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Abstract

We introduce a class of multilinear singular integral forms
A LPY(RY) x - oo x LP+2(RY) — C

which generalize the Christ-Journé multilinear forms; here Z?;rf pj_1 =1, p; €

(1,00]. The research is partially motivated by an approach to Bressan’s problem
on incompressible mixing flows. A key aspect of the theory is that the class of
operators is closed under adjoints (i.e. the class of multilinear forms is closed
under permutations of the entries). This, together with an interpolation, allows
us to reduce the LP! X --- x LPn+2 boundedness to L x --- x L x LP x LV
boundedness. We obtain estimates of the form

n+2

|A(f1a ceey fn+2)| < an 10g3(2 + n) H ”fjHij )

j=1

where the constant C' does not depend on n.
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CHAPTER 1

Introduction

1.1. The d-commutators

Let 0 < e < Landlet k € S'(RY)NLL (R4\{0}) be a regular Calderén-Zygmund

loc
convolution kernel on R?, satisfying the standard size and regularity assumptions,

(1.1a) k(z)| < Clz|~%, = #0,
|h|¢ |z
. — < < 2
(L1b) (o +1) = ()| < O, @ #0, 1l <

and the L? boundedness condition
(1.1c) |K]|oo < C < 0.

Let ||&|lcz(e) be the smallest constant C' for which the three inequalities (LII) hold
simultaneously. For convenience, in order to a priori make sense of some of the
expressions in this introduction the reader may initially assume that x is compactly
supported in R?\ {0}.

For a € Li (R?) let m, ya be the mean of a over the interval connecting z and

Y, )
My @ = / a(sz + (1 — s)y)ds.
0

For every y € R? this is well defined for almost all x € R?. Given L>-functions
ai,...,a, on R? the nth order d-commutator associated to ay, ..., a,, is defined by

Clas,-. @) = [t = ) ([ [ o) F0):

One may consider € as an (n + 1)-linear operator acting on ay,...,a,, f. Pairing
with another function and renaming a; = f;, i < n, f = f,41 one obtains the
Christ-Journé multilinear form defined by

(12)  Acs(frae oo fars) = / / #(@ = ) (] e ) fosr (9) o) da dy
=1

In dimension d = 1 this operator reduces to the Calderén commutator. However
the emphasis in this paper is on the behavior in dimension d > 2 where the Schwartz
kernels are considerably less regular. Christ and Journé [7] showed that for a; with

lai]lcoc <1 the operator Clay,...,ay] is bounded on LP, 1 < p < oo, with operator
norm O(n®), for @ > 2. More precisely,
(1.3)
|Acs(f1,- -y far2)|] < CpeallKlloze ”a(H [ filloo) I fnsillpl frrally, o> 2.
i=1

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2 1. INTRODUCTION

For related results on Calderén commutators for d = 1 see the discussion of previous
results in §I.2] below.

The form Agy is not symmetric in f;, i = 1,...,n+2, (see the discussion in §I.3]
below) and it is natural to ask whether the analogous estimates hold for f; € LPi,
for other choices of p;. The problem has been proposed for example in [14] and [18],
see also J1.2] for our motivation. Homogeneity considerations yield the necessary
condition Z?:lz D; 1'— 1. In this paper we shall establish the following estimate, as
a corollary of a more general result stated as Theorem 2.8 below.

THEOREM 1.1. Suppose that d > 1, 1 < p; < o0, i = 1,...,n+ 2, and
Z?:fp;l = 1. Let € > 0 and min{py,...,pni2} > 1+ 6. Then for A as in

n+2
(1.4) [Aca(fi, - fas2)| < CO)|Kllczen®log (2 +n) H || fi

i=1

pi -

Our main interest lies in the higher dimensional cases with d > 2. Polynomial
bounds are known for d = 1, although the precise form of Theorem [Tl may not
have been observed before; see the discussion about previous results in 1.2

1.2. Background and historical remarks

Motivation. Our original motivation for considering estimates (4] for p; #
oo for ¢ < n came from Bressan’s problem ([4]) on incompressible mixing flows. A
version of the approach chosen by Bianchini [2] leads in higher dimensions to the
problem of bounding a trilinear singular integral form with even homogeneous ker-
nels k. One considers a smooth, time-dependent vector field (z, ) — b(z, t) which is
periodic, i.e. 5(3@—}—/4;, t) = g(ac, t) for all (z,t) € R¢xR, k € Z¢, and divergence-free,
Z?:l gil = 0. Let ¢ be the flow generated by v, i.e. we have %qﬁt(x) =v(p¢(x), 1),
do(x) = x, so that for every t the map ¢; is a diffeomorphism on R? satisfying
d(z + k,t) =k + ¢(z,t), for all z € RY, k € Z9.

