
SHARP LORENTZ SPACE ESTIMATES FOR ROUGH OPERATORS

Andreas Seeger and Terene Tao

Abstrat. We demonstrate the (H

1

; L

1;2

) or (L

p

; L

p;2

) mapping properties of several rough operators. In all

ases these estimates are sharp in the sense that the Lorentz exponent 2 annot be replaed by any lower number.

1. Introdution

In this paper we onsider the endpoint behaviour on Hardy spaes of two lasses of operators, namely

singular integral operators with rough homogeneous kernels [4℄ and singular integral operators with on-

volution kernels supported on urves in the plane ([20℄, [27℄). These operators fall outside the Calder�on-

Zygmund theory; however weak type (L

1

; L

1;1

) or (H

1

; L

1;1

) inequalities have been established in the

previous literature ([7℄, [9℄, [16℄ [18℄, [25℄, [29℄) We shall show that the target spae L

1;1

an be improved

to the Lorentz spae L

1;2

, possibly at the ost of moving to a stronger type of Hardy spae (e.g. produt

H

1

). Examples of Christ [8℄, [17℄ show that these types of results are optimal in the sense that one annot

replae L

1;2

by L

1;q

for any q < 2.

The spae L

1;2

arises naturally as the interpolation spae halfway between L

1;1

and L

1

. As a gross

ariature of how this spae arises, suppose that we have a olletion of funtions f

i

whih are uniformly

bounded in L

1

, and whose maximal funtion sup

i

jf

i

j is in weak L

1

, and we wish to estimate the quantity







X

i



i

f

i







L

1;2

for some l

2

o-eÆients 

i

. If the f

i

are suÆiently orthogonal, we may hope to ontrol this quantity by

the square funtion

(1.1)
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:

However from our hypotheses we see that
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L

1;q

.

�

X

i

j

i

j

q

�

1=q

for q = 1 and q =1, and thus by interpolation for all 1 � q � 1 (f. Lemma 2.2. below). Thus we expet

to ontrol (1.1) by the `

2

norm of f

i

g.

Our arguments will be based on more ompliated versions of the above informal strategy. Generally,

the L

1

estimates will be quite trivial, whereas the L

1;1

estimates will be variants of existing weak-type

(1,1) estimates for rough operators in the literature (e.g. [7℄, [25℄). We shall demonstrate this tehnique for
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two lasses of operators. Firstly we show that the Hilbert transform on plane urves (t; t

m

) maps produt

H

1

into L

1;2

or a related Hardy-Lorentz spae; we also prove sharp L

p

! L

p;2

estimates for a related

analyti family of hypersingular operators. Then we disuss homogeneous singular integrals with rough

kernels in R

d

, satisfying an L log

2

L ondition on the sphere, and show that these map the standard Hardy

spae H

1

to L

1;2

.

We remark that a simple version of the above tehnique has been used by one of the authors in [23℄ to

prove an endpoint version of the H�ormander multiplier theorem. Namely (stating only the one-dimensional

version) if � is a nonzero even smooth bump funtion then the ondition sup

t>0

k�m(t�)k

B

2

1=2;1

implies that

the onvolution operator with Fourier multiplier m maps H

1

to L

1;2

(and an example by Baernstein and

Sawyer [1℄ shows that L

1;2

annot be replaed by L

1;q

for q < 2). The seond author and Jim Wright [30℄

have reently improved this result by replaing the Besov spae B

2

1=2;1

by the larger spae R

2

1=2;2

de�ned

in [24℄ improving on the known (H

1

; L

1;1

) result whih is impliit in the latter paper.

The paper is strutured as follows. After formulating our results in the urrent setion we review some

material about Hardy-Lorentz spaes and interpolation, in x2. In x3 we prove an abstrat variant of a

stopping time argument due to M. Christ whih may be helpful elsewhere. x4 ontains the main square-

funtion estimate needed to prove our theorems on integrals along urves; in x5 we onlude the proof of

these results. Rough homogeneous kernels are onsidered in x6 and x7.

Rough homogeneous onvolution kernels.

Let K be a onvolution kernel on the Eulidean spae R

d

and assume that K is homogeneous of degree

�d and that the restrition 
 to the unit sphere is integrable and has mean zero,

R

S

d�1


(�)d�(�) = 0:

We may de�ne the operator T




of onvolution with K on test funtions at least by the usual method of

prinipal values:

(1.2) T




f(x) = p:v:

Z


(y=jyj)

jyj

d

f(x� y)dy:

We onsider the mapping properties of T




, espeially near the endpoint L

1

. If 
 is somewhat regular

(for example, if it is H�older ontinuous or satis�es an appropriate L

1

Dini ondition) then the standard

Calder�on-Zygmund theory shows that T is bounded on all L

p

spaes, 1 < p < 1, is of weak type (1; 1),

and maps the Hardy spae H

1

to L

1

. If no regularity is assumed, but K is L logL on the sphere, then it

was shown by Calder�on-Zygmund [4℄ that T




is bounded on L

p

; in fat (see [25℄) it is of weak type (1; 1).

The behaviour at H

1

is more subtle, however, as an example of M. Christ shows (see also [17℄). For the

sake of illustration let us onsider the ase d = 2. Let a be a smooth H

1

atom on the unit ball, whih is

smooth and radial, and let 


N

be the launary funtion de�ned on the unit irle by




N

(os�; sin�) � G

N

(�) =

1

p

N

N

X

j=1

e

2�iC

j

�

;

where C;N are large integers. Roughly speaking, the funtion K � a(x) has magnitude � N

�1=2

jxj

�d

whenever jxj � C

j

for some j = 1; : : : ; N . This shows that the L

1

norm (and indeed the L

1;q

quasi-norm

for any q < 2) of K � a grows with N , even though 
 is in every L

p

lass, p < 1, uniformly in N . Thus,

the best result one an reasonably hope for is that T maps H

1

to the Lorentz spae L

1;2

, or the Hardy-

Lorentz spae H

1;2

, the quasi-norm norm in the latter is the L

1;2

quasinorm of a suitable square-funtion

or maximal operator used in the de�nition of H

1

(see x2 below).

The previous ounterexample an be modi�ed to inlude the ase 
 2 L

1

. Take G

N

as above, " > 0

and let E

";N

= f� : jG

N

(�)j > N

"

g. De�ne G

";N

(�) = (G

N

(�)(1� �

E

";N

(�)) and




";N

(os�; sin�) = G

";N

(�)�

1

2�

Z

�

��

G

";N

(s)ds:

2



Sine G

N

is in BMO with norm independent of N we have by the John-Nirenberg inequality that jE

";N

j =

O(e

�N

"

), for some  > 0. From this one heks that the L

1

norm of T




N

�


N;"

a over the annulus jxj � C

j

is O(N

1=2

e

�N

"

+2

�j

), hene negligible. Sine on the other hand k


N;"

k

1

. N

"

this disproves a uniform

H

1

! L

1;q

estimate for q < 2=(1 + 2").

Theorem 1.1. Let 
 2 L log

2

L(S

d�1

) and assume that

R

S

d�1


d�(�) = 0. Then the operator T




maps

H

1

to H

1;2

and also to L

1;2

.

Remark 1.2. In fat we shall see that the L log

2

L ondition an be strengthened to an L logL ondition

for a Littlewood-Paley square funtion (see Theorem 6.1 below)

Analogously we may also onsider a maximal variant of T ; here no anellation is imposed. Let

� 2 C

1

0

(R

d

) and

(1.3) M




f(x) = sup

h>0

�

�

�

Z

1

h

d

�(

y

h

)
(

y

jyj

)f(x� y)dy

�

�

�

:

Theorem 1.3. Let 
 2 L log

2

L(S

d�1

). Then M




maps H

1

to L

1;2

.

Again, a modi�ation of the above example shows that M




may fail to map H

1

into L

1;q

for q < 2.

Integrals along urves in the plane.

In this subsetion we shall always be working in the plane R

2

. Letm > 1 be a real number; all onstants

may impliitly depend on m.

De�ne the Hilbert transform Hf and the maximal funtion Mf along the urve (t; jtj

m

) by

(1.4) Hf(x) = p:v:

Z

f(x

1

� t; x

2

� jtj

m

)

dt

t

and

(1.5) Mf(x) = sup

h>0

�

�

�

Z

f(x

1

� t; x

2

� jtj

m

)

1

h

�(

t

h

)dt

�

�

�

;

here � is a smooth funtion with ompat support. These operators are invariant with respet to the saling

(1.6) (x

1

; x

2

) 7! (tx

1

; t

m

x

2

); t > 0:

We shall work with the produt type Hardy spae on R

2

, onsidered by Chang and Fe�erman [6℄ among

others; we denote this spae by H

1

prod

. Moreover we denote by H

1;2

prod

the produt-type Hardy-Lorentz spae

(see x2).

Theorem 1.4. M maps H

1

prod

to L

1;2

, and H maps H

1

prod

to H

1;2

prod

and to L

1;2

.

This should be ompared with the results of Christ [7℄ who showed that M and H map the one-

parameter Hardy spae H

1

paraboli

(de�ned with respet to the dilations (1.6)) to L

1;1

, see also Grafakos

[16℄. In fat, Christ [7℄ observes that H

1

paraboli

is not mapped to L

1;q

for q <1.

Now let  = (

1

; 

2

) be a omplex multi-index with Re(

1

);Re(

2

) � 0, and de�ne the (pseudo)-

di�erentiation operator D



by

d

D



f = j�



j

^

f = j�

1

j



1

j�

2

j



2

^

f:

Consider the family of hypersingular operators H



de�ned by

(1.7) H



f(x

1

; x

2

) = p:v:

Z

1

�1

D



f(x

1

� t; x

2

� jtj

m

)jtj



1

+

2

m

dt

t

:

3



The spae L

p

(1 < p < 2) is not mapped to L

p;q

if q < 2 (see [8℄); moreover this shows that H does not

map H

1

prod

to L

1;q

or any Hardy-Lorentz spae H

1;q

for any q < 2. An angular Littlewood-Paley theory

plays a role in this ounterexample. Grafakos [16℄ proved using the methods in [7℄ that for m = 2, 

1

= 0

and Re(

2

) = 1 � 1=p the spae L

p

is mapped to L

p;p

0

if 1 < p � 2. His method surely extends to the

general ase onsidered here.

