that 


r;�

is 
onvex for t > 0. Finally extend 


r;�

as an odd fun
tion. The perturbation by �

�;j

in (5.1) is 
onvenient in order that arguments in [4℄

to study maximal fun
tions should apply to singular integral operators. We 
onsider

H

r;�

f(x; y) = p.v.

Z

f(x� t; y � 


r;�

(t))t

�1

dt:

Proposition 5.1.

(i) For any � � 0 and r > 0 , kH

r;�

fk

L

2

� Akfk

L

2

.

(ii) If p

0

=

2�+2

2�+1

, then for any r > 0, kH

r;�

fk

L

p

� A

p

kfk

L

p

for p

0

< p < p

0

0

.

(iii) If r = 1 and

4

3

� p < 2, H

r;�

is unbounded on L

p

if � <

1

p

�

1

2

.

(iv) If r = 1 and p �

4

3

, H

r;�

is unbounded on L

p

if � �

3

p

� 2.

(v) If r is a positive integer, then H

r;�

is unbounded on L

p

if p <

r+2

r+1+�

.

Remarks. Consider the maximal fun
tion sup

h>0

h

�1

R

h

0

jf(x� t; y�


r;�

(t))jdt. Then the operator

M is unbounded on L

p

if p <

r+2

r+1+�

. This is a slight improvement over a result in [4℄. More

generally if r =

m

n

with m and n positive integers then one 
an show that M is unbounded if

p <

m+2

m+1+n�

. One a
hieves this by restri
ting the values of j's in the argument below to be n-th

powers. Obviously many questions remain open.
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Proof of Proposition 5.1. Clearly (i) follows from [10℄ sin
e h

r;�

(t) = t


0

r;�

(t) � 


r;�

(t) is doubling

(see also [3℄, [16℄ for a more geometri
 proof of this result). In parti
ular note that if I

j;�

=

[4

j

; 4

j

(1+j

��

)℄ then 


r;�

(t) = s

j

t�h

j

where s

j

= (2j+2)

r

+�

�;j

and h

j

= 4

j

[(2j+2)

r

�(2j)

r

+�

�;j

℄.

Now set I

j;�

= ft : jtj 2 I

j;�

g and let

G

j

f(x; y) =

Z

I

j;�

f(x� t; y � 


r;�

(t))t

�1

dt

Then H

r;�

=

P

1

j=1

G

j

+ E. In view of the 
urvature properties of 


r;�

in the 
omplement of

[

j

I

j;�

(where h is \in�nitesimally doubling") the method of [3℄ may be applied to yield the L

q

boundedness of E for all q 2 (1;1).

For the remaining assertions of the proposition it suÆ
es to 
onsider G =

P

j

G

j

. To prove (ii)

we 
onsider the analyti
 family G

z

=

P

j

j

z

G

j

. If Re(z) < �1, G

z

is 
learly bounded in L

1

. (ii)

follows by analyti
 interpolation if we 
an show that G

z

is bounded in L

2

for Re(z) < �. This

however follows by Fourier transform estimates following [11℄ or [16℄. One derives the estimate

j




G

j

(�)j � C

1

minfj

��

; 4

j

j�

1

+ �

2

(s

j

� 4

�j

h

j

)j+ C

2

j�

2

j4

�j

h

j

; 4

�j

j�

1

+ �

2

s

j

j

�1

g

The �rst estimate is obvious, the se
ond estimate uses the oddness of 
 and the estimate j sin aj �

jaj and the third uses an integration by parts. It is now straightforward to bound the sum

P

1

j=1

jj

z




G

j

(�)j provided that Re(z) < �.

To obtain 
on
lusion (v) we follow Christ [4℄. We test G on the 
hara
teristi
 fun
tion f

N

of a

union of small re
tanglesR

(a;b)


entered at latti
e points (a; b) with 0 � a � 2

N

and 0 � b � N

r

2

N

,

R

a;b

=

�

(x; y) : a�N

�r�1

� � x � a+N

�r�1

�; b �N

�1

� � y � b+N

�1

�

	

here � is small (to be 
hosen). We let for ea
h pair of positive integers ` and j

S

`;j

=

�

(x; y) j 0 � x � 2

N

; 0 � y � N

r

2

N

; jy � (2j + 2)

r

x� `j � N

�1

�

	

:

Then jS

`;j

j � �2

N

(2N)

�1

if j � N=4 and ` � N

r

2

N

=10, moreover if j

0

6= j, jS

`;j

\ S

`

0

;j

0

j �

A�

2

N

�2r�2

�

�

j

�r

� (j

0

)

�r

�

�

�1

� A

0

�

2

N

�2

jj

r

� (j

0

)

r

j

�1

:

Fixing `; j, and j

0

, the number of strips S

`

0

;j

0

that interse
t S

`;j

is at most 2

N

jj

r

� (j

0

)

r

j. Sin
e

there are at most N values of j

0

, the measure of the union of all strips interse
ting a given S

`;j

is at most A�jS

`;j

j, with A an absolute 
onstant not depending on �. We are going to restri
t j

to N=5 � j � N=4. We estimate Gf

N

for points (x; y) in S

`;j

su
h that (x; y) is in no S

`

0

;j

0

with

j

0

6= j and su
h that the verti
al distan
e from (x; y) to the top of S

`;j

is between 10

�5

�=N and

10

�6

�=N . If we �rst 
hoose � suÆ
iently small and then � = �=100, we will be estimating Gf

N

on

a positive fra
tion of S

`;j

. In evaluating Gf

N

at su
h points (x; y) the 
ontribution to Gf

N

from

pie
es of 


r;�

with slopes other than (2j+ 2)

r

is zero. The 
ontribution Gf

N

at su
h points 
omes

from two strips

S

`+(2j)

r

2

2j

;j

and S

`�(2j)

r

2

2j

;j

:

The 
ontribution from S

`�(2j)

r

2

2j

;j

is at least 10

�2

j

��

N

�r�1

. The absolute value of the 
ontribu-

tion from S

`+(2j)

r

2

2j

;j

is at most 10

�3

j

��

N

�r�1

. Thus if G is bounded in L

p

N

�(r+1)p

j

�p�

�

�

�

[

`;j

S

`;j

�

�

�

� Ajsupp(f

N

)j:
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ThereforeN

�(r+1)p

j

�p�

NN

r

2

N

(2

N

=N) � AN

r

2

2N

N

�r�2

whi
h implies for N !1 the ne
essary


ondition p �

r+2

�+r+1

.

Note that (iv) is a spe
ial 
ase of (v). Finally (iii) follows along the same lines as in x7 of [3℄.

Let

b

�

(k) =

Z

4

k

(1+k

��

)

4

k

sinf�[�

�;k

(t� 4

k

)� 4

k+1

℄g

dt

t

= �(log 2)k

��

sin(4

k+1

�) +O(k

�1

)

then it suÆ
es to show that the sequen
e b

�

does not belong to M

p

(Z) (the 
lass of Fourier

multipliers for Fourier series in L

p

(T)), uniformly for � � � � 3�. The error O(k

�1

) represents the

Fourier 
oeÆ
ients of an L

2

fun
tion and belongs to M

r

(Z) for all r 2 [1;1℄. Now the argument

in [3℄ shows b

�

=2M

p

(Z) if fk

���1=p

0

log

�1

kg =2 `

2

(Z) whi
h is true if � < 1=p� 1=2. �
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