For small e consider the truncated Bianchini semi-norm ([2]) defined by

B.lf) = / " /Q (@) - ){3 . Py dz 2

Let A be a measurable subset of R which is invariant under translation by vectors in
74 (thus A+Z? can be identified with a measurable subset of T%). Let AL = R%\ A.
A calculation ([22]) shows that

(1.5)  Be[lpp(a)] — Be[la] =
(" (z — v, l;(:z:7 t) — H(y7 t))
vV /0 /Q f(z,t) /€<zy<1/4 7 — |72 fly,t) dydx dt

where Q = [0,1)%, f(y,t) = 5(1g,(a) — 1, (a)c) and Vy is the volume of the unit
ball in R<.

This calculation leads to an alternative approach to a result by Crippa and
DeLellis [12]. One has the following estimate involving general (a priori) smooth

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1.2. BACKGROUND AND HISTORICAL REMARKS 3

vector fields z +— v(z) on R? satisfying div(v) = 0. Let Dv denote its total deriva-
tive. Then for 1 < py,pa,ps < o0, S0, p; ' =1,

oy | ff P e dvda] S 1Dl ol

Here the implicit constant is independent of € and N. One can think of (L) as a
trilinear form acting on f, g and Dv; due to the assumption of zero divergence, the
entries are not independent and one can reduce to the estimation of d? — 1 trilinear
forms. In fact, (LG) can be derived from the case n = 1 of Theorem [T} using the
choices of

kij(z) = mZTJZQa i J,
(1.7) 2 _ .2

. j— 1 y
ki(z) = PER 1<i<d.

The case with f, g being characteristic functions of sets with finite measure and
Dv € LP* with p; near 1 is of particular interest. Steve Hofmann (personal com-
munication) has suggested that estimates such as (L) can also be obtained from
the isotropic version of his off-diagonal T'1 theorem [26].

Previous results. We list some previous results on the n + 2-linear form
Acjy in ([I3), including many in dimension d = 1, covering the classical Calderén
commutators.

(i) The first estimates of the form (4], for the case d = 1 and n = 1 were
proved in the seminal paper by A.P. Calderén [5].

(ii) More generally, still in dimension d = 1, Coifman, McIntosh and Meyer [10]
proved estimates of the form (A4 for arbitrary n, with p; = -+ = p,, = 00 and
polynomial bounds C(n) = O(n*) as n — oo. This allowed them to establish the
L? boundedness of the Cauchy integral operator on general Lipschitz curves. See
also [8] for other applications to related problems of Calderén. Christ and Journé
[7] were able to improve the Coifman-McIntosh-Meyer bounds to C'(n) = O(n?*¢)
(and to O(n'*¢) for odd kernels k).

(iii) Duong, Grafakos and Yan [14] developed a rough version of the multisin-
gular integral theory in [2I] to cover the estimates (L)) with general exponents
for d = 1, however their arguments yield constants C'(n) which are of exponential
growth in n.

One should note that the paper [14] also treats the higher Calderén commu-
tators C[f1,..., fn], with target space LP where p > 1/2. For the bilinear version
this had been first done by C.P. Calderén [6]. It would be interesting to obtain
appropriate similar results for the d-commutators.

(iv) Muscalu [31] recently developed a new approach for proving (L4) in di-
mension d = 1, see also [32) Theorem 4.11]. An explicit bound for the constant
as A(n,¢) where £ is the number of indices j such that p; # oo and, for fixed ¢,
n — A(n,£) is of polynomial growth. However, by using complex interpolation (as
in §15) to the case when p; = oo for all but two j, one may remove the dependance
of A on £. This yields polynomial bounds for all admissible sets of exponents, as in
our results.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4 1. INTRODUCTION

(v) As mentioned above, crucial results for d > 2 were obtained by Christ and
Journé [7] who established (L) for p; = -+ = p, = oo and C(n) = O(n?**%).
Several ideas in our proof can be traced back to their work.