An improved optimal result is

Theorem 1.5. Suppose that Re(

1

) � 0, Re(

2

) � 0 and Re(

1

+ 

2

) = 1� 1=p.

� If 1 < p � 2 then H



is bounded from L

p

to L

p;2

.

� If p = 1 then H



is bounded from H

1

prod

to L

1;2

.

In both ases the bounds grow at most polynomially in jj.

The following estimate for a loalized averaging operator will follow from our proof. Let � 2 C

1

0

(R)

and de�ne

(1.8) Af(x

1

; x

2

) =

Z

�(t)f(x

1

� t; x

2

� jtj

m

)dt:

Corollary 1.6. Suppose m � 2. Then A maps L

m;2

boundedly to the Sobolev spae L

m

1=m

.

Remarks 1.7.

(i) Suppose that t 7! g(t) is a smooth urve passing through the origin and suppose that its urvature

vanishes to at most order m� 2 at the origin. Then the statement of Corollary 1.8 remains true if (t; jtj

m

)

is replaed by a g(t) provided that � is supported in a suÆiently small neighborhood of the origin.

(ii) In the statements of Theorems 1.4 and 1.5 the urve (t; jtj

m

) an be replaed by (t; jtj

m

sign (t)).

(iii) A variant of this family H



was previously onsidered by Stein and Wainger [27℄ in their proof of

L

p

boundedness of the Hilbert transform. They worked with a distane funtion �, smooth and positive in

R

2

n f0g whih is homogeneous of degree 1 with respet to the dilations (1.6) and onsidered the analyti

family

e

H

�

f(x

1

; x

2

) = p.v.

Z

1

�1

�

�

(D)f(x

1

� t; x

2

� t

m

)jtj

�

dt

t

:

The result in [27℄ is that

e

H

�

is bounded on L

p

for � < 1� 1=p. Our proof of Theorem 1.3 shows that this

result an be improved to

e

H

�

: L

p

! L

p;2

if � = 1� 1=p, 1 < p � 2.

(iv) The prinipal value singularity p:v: t

�1

jtj



1

+

2

m

in the de�nition of H



an be replaed by

�



1

+

2

m�1

+

= lim

"!0

e

�"t

(�(

1

+ m

2

))

�1

t



1

+m

2

�1

+

. This requires only minor hanges in the proof of

Theorem 1.5.

2. Preliminaries

Notation. For two quantities a and b we write a . b or b & a if there exists an absolute positive onstant

C so that a � Cb. We shall onsistently refer to the homogeneous quasi-norms on Lorentz and Hardy-

Lorentz spaes as \norms", even when the triangle inequality with onstant 1 fails. If I is a (dyadi) ube,

then x

I

will denote its enter, and 2

i

I

will denote its side-length. We somewhat abuse notation and use

2

s

I to denote the ube with the same enter as I and sidelength 2

s+i

I

. The Lebesgue measure of a set E

will sometimes be denoted by jEj and sometimes by meas(E).

2A. Hardy spaes. There are many equivalent haraterizations of the isotropi Hardy-spaes ([13℄), in

terms of maximal funtions, atomi deompositions and square-funtions (see [26℄ for a rather omplete

4



treatment). We shall use several of them, but most relevant will be the haraterization via Littlewood-

Paley square-funtions, whih we hoose as a de�nition.

Let � 2 S(R

n

) with the property that

b

� is ompatly supported and equal to 1 in a neighborhood of

the origin. Let �

k

be de�ned by

(2.1)

b

�

k

(�) =

b

�(2

�k�1

�)�

b

�(2

�k

�)

Consider the spae S

0

restr

of tempered distributions whih are restrited at 1; it onsists of all f 2 S

0

with the property that f �� 2 L

r

for � 2 S, for suÆiently large r <1 (we use the terminology of Stein [26,

p.123℄). This hoie of the test funtion spae allows one to derive versions of the Calder�on reproduing

formula (e.g. one exludes polynomials whih have Fourier transforms supported at the origin). For

0 < p; q <1 we de�ne H

p;q

as the spae onsisting of tempered distributions restrited at1 whih satisfy

(2.2) kfk

H

p;q

:=







�

X

k2Z

j�

k

� f j

2

�

1=2







L

p;q

<1

and write H

p

= H

p;p

. Using arguments in [13℄, [21℄ one an show that the de�nition does not depend on

the partiular hoie of �. As shown in [21℄, [31℄ some aspets in the lassial theory simplify by assuming

(as we do here) that

b

� has ompat support. In partiular for b > 0, r > 0 one has the inequality ([21℄)

(2.3) sup

jyj�2

�k

b

j�

k

� f(x+ y)j � C

b;r

(M [j�

k

� f j

r

℄(x))

1=r

and (2.3) allows us to take advantage of the Fe�erman-Stein theorem onerning L

p

(`

r

) estimates for the

Hardy-Littlewood maximal funtion M ([12℄). This arries over to Lorentz-spaes. Set

S

b

f(x) =

�

X

k2Z

sup

jyj�b2

�k

j�

k

� f(x+ y)j

2

�

1=2

Sine kgk

L

p;q

� kg

a

k

1=a

L

p=a;q=a

we obtain that for f 2 H

p;q

(2.4) kfk

H

p;q

� kS

b

fk

L

p;q

:

The spae H

p;q

is omplete quasi-normed spae. We note that the de�nition an be extended to Hilbert-

spae valued funtions (in fat when proving estimates we may often redue to �nite-dimensional Hilbert

spaes with possibly large dimension).

For the purpose of real interpolation onsider the Peetre K-funtional K(t; f;H

p

0

; H

p

1

), de�ned for

f 2 H

p

0

+H

p

1

as the in�mum of kfk

H

p

0

+ tkfk

H

p

1

over all deompositions f = f

0

+ f

1

with f

0

2 H

p

0

and f

1

2 H

p

1

. Then a straightforward modi�ation of arguments by Jawerth and Torhinsky [19℄ yields

the formula

(2.5) K(t; f;H

p

0

; H

p

1

) � K(t; S

b

f; L

p

0

; L

p

1

):

Consequently, by (2.4) and (2.5) one identi�es H

p;q

with the real interpolation spae [H

p

0

; H

p

1

℄

�;q

if

0 < � < 1 and (1� �)=p

0

+ �=p

1

= 1=p (see [2℄), and the spaes H

p;q

an be identi�ed with the spaes in

[11℄, [15℄ de�ned by means of various maximal funtions or square funtions (see [32℄).

Let fe

k

g be an orthonormal basis of `

2

. From standard Hardy spae theory [26℄ we have

(2.6)







X

k

L

k

f

k







H

p;q

�







X

k

e

L

k

f

k

e

k







L

p;q

(`

2

)

=







�

X

k

j

e

L

k

f

k

j

2

�

1=2







L

p;q

:

where L

k

,

e

L

k

denote onvolution with �

k

,

e

�

k

; here

e

�

k

is as above and

e

�

k

= 2

kd

e

�

0

(2

k

�) so that the Fourier

transform of

e

� equals one on the support of

b

�.

Moreover if E is any �nite subset of the integers we have

(2.7)







X

k2E

L

k

f

k







L

p;q

� C







X

k

L

k

f

k







H

p;q

where C does not depend on E. Note, however, that onvergene in L

p;q

may not be ompatible with

onvergene in the sense of tempered distributions, if p < 1 or p = 1, q > 1.

5



A Littlewood-Paley deomposition. It is shown in the lassial theory that the above assumptions

on � an be substantially weakened. A general result in this ontext is in [32℄. To eliminate a number of

tehnial error terms in the proof of Theorem 1.1 we shall work with Littlewood-Paley funtions loalized

in spae, and in order to have an analogue of the Calder�on reproduing formula we will have to use a

somewhat unusual version of the Littlewood-Paley deomposition:

Lemma 2.1. Let r, N

0

be nonnegative integers and let " > 0. Then for s = 0; : : : ; r there are radial

funtions 	

(s)

,  

(s)

in C

1

0

(R

d

) with the following properties.

(i) 	

s

is supported on the ball of radius " entered at the origin, and



	

s

(�) � 1 = O(j�j

N

0

) as � ! 0.

Moreover  

s

= 	

s

� 2

�d

	

s

(2

�1

�) so that the moments of order � N

0

of  

s

vanish.

(ii) De�ne  

k

s

(x) = 2

kd

 

s

(2

k

x) and let L

k

s

be the operator of onvolution with  

k

s

. Then for every

tempered distribution f restrited at 1 we have

(2.8) f =

X

k2Z

L

k

0

� � �L

k

r

f ;

moreover if S

0

r

denotes the operator of onvolution with 	

r

then

(2.9) f = S

0

r

f +

X

k�1

L

k

0

� � �L

k

r

f:

The onvergene in (2.8), (2.9) holds in the sense of tempered distributions.