(vi) Hofmann [25] obtained estimates (4 for operators with rougher kernels
K, and an extension to weighted norm inequalities; however the induction argument
in [25] only gives exponential bounds as n — oco.

(vii) For the special case that & is an odd and homogeneous singular convolution
kernel, estimates of the form ([4]) for d > 2 and n = 1 have been obtained by using
the method of rotation. In [14], Duong, Grafakos and Yan use uniform results
on the bilinear Hilbert transforms ([20], [37]) to obtain such estimates under the
additional restriction min(py,pa, p3) > 3/2, see also the survey [18].

We note that one can modify the argument in [14] to remove this restriction,
and also to obtain a version for n > 2. Indeed let kq(x) = |z|~9Q(x/|z|) with
Qe L1991 and Q(0) = —Q(—0). Let

Calfts. o ful fusa () = / wale =) a1 / Fi(L = s:)z + siy)ds; dy:

then
(18)  Calfir. o fulfara(x) = %/SHQ(e)cg[fl,...,fn,fn+1](x)d9
where

Colfi,-- s futal(z) Zp-v-/o; fro1(z — 39)(f[/01 file - use)du)ﬁ

S

Now if e; = (1,0,...,0) and Ry is a rotation with Rgpe; = 0 we have

Colfr,-- - fas1l(x) = Ce, [f10Ry, . .., far10Re](Ry ')

and thus the operator norms of Cy are independent of #. One notices that

Cel[fla-"vfnJrl](xhx/)

= p.v. /00 1 fn+1(y1,:c’)f[1 (/01 fi((1 =)z + uyl,x’)du)dyl ,

—o 1= U1

the Calderén commutator acting in the first variable. The one-dimensional results
for the commutators in [5], [14] can now be applied to show that for Z?if pi =1,
pi > 1,
n+2
‘/GQ[fla s Salfar1 (@) frg2(@)da | S Cp1, - - par2) Q] 1 (501 H 1 f:ll o -
i=1
Note that the assumption x odd is crucial in formula ([[8) and thus the argument
does not seem to be applicable to the d-commutators associated with the convolu-
tion kernels in (7).
(viii) When n = 1 it is known that the Christ-Journé commutator Cla] (with
a € L) is of weak type (1,1). This has been shown by Grafakos and Honzik [19]
in two dimensions and by one of the authors [34] in all dimensions. It is an open
problem whether the higher degree d-commutators (n > 2) are of weak type (1,1)
in dimension d > 2.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1.3. TOWARDS A MORE GENERAL RESULT 5

1.3. Towards a more general result

In order to prove Theorem [I[1] it suffices to prove estimate (I4) for the cases
where two of the exponents, say p;,pj, 1 < i < j < n + 2 belong to (1,00) and
the other n exponents are equal to co. Equivalently, if w is a permutation of
{1,...,n+2} and

AgJ(flv .- '7fn+2) = ACJ(fw(1)7 ey fw(n+2))

one has to show, for 1 < p < oo, the inequalities

(1L.9)  A&Lf1,- s farel| < Copn®(ogn)*|wlloze (LT Ifilloo) | fasilpl farally

i=1
uniformly in w.
Formally the operator AZ; takes the form

(L.10)  AEy(f1,- -+, frv2) =
// K%(a, @ — y)fn+2($)fn+1(y)1_[fi(l' — ai(z —vy)) da dzx dy.

The case w = id in (L) is covered already by the original result of Christ and
Journé. Thus by the symmetry in {1,...,n} and essential symmetry in {n+1,n+2}
(with a change of variable a; — (1 — ;) two cases remain of particular interest:

o If ' is the permutation that interchanges 7 and n + 1 and leaves all
k¢ {i,n + 1} fixed then the kernel K= is given by

il R () ifap > 1, 0< oy < i, A,

0 otherwise.