Proof. Let 	 be a radial bump funtion supported in fx : jxj � 2

�6r�6

"g so that

b

	� 1 = O(j�j

N+1

), and

let S

k

0

be the operator of onvolution with 2

�dk

	(2

�k

�). Let

L

k

0

= S

k

0

� S

k�1

0

:

We reursively de�ne for s = 0; 1; : : : ; r � 1

S

k

s+1

= (2Id� (S

k

s

)

2

)(S

k

s

)

2

(2.10)

L

k

s+1

= (2Id� (S

k

s

)

2

� (S

k�1

s

)

2

)(S

k

s

+ S

k�1

s

)(2.11)

and note the identity

(2.12) S

k

s+1

� S

k�1

s+1

= (S

k

s

� S

k�1

s

)L

k

s+1

so that S

k

s+1

� S

k�1

s+1

= L

k

0

� � �L

k

s+1

. One an hek indutively that eah S

k

s

is the operator of onvolution

with 2

kd

	

s

(2

k

�) where the radial bump funtion 	

s

is supported in fx : jxj � 2

�6(r�s+1)

"g and



	

s

(�)�1 =

O(j�j

N

0

+1

) as � ! 0, and that the operators L

k

s

, S

0

s

have all the desired properties. �

Remark. We note that (2.6) holds if L

k

,

e

L

k

are replaed by any of the operators L

k

s

above, or perhaps by

a omposition of �nitely many suh operators. This remark holds under the ondition that the number N

0

of vanishing moments is suÆiently large (in dependene of p; spei�ally we need N

0

� n(1=p� 1)).

Paraboli dilations. One may de�ne Hardy spaes with respet to a nonisotropi dilation struture [3℄.

In this paper we need to onsider suh Hardy-spaes on R

2

de�ned with respet to the saling (x

1

; x

2

) 7!

(tx

1

; t

m

x

2

), for a �xed real number m > 1.

If we rede�ne the funtion �

k

to be

b

�

k

(�

1

; �

2

) =

b

�(2

�(k+1)

�

1

; 2

�(k+1)m

�

2

)�

b

�(2

�k

�

1

; 2

�km

�

2

) then the

operator of onvolution with �

k

is a Littlewood-Paley projetion to the region j�

1

j + j�

2

j

1=m

� 2

k

. We

may then de�ne H

p

paraboli

as the spae of distributions f restrited at 1, for whih k(

P

k

j

e

�

k

� f j

2

)

1=2

k

p

is

�nite. Similarly one an de�ne paraboli Hardy-Lorentz spae and the obvious analogues of the statements

in the previous subsetions remain true.
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Produt type Hardy spaes. Let fL

k

1

;k

2

g

k

1

;k

2

2Z

be a produt Littlewood-Paley deomposition on R

2

,

where L

k

1

;k

2

is a multiplier with symbol supported in the region f(�

1

; �

2

) : j�

1

j � 2

k

1

; j�

2

j � 2

k

2

g; we may

assume that L

k

1

;k

2

is the operator of onvolution with �

k

1


 �

k

2

where �

k

1

, �

k

2

are as above (de�ned on

the real line).

If 0 < p; q <1, we de�ne the produt Hardy-Lorentz spae H

p;q

prod

to be the quasi-Banah spae whih

onsists of all tempered distributions restrited at 1 for whih

kfk

H

p;q

prod

=







�

X

k

1

X

k

2

jL

k

1

;k

2

f j

2

�

1=2







L

p;q

is �nite. We de�ne H

p

prod

to be H

p;p

prod

.

The formulas for interpolation of Hardy-Lorentz-spaes remain true; in fat (2.5) was proved in this

ontext in [19℄. Moreover analogues of (2.6), (2.7) remain true for the operators L

k

1

;k

2

. These an be

proved by using the theory of produt-type singular integral operators (see e.g. [6℄, [14℄).

2B. Analyti interpolation in Lorentz spaes. We need a version of a theorem by Sagher [22℄ on-

erning analyti families of operators ating on Lorentz spaes. It has been observed in [23℄ and [16℄

that Sagher's arguments arry over to somewhat more general situations; we now reall the version whih

appeared in [16℄.

We denote by S the strip S = fz : 0 < Re(z) < 1g and by S its losure. A funtion g on S is said to

be of admissible growth if there is a < � so that jg(z)j . exp(e

ajIm(z)j

) for z 2 S. Let X

0

and X

1

be two

Banah spaes, ompatible in the sense of interpolation theory, and assume that there is a subspae W of

X

0

\X

1

whih is dense in both X

0

and X

1

. For z 2 S let T

z

be an operator whih maps funtions in W

to measurable funtions on R

n

; T

z

is then alled an analyti family if for any f 2 W and almost every

x 2 R

n

the funtion z ! T

z

f(x) is analyti in S and ontinuous and of admissible growth in S. Now if

(2.13) kT

z

fk

L

p

i

;q

i

� C

i

(z)kfk

X

i

; i = 0; 1;

and if C

i

(z) is of admissible growth then the result in [16℄ states that T

�

maps the omplex interpolation

spae [X

0

; X

1

℄

�

boundedly to L

p

�

;q

�

; here (1=p

�

; 1=q

�

) = (1� �)(1=p

0

; 1=q

0

) + �(1=p

1

; 1=q

1

). We shall need

the following onsequene of this result.

Lemma 2.2. For k 2 Z and z 2 S let T

k;z

be an operator whih maps funtions in W to measurable

funtions on R

n

and assume that T

k;z

is an analyti family, for eah k. Suppose that for all f 2 W







X

k2E

jT

k;i�

f j







L

1

� C(i�)kfk

X

0

(2.14)







sup

k2E

jT

k;1+i�

f j







L

1;1

� C(1 + i�)kfk

X

1

(2.15)

for any �nite subset E � Z, with admissible onstants C(i�), C(1 + i�). Let 0 < � < 1. Then

(2.16)







�

X

k2Z

jT

k;�

f j

q

�

1=q







L

1;q

. kfk

[X

0

;X

1

℄

�

if 1=q

�

= 1� �.

Proof. Fix

~

f 2 [X

0

; X

1

℄

�

and E � Zbe �nite. There are measurable funtions g

k

suh that

P

jg

k

(x)j

q

0

� 1

and

�

�

�

X

k2E

T

k;�

~

f(x)g

k

(x)

�

�

�

�

1

2

�

X

k2E

jT

k;�

~

f(x)j

q

�

1=q

7



for almost every x 2 R

n

. De�ne g

k;z

(x) =

g

k

(x)

jg

k

(x)j

jg

k

(x)j

q

0

z

if g

k

(x) 6= 0, and g

k;z

(x) = 0 if g

k

(x) = 0.

Now de�ne an analyti family by T

z

f(x) =

P

k2E

T

k;z

f(x)g

k;z

(x): Then the assumptions (2.14-15)

imply the boundedness of T

i�

from X

0

to L

1

and of T

1+i�

from X

1

to L

1;1

, with admissible onstants.

One dedues the boundedness of T

�

from [X

0

; X

1

℄

�

to L

1;q

. The onstants are independent of E and the

hoie of fg

k

g. This implies







�

X

k2E

jT

k;�

~

f j

q

�

1=q







L

1;q

� Ck

~

fk

[X

0

;X

1

℄

�

with C being independent of E and

~

f . The �niteness assumption on E an be removed by appliations of

the monotone onvergene theorem. �

2C. A vetor-valued inequality. We shall use the following observation whih an serve as an elemen-

tary substitute for the failing L

p

(`

1

) inequality for the vetor-valued Hardy-Littlewood maximal operator

([12℄). It is just the dual version of a salar maximal inequality.

Lemma 2.3. Let � 2 L

1

(R

d

) so that for eah � 2 S

d�1

the funtion r 7! j�(r�)j is dereasing in r > 0.

Let ft

k

g

k2Z

be a olletion of positive numbers and let P

k

be the operator of onvolution with t

d

k

�(t

k

�).

Then for 1 � p <1

(2.17)







X

k

jP

k

f

k

j







p

� C

p

k�k

1







X

k

jf

k

j







p

:

Proof. We may assume that � is nonnegative. Then by duality the assertion follows immediately from

the L

p

0

boundedness of the maximal operator w 7! sup

k

jP

k

wj; the latter is a onsequene of the method

of rotation and the bounds for the one-dimensional Hardy-Littlewood operator (see [26, p.72-73℄). �

2D. Averaging funtions in L

1;q

. The triangle inequality fails in L

1;q

if q > 1, but the following

Lemma, proved for q =1 by Stein and N. Weiss [28℄, an often serve as a substitute. For 1 < q <1 the

statement follows from the ases q = 1 and q =1 by interpolation.

Lemma 2.4. Suppose that kf

i

k

L

1;q

� 1 and

P

j

i

j � 1. Then







X

i



i

f

i







L

1;q

.

X

i

j

i

j(1 + log

+

j

i

j)

1�

1

q

:

3. A stopping time onstrution

We shall use an abstrat form of the Calder�on-Zygmund deomposition, in whih no nesting or doubling

properties are assumed. The argument is related to the stopping time onstrution in [7℄.

Lemma 3.1. Let �, � be partial orders on a set �; we also use the notation � synonymously with �. Let

� be a �nite subset of �, let � be a non-negative measure on �, and let A : �! R

+

be a positive funtion.

Assume that for eah  2 � and N > 0 the set

(3.1) f� 2 � : A(�) � N and  � �g

is �nite.

Then one an �nd a subset B of � and a map q : �! � whih have the following properties.

(1)  � q() for all  2 �.

(2) If q() =2 B then q() = .

8



(3)

X

�2B

A(�) � �(�)

(4) For all � 2 �, we have

�(f 2 � : q() � �;  � �g) < A(�):

Proof. De�ne

(3.2) �

�

= � [ f� 2 � : A(�) � �(�) and  � � for some  2 �g

By the �niteness of � and the �niteness assumption on the sets (3.1) the set �

�

is �nite. Suppose we have

found q and B with properties (1)-(4) relatively to �

�

then (1)-(4) are unhanged if �

�

is enlarged to �.

Hene it suÆes to give a proof under the additional assumption that � is �nite.

We now indut on the ardinality of �. The lemma is vauously true when � is empty, with B being

empty and q being the empty funtion.

Now suppose indutively that � is non-empty, and that the lemma is true for all sets � of lesser

ardinality. Choose an element �

max

2 � whih is maximal with respet to the partial ordering �, and let

�

0

= �� f�

max

g. De�ne the set �

0

� � by

�

0

= � \ �

0

if the estimate

(3.3) �(f 2 � :  � �

max

g) < A(�

max

)

holds, and by

�

0

= f 2 � :  6� �

max

g

otherwise.

Now apply the indution hypothesis with � replaed by �

0

, � replaed by �

0

, and A and � replaed

by their restritions to �

0

and �

0

respetively. This gives us a set B

0

� �

0

and an assignment q

0

: �

0

! �

0

satisfying analogues (1

0

)-(4

0

) of the desired properties (1)-(4).

De�ne the subset B of � by B = B

0

if (3.3) holds, and B = B

0

[ f�

max

g if (3.3) fails. De�ne q : �! �

by setting q() = q

0

() if  2 �

0

, and q() = �

max

if  2 �n�

0

.

We now laim that (1)-(4) holds for these hoies of B and q. The laims (1), (2) are easily veri�ed

from (1

0

), (2

0

), and the onstrution of B and q. If (3.3) holds then B = B

0

and (3) follows from (3

0

);

otherwise, B = B

0

[ f�

max

g and (3) follows from (3

0

), the onstrution of �

0

, and the failure of (3.3).

It remains to verify (4). First suppose that � 6= �

max

, so that � 2 �

0

. Then (4) follows from (4

0

),

beause the elements  of �n�

0

satisfy q() = �

max

and thus annot ontribute to the left-hand side of (4)

by the maximality of �

max

.

Now suppose that � = �

max

. If (3.3) holds, then (4) is immediate. If (3.3) fails, then by onstrution

the left-hand side of (4) is zero. Thus (4) holds in all ases, and the indution step is omplete. �

We remark that the �niteness assumption (3.1) may be dropped if one is willing to replae the indution

by trans�nite indution (i.e. use Zorn's lemma). One an then prove this lemma for arbitrary �.
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4. Integrals along plane urves

In this and the next setion we shall always be working in the plane R

2

. We �x a real number m > 1,

all onstants may impliitly depend on m. We de�ne H

1

paraboli

to be the one-parameter Hardy spae with

respet to the saling (1.6).

The proofs of our results onerning plane urves are based on the following key estimate.

Proposition 4.1. For eah integer l let �

l

be a C

1

funtion with ompat support in [1=2; 2℄ or in

[�2;�1=2℄, with C

4

norms uniformly bounded in `.

Let d�

l

be the measure de�ned by

Z

fd�

l

=

Z

f(x

1

� t; x

2

� jtj

m

)2

l

�

l

(2

l

t) dt:

Then for any vetor-valued funtion F = ff

l

g

l2Z

,

(4.1)







�

X

l

jf

l

� d�

l

j

2

�

1=2







L

1;2

. kfk

H

1

paraboli

(`

2

)

:

We allow the f

l

themselves to be Hilbert spae valued funtions, and j � j is then to be interpreted as the

Hilbert spae norm.

In the next setion, we shall see how this proposition implies L

1;2

and L

p;2

mapping properties for the

Hilbert transform on plane urves and similar objets; this will be done by exploiting the fat that the

d�

l

have essentially disjoint frequeny supports if some moment onditions are assumed on the �

l

. The

estimate (4.1) should be ompared with the bound





sup

l

jf � d�

l

j





L

1;1

. kfk

H

1

paraboli

proven in Christ [7℄. Our tehniques shall be losely related to those in that paper.

Proof. We may deompose f atomially as f =

P

I



I

P

I

(b

I

), where the I are 2

k

� 2

mk+#

retangles with

sides parallel to the axes, and k, km+ # are integers, 0 � # < 1. The 

I

are non-negative numbers suh

that

P

I



I

� kfk

H

1

paraboli

(`

2

)

, the b

I

satisfy kb

I

k

L

2

(`

2

)

. jI j

�1=2

, and P

I

is the projetion operator de�ned

by

P

I

[b℄(x) =

�

b(x)�

1

jI j

Z

I

b(x)dx

�

�

I

(x):

Note that the de�nition of P

I

makes sense as ating on salar valued funtions or on vetor-valued funtions,

as above. By the translation trik in [7℄ (attributed to P. Jones) we may assume that the ubes I are dyadi.

Heneforth we shall refer to the I as (paraboli) ubes. It thus suÆes to show the estimate

(4.2)







�

X

l

�

�

�

X

I



I

P

I

[b

I;l

℄ � d�

l

�

�

�

2

�

1=2







L

1;2

. (

X

I



I

)(sup

I

jI j

1=2

)







�

X

l

jb

I;l

j

2

�

1=2







2

for arbitrary olletions I of ubes, non-negative numbers 

I

, and arbitrary measurable funtions b

I;l

. By

limiting arguments it is suÆient to prove the analogue of (4.2), where the sums in l and the sums in I are

extended over �nite sets (with bounds independent of the ardinalities). Heneforth we make this �niteness

assumption.

Fix the I and 

I

. By omplex interpolation (Lemma 2.2) it suÆes to show that

(4.3)







�

X

l

�

�

�

X

I



I

P

I

[b

I;l

℄ � d�

l

�

�

�

q

�

1=q







L

1;q

.

�

X

I



I

��

sup

I

jI j

1=q

0

�







�

X

l

jb

I;l

j

q

�

1=q







q
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holds for q = 1 and q =1 and all (omplex) funtions b

I;l

.

When q = 1, (4.3) simpli�es to

X

l

X

I



I





P

I

[b

I;l

℄ � d�

l





1

.

�

X

I



I

�

sup

I

X

l

kb

I;l

k

1

;

and the laim follows from Young's inequality, the �nite mass of d�

l

, and the fat that P

I

is bounded on

L

1

. Thus it remains to prove the q =1 endpoint, namely







sup

l

�

�

X

I



I

P

I

[b

I;l

℄ � d�

l

�

�







L

1;1

.

�

X

I



I

�

sup

I

sup

l

jI j kb

I;l

k

1

:

We may assume that

(4.4) sup

I

sup

l

jI j kb

I;l

k

1

� 1

Writing a

I;l

= P

I

[b

I;l

℄, we thus see that a

I;l

is supported on I , has mean zero, and ka

I;l

k

1

. jI j

�1

, and

our task is now to show that

(4.5) meas

�

fsup

l

j

X

I



I

a

I;l

� d�

l

j & �g

�

. �

�1

X

I



I

for all � > 0.

Fix � > 0. We shall use a sort of Calder�on-Zygmund deomposition and will �rst look at the \good"

ubes ontributing to a funtion whih is O(�). Let G be the family of all I for whih

(4.6) M

�

X

I

0



I

0

�

I

0

jI

0

j

�

(x) � � for some x 2 I ;

here M is the Hardy-Littlewood maximal operator with respet to the saling (1.6).

We onsider the ontribution of the ubes in G to (4.5). The L

1

norm of

P

I2G



I

�

I

jIj

is O(�), to see

this, onsider for eah for eah x

0

the smallest ube in G ontaining x

0

and apply (4.6) for this ube. We

now apply Chebyshev's inequality and the standard fat [28℄ that the maximal funtion assoiated to the

urve (t; jtj

m

) is bounded on L

2

. This yields

meas

�

�

x : sup

l

�

�

X

I2G



I

a

I;l

� d�

l

�

�

� �

	

�

� �

�2







sup

l

�

�

X

I2G



I

a

I;l

� d�

l

�

�







2

2

. �

�2







sup

l

X

I2G



I

�

I

jI j

� jd�

l

j







2

2

. �

�2







X

I2G



I

�

I

jI j







2

2

. �

�1







X

I2G



I

�

I

jI j







1

. �

�1

X

I



I

:(4.7)

Thus we may restrit our attention to the \bad" ubes. By the Hardy-Littlewood inequality, the L

1;1

norm of M(

P

I



I

�

I

=jI j) is O(

P

I



I

), and so by the de�nition of G

meas

�

[

I =2G

I

�

. �

�1

X

I



I

:
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Let C > 1 and CI denote the ube expanded by C (with same enter as I). By the Hardy-Littlewood

inequality again we have

(4.8) meas

�

[

I =2G

CI

�

. �

�1

X

I



I

:

To omplete the proof of (4.5) we shall prove the stronger square-funtion estimate

(4.9) meas

�

�

x :

�

X

l

�

�

X

I =2G



I

a

I;l

� d�

l

(x)

�

�

2

�

1=2

� �

	

�

. �

�1

X

I



I

:

In order to prove (4.9) we use an abstrat version of the Calder�on-Zygmund deomposition based on

Lemma 3.1. We �rst desribe the sets � and � whih our in this lemma. If m � 2 we de�ne � as the

set of all dyadi retangles Q of dimensions 2

�

� 2

�+(m�1)�+#

for integers �, � and for # 2 [0; 1), where

� � � , and (m � 1)� + # is the smallest integer � (m � 1)� (i.e. # = 0 if m is an integer). Note that �,

� and # are unique for eah Q and we shall write � = �(Q), � = �(Q), # = #(Q). If 1 < m < 2 we de�ne

� similarly, with the additional requirement that we only admit those � for whih the frational part of

(m� 1)(� � �) is < m� 1; this is to ensure that �(Q) is well de�ned. In both ases the subset � is the set

of paraboli ubes I for whih 

I

6= 0 and whih do not belong to G; by assumption � is �nite. Note that

one has �(I) = �(I) for paraboli ubes I .

We wish to partially order the set � by requiring Q � Q

0

if �(Q) < �(Q

0

); note that then Q and Q

0

are

inomparable under � if �(Q) = �(Q

0

) and Q 6= Q

0

. Finally we take set inlusion � as the seond partial

order in Lemma 3.1.