Kwi(a,v) = {|a
e If1 <i,j<mn,i+#jand @V is the permutation with @® (i) = n + 1,
@' (j) =n+2 and w" (k) = k for k ¢ {i,j,n + 1,n+ 2} then the kernel
K=" is given by
K= (a,0) = |ai — a;|" " (i — ay)(x - y))
either if a; <0, a; > 1, s < o < o for k # 4, 55
orifa; <0, 05 > 1, 5 <oy < for k # 4,55
K="’ (o, v) = 0 otherwise.
Once (L) is proved for w = id, w = @', @ = @", the general result follows by

complex interpolation for multilinear operators, see [I, Theorem 4.4.1].
Thus we want to study multilinear forms of the type

(1.11)  A[K] (b1, ..., bnss)

///K Vbpo(2)bp1(y Hb x — a;(x —y)) da dz dy,

where x € R%, o € R", and K (a, z) is a Calderén-Zygmund kernel in the z variable
which depends on a parameter o € R™. We will impose some regularity condi-
tions on the « variable. The basic example, corresponding to the Christ-Journé

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6 1. INTRODUCTION

multilinear forms, is

K(a,z) = ]1[0,1],"(04)/{(@

where & is a regular Calderén convolution kernel satisfying the conditions (LTJ).
Our goal is to

e To introduce a reasonably general class K. of kernels K («, x), for which
linear forms of type ([(ILTT)) are closed under adjoints. If w is a permutation
of {1,...,n+2}, then the multilinear form A[K](bx (1), - - - , be(n+2)) should
be written as A[KZ](b1,...,byt2) for a suitable K%, with appropriate
bounds on K% in the class X..

e To prove estimates for this same class of kernels that cover the estimates
for the d-commutators in Theorem [l

Roughly the class of admissible kernels consists of those K for which the norm
Il - l|%. defined in (Z3), [Z4) below is finite; see Chapter Pl for further discusion of
the spaces of distributions on which this definition is made. The extension to the
class XK. allows us to substantially extend the class of allowable convolution kernels
k in the definition of the d-commutators, see Example below.

Let p1,...,Pnt2 € (1, 00] with Z?ifpj_l =1, and let pg = miny<j<p42 p;. For
b; € LPi(R?) we shall prove the inequality

n+2
(1.12) ALK (b1, -y bp2)| < Cpoa el K]lsc.n® log® (2 +n) [T I1bs
i=1

Pi-

The expression on the left hand side makes a priori sense at least for K supported
in a compact subset of RY x (R?\ {0}) (and this restriction does not enter in the
estimate). The kernels in K. can be thought of sums of dilates of functions in a
weighted Besov space; this will be made precise in Chapter[Bl These weighted Besov
spaces are closely related to Besov spaces of forms on RP"*¢. This motivated some
of the considerations in Chapter [l and Chapter 4]

A key point of the K. norms is that they depend on n in a natural way so that
the term 72 log®(2+n) in (LI2) does not become trivial. We shall derive a stronger
version in the next section in Theorem 210 below in which dependence on the X,
occurs in a very weak (logarithmic) way. In fact one can define an endpoint space
Ko which contains the union of the spaces XK., so that the inequality

K n+2
(L13)  AK]bree b)) < Gl Ky log® (24 i) TT sl
0 =1

holds. A crucial point about the classes K. is that if K belongs to K. then all
K= in (LI0) belong to some K. class with polynomial bound in n. One can then
see that if inequality (I3) holds for (p1,...,pnt2) = (00,...,00,po, ) then the
same is true for the kernels K®. This invariance under adjoints will be discussed
in Chapter @

The strategy of proving ([LI3) for py = --- = p, = oo then follows Christ
and Journé [7], with the main inequalities outlined in Chapter Bl The subsequent
sections contain the details of the proofs.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



SELECTED NOTATION 7

Selected Notation

e We use the notation A < B to denote A < CB, where C' is a constant
independent of any relevant parameters. C' is allowed to depend on d and
e, but not on n.

e For two nonnegative numbers a, b we occasionally write a Ab = min{a, b}
and a V b = max{a,b}

e The Euclidean ball in R? of radius  and with center z is denoted by
B(x,r).

e For a function g on R? we define dilation operators which leave the L (R9)
norm invariant by

g (z) := t%g(tx).
e For a function ¢ on R™ x R? we define dilation operators in the z-variable
by
<D, z) == t%(a, tx).
e For a kernel K on R? x R¢ we define dilated versions by
Dil, K (x,y) = t*K (tz, ty) .

e Given Banach spaces Ey, F; we denote by L(E7, F5) the Banach space of
bounded linear operators from F; to Es.

e We denote by C§°(R?) the space of compactly supported C* functions.
The subspace C5%(R?) consists of all f € C§°(R?) with [ f(z)dz = 0.

e Let V be an index set, and for each v € Z, let {X%} be a sequence of
operators in L(E1, E3). We say that X%, converges in the strong operator
topology to XV € L(F1, Es), with equiconvergence with respect to V, if for
every f € Eq and every € > 0 there exists a positive integer N (e, f) such
that ||ZX f — 2V fllg, <eforall N > N(e, f), v € V.