We de�ne the tendril T (Q) to be the set

(4.10) T (Q) = fx+ (t; jtj

m

) : x 2 2Q; jtj � 2

�(Q)+2

g:

Note that jT (Q)j � 2

�(Q)+m�(Q)

+2

2�(Q)+(m�1)�(Q)

for any retangle Q parallel to the axes, and therefore

(4.11) jT (Q)j � 2

�(Q)+m�(Q)

for Q 2 �.

The funtion A(Q) in Lemma 3.1 is then de�ned by

A(Q) = �2

�(Q)+m�(Q)

;

and the measure � is de�ned by

�(fIg) = 

I

:

The �niteness ondition in the proof of Lemma 3.1 is easily veri�ed and we �nd a map I 7! q(I) de�ned

on � so that I � q(I) and

(4.12)

X

I2�

q(I)�Q

I�Q



I

< �jT (Q)j

for all Q 2 �, and

meas

�

[

I2�

T (q(I))

�

.

1

�

X

I



I

+meas

�

[

I2�

T (I)

�

;

the latter inequality follows from statements (2) (3), (4) of Lemma 3.1. Sine for paraboli ubes I the

tendril T (I) is ontained in a �xed dilate of I and sine � \ G = ; one has atually

(4.13) meas

�

[

I2�

T (q(I))

�

.

1

�

X

I



I

;

12



by (4.8).

For any I , l we see that a

I;l

�d�

l

is supported in T (q(I)) if l < �(q(I)). In view of (4.13) the inequality

(4.9) follows from

meas

�

�

x :

�

X

l

j

X

I:l��(q(I))



I

a

I;l

� d�

l

j

2

�

1=2

� �g

�

. �

�1

X

I



I

:

It suÆes by Chebyshev's inequality to prove the L

2

estimate

(4.14)







�

X

l

�

�

�

X

I2�

l��(q(I))



I

a

I;l

� d�

l

�

�

�

2

�

1=2







2

2

. �

X

I



I

:

Let

(4.15) �(m) = fI 2 � : �(q(I)) = mg:

By the triangle inequality it suÆes to show







�

X

l

�

�

X

I2�(l�s)



I

a

I;l

� d�

l

�

�

2

�

1=2







2

2

. 2

�s

�

X

I



I

for all s � 0.

Fix s. It then suÆes to show that for eah l

(4.16)







X

I2�(l�s)



I

a

I;l

� d�

l







2

2

. 2

�s

�

X

I2�(l�s)



I

for eah l, sine the laim follows by summing in l. By saling (with respet to the paraboli dilations (1.6)

and taking into aount the de�nition of �(Q) we see that it suÆes to prove (4.16) for l = 0. Expanding

the left-hand side of (4.16), we redue to

X

I;I

0

2�(�s)



I



I

0

jha

I;0

� d�

0

; a

I

0

;0

� d�

0

ij . 2

�s

�

X

I2�(�s)



I

:

By symmetry we may assume that jI

0

j � jI j. It then suÆes to show that

(4.17)

X

I

0

2�(�s)

jI

0

j�jIj



I

0

jha

I;0

� d�

0

; a

I

0

;0

� d�

0

ij . 2

�s

�;

for all I 2 �(�s).

Fix I 2 �(�s) with enter x

I

. I has dimension 2

�(I)

� 2

m�(I)+#(I)

; sine I � q(I) by Lemma 3.1, (1),

and �(q(I)) � �(q(I)) by de�nition of � we see that

(4.18) �(I) � �(q(I)) = �s:

Rewrite the left-hand side of (4.12) as

(4.19)

X

I

0

:jI

0

j�jIj;�(q(I

0

))=�s



I

0

jha

I;0

� F; a

I

0

;0

ij

13



where F = d�

0

�

f

d�

0

(ande refers to reetion in the argument). Observe that F is supported on a setor

f(x

1

; x

2

) : jx

2

j . jx

1

jg

and obeys the estimates

jr

�

F (x)j . jxj

�1�j�j

for all multiindies � with j�j � 2. From the size onditions on a

I;0

, this implies

ja

I;0

� F (x)j . 2

��(I)

and by the moment onditions on a

I;0

jr

�

(a

I;0

� F )(x)j . 2

�(I)

jx� x

I

j

�2�j�j

; if jx� x

I

j � 2

�(I)+1

; j�j � 1:

This in turn implies from the size and moment onditions on a

I

0

;0

and the assumption jI

0

j � jI j that

jha

I;0

� F; a

I

0

;0

ij . 2

2�(I)

diam(I [ I

0

)

�3

;

where the diameter is respet to the Eulidean metri.

Thus it suÆes to show that

(4.20)

X

I

0

2�(�s)

jI

0

j�jIj



I

0

diam(I [ I

0

)

�3

. 2

�2�(I)

2

�s

�:

For � � �s, let R

�;s

be the set of dyadi retangles of dimensions (2

�

; 2

��(m�1)(s�1)+#

) so that

0 � # < 1. Observe that R

�;s

is a subset of � onsisting of retangles R with �(R) = �s+1. Also let W

�

be the set of isotropi dyadi ubes of dimensions (2

�

; 2

�

); then eah W 2 W

�

is a union of � 2

(m�1)(s�1)

retangles in R

�;s

, with disjoint interiors.

If I

0

2 �(�s) with jI

0

j � jI j then I

0

has dimensions (2

�(I

0

)

; 2

�(I

0

)�(m�1)s

) and �(I

0

) � �(I) = �(I),

and therefore every suh I

0

is ontained in a unique retangle R 2 R

�(I);s

. Sine �(q(I

0

)) = �s and

�(R) = �s+ 1 we have from Lemma 3.1, (4),

X

I

0

2�(�s)

jI

0

j�jIj

I

0

�R



I

0

. �jT (R)j . �2

�(I)�ms

and therefore

X

I

0

2�(�s)

jI

0

j�jIj



I

0

diam(I [ I

0

)

�3

=

X

W2W

�(I)

X

R2R

�(I);s

R�W

X

I

0

2�(�s)

jI

0

j�jIj

I

0

�R



I

0

diam(I [ I

0

)

�3

. �2

�(I)�ms

X

W2W

�(I)

(2

�(I)

+ dist(W; I))

�3

ard(fR 2 R

�(I);s

: R �Wg)

. �2

�(I)�s

X

W2W

�(I)

(2

�(I)

+ dist(W; I))

�3

. 2

�2�(I)

�2

�s

whih is (4.20). �
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5. Integrals along plane urves, ont.

We now prove Theorems 1.4 and 1.5. Following [5℄ we work with an angular Littlewood-Paley deom-

position.

Let � 2 C

1

0

(R

+

) so that �(s) = 1 if s 2 ((10

m

m)

�1

; 10

m

m) and de�ne Q

l

by

(5.1)

d

Q

l

f(�) = q

l

(�)

b

f (�) = �(2

l(m�1)

j�

1

j=j�

2

j)

b

f(�):

The operators Q

l

form a Littlewood-Paley family of multipliers supported in setors. Note that q

l

(�) = 1

whenever � is normal to the urves (t;�jtj

m

) if 2

l�1

� jtj � 2

l+1

.

Let �

0

be a smooth and even funtion on R so that �

0

(s) = 1 if jsj � 1=2 and �

0

(s) = 0 of jsj � 1.

De�ne P

l

by

d

P

l

f(�) = �

0

(j(2

�l

�

1

; 2

�lm

�

2

)j)

b

f(�).

Observe that the multiplier q

l

satis�es the estimates �

�

q

l

(�) = O(j�

1

j

��

1

j�

2

j

��

2

) uniformly in l. There-

fore by standard produt theory we have the estimate

(5.2)





f(Id�P

l

)Q

l

fg





H

1

prod

(`

2

)

.





fQ

l

fg





H

1

prod

(`

2

)

. kfk

H

1

prod

where f itself may be a Hilbert-spae valued funtion.

We now onsider the maximal funtion Mf . We show that

(5.3) k sup

l

jd�

l

� f jk

L

1;2

. kfk

H

1

prod

;

where d�

l

is a measure as in Proposition 4.1.

Given (5.3) we show the same bound for the nondyadi maximal funtion by a standard argument.

After a straightforward appliation of Lemma 2.4 we may assume that � has support in (�2

�5

; 2

�5

) and

vanishes in (�2

�6

; 2

�6

). Let ~� be supported in [ � (2

�8

; 2

�3

) and equal to 1 on [ � (�2

�7

; 2

�2

). We use

a Fourier expansion and write for 1=2 � s � 2

1

s

�(

t

s

) = ~�(t)

X

k2Z



k

(s)e

2�ikt

where 

k

(s) = O((1 + jkj)

�N

) uniformly in s 2 [1=2; 2℄. We set

d�

k;l

=

Z

f(t; jtj

m

)2

l

~�(2

l

t)e

2�ik2

l

t

dt:

and M

k

f(x) = sup

l

jf � d�

k;l

j. An appliation of (5.3) shows that M

k

maps H

1

to L

1;2

with norm

O((1 + jkj)

4

) and sine Mf(x) .

P

k

(1 + jkj)

�N

M

k

f(x) we obtain the inequality for the nondyadi

maximal operator from another appliation of Lemma 2.4.

Now we turn to the proof of (5.3). As in [5℄ the idea is to approximate d�

l

by Q

l

(Id�P

l

)d�

l

in order

to apply Proposition 4.1 and (5.2).

Using straightforward integration by parts arguments we observe that the funtions P

0

d�

0

and (Id�

P

0

)(Id�Q

l

)d�

0

are Shwartz funtions. By resaling this, using (1.6), we see that the maximal funtions

sup

l

jf � P

l

d�

l

j and sup

l

jf � (Id � P

l

)(Id � Q

l

)d�

l

j are dominated by nonisotropi version of the grand

maximal funtion (with respet to (1.6)) whih maps H

1

paraboli

and hene H

1

prod

to L

1

. It thus suÆes to

show that





sup

l

jf � (Id�P

l

)Q

l

d�

l

jk

L

1;2

. kfk

H

1

prod

:
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Writing f

l

= (Id � P

l

)Q

l

f , we an dominate the left-hand side by the L

1;2

norm of the square-funtion

(

P

l

jf

l

� d�

l

j

2

)

1=2

. With this hoie of f

l

the inequality

(5.4)







�

X

l

jd�

l

� f

l

j

2

�

1=2







L

1;2

. kfk

H

1

prod

follows from from Proposition 4.1, the embedding H

1

prod

(`

2

) � H

1

paraboli

(`

2

) and (5.2).

Now onsider the analyti family H



(and in partiular the Hilbert transform H = H

0

). We may

deompose

H



f =

X

l

f � d�



l

where

hd�



l

; fi =

Z

f(t; jtj

m

)2

l

�(2

l

t)jtj



1

+

2

m

dt

t

and �(t) = �

0

(t)��

0

(t=2). Note that � is an even funtion. The funtions P

0

d�



0

and (Id�P

0

)(Id�Q

l

)d�



0

are Shwartz funtions as before, but also have mean zero and so their Fourier transforms deay at 0 as

well as in�nity.

Summing this, we see that D



P

l

(Id � P

l

)(Id � Q

l

)d�

l

and D



P

l

P

l

d�

l

are standard produt type

Calder�on-Zygmund kernels and so onvolution with these kernels will preserve L

p

, 1 < p � 2 and H

1

prod

.

It thus suÆes to show that

(5.5)







X

l

(Id�P

l

)Q

l

D



d�



l

� f







H

1;2

prod

. kfk

H

1

prod

if Re(

1

+ 

2

m) = 0

and

(5.6)







X

l

(Id�P

l

)Q

l

D



d�



l

� f







2

. kfk

2

if Re(

1

+ 

2

m) = 1=2

with onstants depending polynomially on .

To see (5.6) we note that a standard stationary phase alulation yields that j

d

d�



0

(�)j . (1 + j�j)

�1=2

.

By sale invariane we obtain the uniform L

2

boundedness of the operators with onvolution kernels

(Id�P

l

)D



d�



l

if Re(

1

+m

2

) = 1=2. The inequality (5.6) follows now from the almost orthogonality of

the operators Q

l

.

In order to prove (5.5) it suÆes to show that

(5.7)







�

X

k

1

;k

2

�

�

X

l

(Id�P

l

)Q

l

L

k

1

;k

2

f � d�



l

�

�

2

�

1=2







L

1;2

.







�

X

k

1

;k

2

jL

k

1

;k

2

f j

2

�

1=2







1

;

by the square funtion haraterization of H

1;2

prod

; here L

k

1

;k

2

are as in x2. For eah k

1

, k

2

there are at most

O(1) indies l for whih (Id�P

l

)Q

l

L

k

1

;k

2

does not vanish, so we may majorize the left-hand side of (5.7)

by







�

X

k

1

;k

2

X

l

�

�

(Id�P

l

)Q

l

L

k

1

;k

2

f � d�



l

�

�

2

�

1=2







L

1;2

:

By Proposition 4.1 we may majorize this in turn by





f(Id�P

l

)Q

l

L

k

1

;k

2

fg

l;k

1

;k

2

2Z





H

1

paraboli

(`

2

)

:
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But this is bounded by kfk

H

1

prod

, by standard arguments similar to the proof of (5.2) above. This onludes

the proof of Theorem 1.5. To see that the Hilbert transform H maps H

1

prod

to L

1;2

we use in addition the

produt version of inequality (2.7).

Finally we prove Corollary 1.6. De�ne the measures d�

�

l

by

Z

fd�

�

l

=

Z

f(t; jtj

m

)2

l

(�(2

l

t))�(t)jtj

m�

dt

t

and set d�

l

= d�

1=m

l

. We use duality and prove that onvolution with (Id ��)

1=2m

P

l

d�

l

maps L

m

0

to

L

m

0

;2

.

It is easy to see that for �

1

+�

2

< 1, �

1

� 0, �

2

� 0 the funtions (Id��)

�=2

P

l

(Id�P

l

)(Id�Q

l

)d�

l

�f

and (Id��)

�=2

P

l

P

l

d�

l

�f are dominated by a onstant times the nonisotropi Hardy-Littlewood maximal

funtion of f .

Let

e

Q

l

= eq

l

(D) is de�ned similarly as Q

l

but with q

l

eq

l

= q

l

. Observe that in view of the ompat

support of � we have d�

�

l

= 0 if l > C

1

for suitable C

1

. Moreover, if l � C

1

, we see, using the de�nition of

Q

l

and the Marinkiewiz multiplier theorem that for � � 0, that





(Id��)

�=2

(Id�P

l

)

e

Q

l

g





L

m

0

;2

.





D

�

2

Q

l

g





L

m

0

;2

:

Thus it remains to show that





fD

�

2

Q

l

d�

�

l

� fg





H

p;2

prod

(`

2

)

. kfk

H

p

prod

; Re(�) = 1� 1=p;

for 1 � p � 2. This is done by a reprise of the arguments above.

6. Rough homogeneous kernels: Preliminary redutions

Let �

0

be a radial bump funtion whih is 1 on fx : jxj � 1=2g and zero on fx : jxj > 1g, and

�(x) = �

0

(x) � �

0

(x=2) is then a funtion on the unit annulus. We also denote by ~�(t) the restrition of

� to the positive real line R

+

.

In what follows we shall work with the Littlewood-Paley operators introdued in Lemma 2.1 (with

r = 3) and deompose the identity as Id =

P

k

L

k

0

L

k

1

L

k

2

L

k

3

; we assume that the numbers N

0

, " in Lemma

2.1 are hosen so that N

0

� 100d and " � 10

�10d

.

Let Æ

j

be the dilation operator de�ned by

Æ

j

g(x) = 2

�jd

g(2

�j

x);

and let A be the averaging operator de�ned by

Ag(x) = C

�1

Z

~�(t)t

�d

g(t

�1

x)

dt

t

;

where C =

R

~�(t)

dt

t

is a normalization onstant.

Sine K is homogeneous of degree �d we have the deomposition

(6.1) K =

X

j

Æ

j

A[K�℄:

If the restrition 
 of K to the unit sphere belongs to L log

2

L(S

d�1

) then K� 2 L log

2

L(R

d

) and, sine

standard Calder�on-Zygmund operators map L log

2

L to L logL the L log

2

L assumption for K� is implied

by

(6.2)

�

X

k

jL

k

0

(K�)j

2

�

1=2

2 L logL:

In the present and subsequent setion we prove the following stronger version of Theorem 1.1.
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Theorem 6.1. Let K be homogeneous of degree �d and assume that the restrition 
 to S

d�1

is an

integrable funtion satisfying

R


d� = 0. Suppose that (6.2) holds. Then the operator T




maps H

1

boundedly to L

1;2

and also to the Hardy-Lorentz spae H

1;2

.

We also have

Theorem 6.2. Let K

0

(r�) = ~�(r)
(�) and assume 
 2 L

1

(S

d�1

) and (

P

k

jL

k

0

(K

0

)j

2

)

1=2

2 L logL. Then

M




maps H

1

boundedly to L

1;2

.

We shall prove Theorem 6.1. To prove Theorem 6.2 we use the argument in x5 to redue to a version

whih involves only dyadi dilations. The proof of the relevant estimate for this dyadi maximal operator

is similar to the proof of Theorem 6.1 and therefore omitted.

Let T be the operator de�ned by

(6.3) T f =

X

j

Æ

j

A[K�℄ � f

We now have to show that T is bounded from H

1

to H

1;2

. The H

1

! L

1;2

boundedness follows then from

(2.7) and limiting arguments. In our proof of (6.3) we shall assume that the sum in j is atually �nite, but

prove a bound whih is independent of this �niteness assumption. Again a limiting argument proves the

general ase.

We now deompose f in the standard manner as f =

P



I

a

I

, where 

I

are nonnegative onstants suh

that

P

I



I

. kfk

H

1

, and a

I

is an atom supported on I with mean zero and suh that ka

I

k

1

. jI j

�1

([26℄). The enter of the atom will be denoted by x

I

and we may assume that eah atom has sidelength

2

i

I

where i

I

is an integer.

For tehnial reasons we wish to suppress low frequenies in our atoms. Let

ea

I

=

X

l��C

0

L

l�i

I

0

L

l�i

I

1

L

l�i

I

2

L

l�i

I

3

a

I

;

We assume







�

X

k

jL

k

0

(K�)j

2

�

1=2







L logL

� 1

(working with the norm kgk

L log



L

= inff� > 0 :

R

jg(t)j

�

log



(e+

jg(x)j

�

)dx � 1g) and we shall prove that

(6.4)







X

I



I

X

j

Æ

j

A[(K�)℄ � ea

I







H

1;2

� B

X

I



I

where B is a onstant depending only on d. Now the anellation of the atoms shows that ka

I

� ~a

I

k

H

1

.

2

�"C

0

, and so

(6.5)





f �

X

I



I

~a

I





. 2

�"C

0

kfk

H

1

:

Let kT k denote the H

1

! H

1;2

operator-norm, whih beause of our �niteness assumptions is a priori

�nite. (6.5) implies

kT fk

H

1;2

. 2

��C

0

kT kkfk

H

1

+B

X



I

:

Therefore, if C

0

in the de�nition of the ea

I

is hosen large enough, this implies that kT k . B.

In what follows we may assume

(6.6)

X



I

� 1:
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We now dispose of the ontributions when j � i

I

+ 2C

0

. We laim this portion is not only in H

1;2

but is

atually in H

1

. Sine H

1

is a Banah spae we may restrit ourselves to a single ube I , so that it suÆes

to show that







X

j�i

I

+2C

0

Æ

j

A[K�℄ � ~a

I







H

1

. 1:

This we rewrite as







X

l��C

0

L

l�i

I

0

L

l�i

I

1

L

l�i

I

2

[

X

j�i

I

+2C

0

Æ

j

A[K�℄ � L

l�i

I

3

a

I

℄







H

1

. 1:

By the analogue of (2.6) for the Littlewood-Paley operators L

k

0

L

k

1

L

k

2

it thus suÆes to show







�

X

l��C

0

�

�

X

j�i

I

+2C

0

Æ

j

A[K�℄ � L

l�i

I

3

a

I

�

�

2

�

1=2







1

. 1:

Sine the expression inside the norm is supported in a �xed dilate of I , it suÆes by the Cauhy-Shwarz

inequality to bound







�

X

l��C

0

�

�

X

j�i

I

+2C

0

Æ

j

A[K�℄ � L

l�i

I

3

a

I

�

�

2

�

1=2







2

. jI j

�1=2

:

By modifying the method of rotations argument in [4℄ we see that the operator with onvolution kernel

P

j<i

I

+2C

0

Æ

j�i

I

+s

[K�℄ is bounded on L

2

; hene the above redues to

(6.7)

�

X

l��C

0





L

l�i

I

3

a

I





2

2

�

1=2

. jI j

�1=2

:

But this follows from the L

2

estimates on a

I

and the almost orthogonality of the L

l�i

I

3

.

We now turn to the ontributions j > i

I

+ 2C

0

and we wish to establish







X

I



I

X

l��C

0

L

l�i

I

0

L

l�i

I

1

L

l�i

I

2

[

X

j>i

I

+2C

0

Æ

j

A[K�℄ � L

l�i

I

3

a

I

℄







H

1;2

. 1:

We set a

I;l

= L

l�i

I

3

a

I

and let fe

j

g be the standard orthonormal basis of unit vetors in `

2

. By the

remark following Lemma 2.1 we redue to show that







X

I



I

X

l��C

0

L

l�i

I

1

[

X

j>i

I

+2C

0

Æ

j

A[K�℄ � L

l�i

I

2

a

I;l

℄e

l�i

I







L

1;2

(`

2

)

. 1:

By Lemma 2.1 we may deompose

K� = S

0

1

(K�) +

1

X

k=1

L

k

1

L

k

0

(K�):

One easily heks that the onvolution operator with kernel K =

P

j

Æ

j

A[S

0

1

K�℄ is a standard Calder�on-

Zygmund operator. Indeed using the anellation of the funtions L

l�i

I

2

a

I;l

it is easy to see that for a �xed

ube I







�

X

l��C

0

�

�

�

X

j>i

I

+2C

0

Æ

j

[AS

0

1

(K�)℄ � L

l�i

I

2

a

I;l

�

�

�

2

�

1=2







1

. 1;

and the resulting H

1

! L

1

(`

2

) inequality follows for this part.
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Therefore it suÆes to prove that

(6.8)







X

I



I

X

j>i

I

+2C

0

X

l��C

0

L

l�i

I

1

Æ

j

A(

X

k>0

L

k

1

K

k

) � L

l�i

I

2

a

I;l

e

l�i

I







L

1;2

(`

2

)

. 1;

where still a

I;l

= L

l�i

I

3

a

I

, and K

k

= L

k

0

(K�).

We an rewrite the desired estimate for this portion using the identity

L

m

1

Æ

j

= Æ

j

L

j+m

1

:

Consequently we have to prove for q = 2 the inequality







X

I

X

j>2C

0

+i

I

X

l��C

0



I

Æ

j

(L

l�i

I

+j

1

A[

X

k>0

L

k

1

K

k

℄) � L

l�i

I

2

a

I;l

e

l�i

I







L

1;q

(`

q

)

. sup

I

jI j

1�1=q

�

X

l

ka

I;l

k

q

q

�

1=q







�

X

k

jK

k

j

q

�

1=q







L log

2�

2

q

L

(6.9)

for arbitrary measurable funtions K

k

on fx : 1=4 � jxj � 4g and a

I;l

on CI . (6.8) follows then by using

also (6.7).

We shall dedue the inequality for q = 2 from the inequality (6.9) for q = 1 and the obvious modi�ation

of (6.9) for q =1.

Notie that





L

l�i

I

+j

1

A[L

k

1

K

k

℄





L

1

!L

1

�

Z

j~�(t)jt

�d





 

l�i

I

+j

1

� t

�d

 

k

1

(t

�1

�)





1

kK

k

k

1

dt

. 2

�jl�i

I

+j�kj

kK

k

k

1

(6.10)

where we have used the anellation of the Littlewood-Paley kernels. The last estimate immediately implies

(6.9) for q = 1. The nontrivial part onerns the estimate for q = 1 whih is proved in the next setion.

From these two estimates we dedue (6.9) for q = 2 by omplex interpolation, using Lemma 2.2. Assuming







�

X

k

jK

k

j

2

�

1=2







L logL

� 1;

we onsider the analyti family K

z

= fK

k

z

g

k2Z

de�ned by

K

k

z

(x) = K

k

(x)jK

k

(x)j

1�2z

�

�

K(x)

�

�

2z�1

`

2

�

log(e+ jK(x)j

`

2
)

�

1�2z

if K

k

(x) 6= 0 and by K

k

z

(x) = 0 otherwise. Then kK

i�

k

L

1

(`

1

)

. 1 and kK

1+i�

k

L log

2

L(`

1

)

. 1. The rest is

straightforward.

7. Rough homogeneous kernels: The weak type estimate

We are now proving the analogue of (6.9) for q =1. In addition to (6.6) we may also suppose that

(7.1) sup

I

sup

l

ka

I;l

k

1

� 1;





sup

k

jK

k

j





L log

2

L

� 1

and show that for � > 0
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(7.2) meas

�

�

x :

�

�

X

I

X

j>2C

0

+i

I

X

l��C

0



I

Æ

j

(L

l�i

I

+j

1

A[

X

k>0

L

k

1

K

k

℄) � L

l�i

I

2

a

I;l

e

l�i

I

�

�

`

1

> �

	

�

. �

�1

:

Let F =

P

I



I

�

I

jIj

. Sine kFk

1

. 1, we may apply the standard dyadi Calder�on-Zygmund deompo-

sition to F at level �, and obtain a olletion of disjoint dyadi ubes J = fJg suh that

P

J

jJ j . �,

R

J

F (x) dx . �jJ j, and suh that F is O(�) outside of

S

J

J .

To every dyadi ube I we assign a nonnegative integer t

I

as follows. If I is not ontained in any of

the J , then t

I

= 0. If I is a subset of a ube J 2 J , then t

I

is hosen so that the sidelength of J is 2

t

I

times the sidelength of I . One an view t

I

as a stopping time; roughly speaking, 2

t

I

I is the largest dilate

of I on whih the mean of F is greater than �, or I if no suh dilate exists.

The ontribution of the terms in (7.2) for whih j < i

I

+ t

I

+ 2C

0

is ontained inside the exeptional

set

S

J

CJ , whih has measure O(�). We an therefore restrit ourselves to the ase j � i

I

+ t

I

+2C

0

. We

hange the summation variable to s = j � i

I

� t

I

� 2C

0

. Thus for the expression

(7.3) E(x) =

X

I

X

s�2C

0

X

l



I

X

k>0

Æ

i

I

+t

I

+s

(L

l+s+t

I

1

A[L

k

1

K

k

℄) � L

l�i

I

2

a

I;l

(x)e

l�i

I

we have to show that the measure of the set fx : jE(x)j

`

1

> �g is O(�

�1

). This will be estimated by

further splitting the expression E(x) into four piees and then by applying of Chebyshev's inequality and

L

1

or L

2

estimates for the individual piees.

We now desribe this splitting. Let

(7.4) M(x) = sup

k>0

jK

k

(x)j:

We break up the funtions K

k

into a bounded part and an integrable part (this trunation has �rst

been used in [9℄). Let "

0

> 0 be a onstant to be hosen later ("

0

= 10

�2

, say, works). For all k write

K

k

= 2

"

0

(s+l)

K

k

l;s;I

+R

k

l;s;I

, where jK

k

l;s;I

(x)j � 1 and the remainder R

k

l;s;I

is the restrition of K

k

to the

set fx :M(x) � 2

"

0

(s+l)

g. We split

E(x) = E

1

(x) + E

2

(x) + E

3

(x) + E

4

(x)

where

E

1

(x) =

X

I

X

s�2C

0

X

l��C

0



I

X

k>0

jk�l�s�t

I

j�s+l

Æ

i

I

+t

I

+s

(L

l+s+t

I

1

A[L

k

1

K

k

℄) � L

l�i

I

2

a

I;l

(x)e

l�i

I

(7.5.1)

E

2

(x) =

X

I

X

s�2C

0

X

l��C

0



I

X

k>0

jk�l�s�t

I

j<s+l

Æ

i

I

+t

I

+s

(L

l+s+t

I

1

A[L

k

1

R

k

l;s;I

℄) � L

l�i

I

2

a

I;l

(x)e

l�i

I

(7.5.2)

E

3

(x) =

X

I

X

l�2C

0

X

2C

0

�s�l



I

2

"

0

(s+l)

X

k>0

jk�l�s�t

I

j<s+l

Æ

i

I

+t

I

+s

(L

l+s+t

I

1

A[L

k

1

K

k

l;s;I

℄) � L

l�i

I

2

a

I;l

(x)e

l�i

I

(7.5.3)

E

4

(x) =

X

I

X

s�2C

0

X

�C

0

�l<s



I

2

"

0

(s+l)

X

k>0

jk�l�s�t

I

j<s+l

Æ

i

I

+t

I

+s

(L

l+s+t

I

1

A[L

k

1

K

k

l;s;I

℄) � L

l�i

I

2

a

I;l

(x)e

l�i

I

(7.5.4)
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It suÆes to show that for i = 1; 2; 3; 4 the measure of the set fx : jE

i

(x)j

`

1

> �=4g is O(�

�1

). By

Chebyshev's inequality and the ontinuous imbedding `

1

� `

2

� `

1

it suÆes to show that

(7.6) kE

1

k

L

1

(`

1

)

+ kE

2

k

L

1

(`

1

)

+ kE

3

k

L

1

(`

1

)

. 1

and

(7.7) kE

4

k

L

2

(`

2

)

. �:

The estimation of E

1

and E

2

is straightforward. Sine k(L

l+s+t

I

1

A[L

k

1

K

k

℄)k

L

1

!L

1

. 2

�jk�l�s�t

I

j

we

get

kE

1

k

L

1

(`

1

)

.

X

I

X

s�2C

0

X

l��C

0



I

X

jk�l�s�t

I

j�s+l

2

�jk�l�s�t

I

j

kL

l�i

I

2

a

I;l

k

1

.

X

I



I

X

s�2C

0

X

l��C

0

2

�s�l

. 1:(7.8)

Next, by the de�nition of R

k

l;s;I

kL

l+s+t

I

1

A[L

k

1

R

k

l;s;I

℄k

1

. 2

�jk�l�s�t

I

j

Z

x:M(x)�2

"

0

(s+l)

M(x)dx

and therefore

kE

2

k

L

1

(`

1

)

.

X

I

X

s�2C

0

X

l��C

0



I

X

jk�l�s�t

I

j�s+l

2

�jk�l�s�t

I

j

Z

x:M(x)�2

"

0

(s+l)

M(x)dx

.

X

I



I

Z

jM(x)j log

2

(e+ jM(x)j)dx . 1:(7.9)

The following Lemma is ruial for the estimation of E

3

.

Lemma 7.1. Suppose that g is a bounded funtion supported in fx : 1=4 � jxj � 4g and a is supported in

a ube I with sidelength 2

i

I

; moreover kak

1

� jI j

�1

. Then for m � 0





Æ

i

I

+m

[L

l+m

Ag℄ � a





1

. 2

�l=2

kgk

1

Proof. We may assume kgk

1

� 1. Let V

m

= f�g be a maximal 2

�m

-separated subset of unit vetors

in R

d

; its ardinality is O(2

m(d�1)

). We may split g =

P

�

g

m;�

where g

m;�

is supported in the setor

fx : j

x

jxj

� �j . 2

�m+10

g (and in the annulus where 1=4 � jxj � 4).

Now Æ

i

I

+m

[L

l+m

Ag℄ � a is supported in a retangle of dimensions C

1

2

i

I

� � � � � C

1

2

i

I

� C

1

2

i

I

+m

.

Therefore by the Cauhy-Shwarz inequality





Æ

i

I

+m

[L

l+m

1

Ag℄ � a





1

.

X

�2V

m

2

(i

I

d+m)=2

kÆ

i

I

+m

[L

l+m

1

Ag

m;�

℄ � a





1

. jI j

1=2

2

md=2

�

X

�2V

m





Æ

i

I

+m

[L

l+m

1

Ag

m;�

℄ � a





2

2

�

1=2

:(7.10)
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We estimate this sum using Planherel's theorem. For � 2 (R

d

)

�

j



Ag

m;�

(��)j =

�

�

�

Z

4

r=1=4

Z

�

g

m;�

(r�)r

d�1

Z

�(�)e

i�hr�;�i

d� d�dr

�

�

�

. kgk

1

Z

4

1=4

Z

j���j�2

�m+10

(1 + jh�; �ij)

�N

d�dr:

. 2

�m(d�1)=2

�

Z

j���j�2

�m+10

(1 + jh�; �ij)

�2N

d�

�

1=2

:

Therefore

X

�2V

m





Æ

i

I

+m

[L

l+m

1

Ag

m;�

℄ � a





2

2

. 2

�m(d�1)

X

�2V

m

Z

�

�

[

 

l+m

1

(2

i

I

+m

�)

�

�

2

Z

j���j�2

�m+10

(1 + jh�; 2

i

I

+m

�ij)

�2N

d� jba(�)j

2

d�

. 2

�m(d�1)

Z

�

�

[

 

l+m

1

(2

i

I

+m

�)

�

�

2

Z

S

d�1

�

�

(1 + jh�; 2

i

I

+m

�ij)

�2N

d� jba(�)j

2

d�

. 2

�m(d�1)

Z

�

�


 

1

(

�

2

l�i

I

)

�

�

2

minf1; 2

�i

I

�m

j�

�1

jg jba(�)j

2

d�

. 2

�m(d�1)

2

�(m+l)

kbak

2

2

. 2

�md�l

jI j

�1

;(7.11)

by Planherel's theorem and the estimate j



 

1

(�)j . minfj�j

2

; j�j

�2

g.

The asserted estimate follows from (7.10) and (7.11). �

We now estimate the L

1

(`

1

) norm of E

3

. To apply Lemma 7.1 we note that L

l�i

I

2

a

I;l

is supported in a

�xed dilate of I and kL

l�i

I

2

a

I;l

k

1

. jI j

�1

. Moreover kL

k

1

K

k

l;s;I

k

1

. 1, uniformly in k; l; s; I . Hene

kE

3

k

L

1

(`

1

)

.

X

I



I

X

l�2C

0

X

2C

0

�s�l

2

"

0

(s+l)

X

k>0

jk�l�s�t

I

j<s+l

2

�l=2

kL

k

1
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k
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k
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. 1:(7.12)

Finally we turn to the estimation of kE

4

k

L

2

(`

2

)

. We �rst observe the basi estimate

Lemma 7.2.
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:

Proof. Consider �rst those ubes I for whih t

I

= 0. It is easy to see that this ontribution is bounded

pointwise by min(F;C�) for some onstant C, and so the laim follows sine kFk

1

. 1.

Now onsider the ubes I for whih t

I

> 0. This part is majorized pointwise by
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. �
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;

where for the �rst inequality we have used Lemma 2.3. �

The laimed estimate for E

4

will follow from

23



Lemma 7.3. Let g

I

be bounded and supported on fx : 1=4 � jxj � 4g and set b

I;l

= L

l�i

I

2

a

I;l

. Assume

l � �C

0

, s � 0. Then for suitable " > 0
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�
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Proof. This inequality is losely related to one in [25℄ and we shall adapt the proof here. Let V

s

= f�g

be a maximal 2

�s

-separated subset of the unit sphere S

d�1

; the ardinality of this set is O(2

(d�1)s

). We

deompose g

I

=

P

�

g

I;�

, where eah g

I;�

is a bounded funtion on the setor

(7.13) S

s

�

= fx : 1=4 � jxj � 4;\(x; �) � 2

�s

g;

here we used \(x; �) to denote the angle x and � make at the origin.

We introdue a loalization in Fourier spae to a oni neigborhood of the hyperplane perpendiular

to �, namely

�

s

�

= f� : jh�; �ij � 2

�s=2

j�jg

(The exat hoie of aperture 2

�s=2

is unimportant as long as it is well between 2

�s

and 1). We de�ne the

multiplier Q

s

�

whose symbol m

�

is homogeneous of degree 0, and equals 1 on �

s

�

and vanishes outside a

slight widening of �

s

�

.

We then redue to showing that

(7.14)
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and, for �xed �,

(7.15)
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where N � N

0

=10 (reall that N

0

� 100d). The estimate (7.15) is favorable if N > d� 1.

To prove (7.15) we show the estimate

(7.16)
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for all � 2 V

s

. From (7.16) we may estimate
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where H

I

is the L

1

dilate of a radially dereasing L

1

funtion. By Lemma 2.3 and Lemma 7.2 the left

hand side of (7.15) is dominated by

2

�sN
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�sN

�
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:

We now show (7.16). Fix �. Resaling so that i

I

+ t

I

+ s = 0, it suÆes to show that

jL

j

1

(Id�Q

s

�

)Ah(x)j . 2

�(N+d)s

khk

L

1

(S

s

�

)

(1 + jxj)

�N
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for all j � l + t

I

+ s � s and all bounded h supported on S

s

�

.

Fix j; x. We expand the left-hand side as

�

�

�

(2�)

�d

Z

S

�

s
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ZZZ

(1�m

�

(�))e

ih�;x�2
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1

(y)~�(t) d�dy

dt

t

dz

�

�

�

where the moments of  

1

vanish up to order N

0

and ~� is supported where 1=4 � t � 4. The deay in x

follows from the fat that the phase is non-stationary in the � variable when jxj � 1.

Now we demonstrate the 2

�Ns

bound; we may assume that jxj � 2

s=5

. Sine h is supported in S

s

�

and m

�

equals 1 on �

�

we see that for eah j�j & 2

j

, the phase is non-stationary in the t variable (with a

gradient of at least 2

"s

). For j�j . 2

j

one piks up a loss of (2

j

=j�j)

C

, but this an be ompensated for by

the moment onditions on  

1

, sine j � s.

To show (7.14) we use the fat that the Q

s

�

have some weak orthogonality. More preisely, we have for

any funtions f

�

that

(7.17)
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;

as in [25℄ this estimate is easily proven from Planherel's theorem, the Cauhy-Shwarz inequality, and

geometrial onsiderations. Beause of this orthogonality, and Lemma 7.2, it now suÆes to show that

(7.18)
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;

uniformly in � 2 V

s

.

Fix �. Let R

s

�

be the retangle entered at the origin, with dimensions C

1

2

�s

�� � ��C

1

2

�s

�C

1

so that

the long side is parallel to �. Then, if C

1

is hosen large enough there is the uniform pointwise estimate
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+s

[Ag
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. 2
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�
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:

Thus (7.18) follows from Lemma 2.3. This ompletes the proof of (7.14) and the Lemma. �

The estimate (7.7) is an immediate onsequene of Lemma 7.3. The estimate (7.6) holds by (7.8), (7.9)

and (7.12) and thus we have proved the asserted weak type inequality.
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