Given bounded operators T} € L(E1, Ez), j € Z, we say that Zj Ty
converges in the strong operator topology, with equiconvergence with re-
spect to V, if the sequence of partial sums Xy = Zj:—N Ty converges in
the strong operator topology with equiconvergence with respect to V.

e Given bounded k-linear operators L, Ly, defined on a k-tuple (A, ..., Ag)
of normed spaces with values in a normed space B, we say that Ly con-
verges to L in the strong operator topology (as N — oo) if

ILn(ay, ..., ar) — L(ay,...,ax)|p =0

for all
(al,...,ak) €A x - x Ag.
When B = C or R then there is no difference between strong and weak

operator topologies, and we omit the word strong.
e The spaces LS(R" x R?) are defined in §2.11

e The operators Py, Qk, Qi and Q.[u] are introduced in Chapter B (al-
though @y, is already used in earlier sections). The class U is defined in

Definition

e The semi-norms || - ||x.,, i = 1,2,3,4,5 and the spaces K. are defined in
§2.11 The related spaces R are defined in §2.21

e The semi-norms || - |5, ,, i = 1,2,3,4, and the spaces B, are defined in

2.2
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8 1. INTRODUCTION

e The Schur classes Int!, Int>, Inti, Int2° and the regularity classes Reg;lt,

RegZs, Reg;m RegZ are defined in §8.1.T1

e The singular integral classes SI, SI;, SIZ® and annular integrability classes

Ann', Ann®™, Ann,, are defined in §8.1.21

e The Carleson condition for operators and norm || - ||can is given in Defini-
tion B4l The atomic boundedness condition, with norm || - ||a¢ is given

in Definition

e The Op,, Op, norms are defined in §83

e The notion of a Carleson function and the norm || - ||cqr; is given in defi-
nition
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CHAPTER 2

Statements of the main results

2.1. The classes K.

We first introduce certain classes of tempered distributions on R™ x R? which
satisfy integrability properties in the first («-)variable and contain all kernels al-
lowable in (CII)). For each N € Ny consider the space MSh (R™ x RY) defined as
normed spaces of tempered distributions K on R™ x R? for which there is C' > 0
so that for all f € S(R™ x R9)

(2.1) (KNI <C swp Y (14 |2) V07 fla, ).

L d
a€R” zeR [v|<N

Here (K, f) denotes the pairing between distributions and test functions and the
minimal C in (1)) is the norm in M Sy (R™ x R?). The space M S'(R™ x R?) is the
space of tempered distributions K on R" x R for which (2. holds for some N € N.
Note that MS’(R™ x R?) can be seen as an inductive limit of the normed spaces
M8\ (R™ x RY), and this gives MS'(R™ x RY) the structure of a locally convex
topological vector space. A net {f,}icy is Cauchy in this topology if there exists
an N so that all f, belong to MSh (R™ x RY) for some fixed N and so that f, is
Cauchy in the norm topology of MS) (R™ x R?). It is easy to see the normed spaces
MS)(R™ x RY) are complete and thus MS'(R™ x R?) is complete. Let M (R") be
the space of bounded Borel measures on R”. K € MS'(R" x RY) gives rise to a
continuous linear operator Bx : S(RY) — M(R") defined by

(B (62), 1) = (K, ¢1 ® ¢2) for ¢; € S(R™), ¢ € S(RY).

Let LS'(R™ x RY) be the subspace of MS'(R” x R?) consisting of those K for
which Bx(¢2) € L1 (R™), for all ¢ € S(R?). LS'(R™ x R?) is a closed subspace of
MS'(R™ x R?) and inherits its complete locally convex topology.

We now define the Banach space K. used in (LIZ). For K € LS’ (R” x R%) and
n € S(RY) it makes sense to write K (a, ) * 7 for the convolution of K and 7 in the
a-variable. This yields an L' function in the « variable, which depends smoothly
on z. For K € L} (R™ x R%), let

loc
KY(a,z) :=t'K(a, tx)

and we extend this to LS’(R" x R?) by continuity in the usual way. Fix n € S(R%)
satisfying

2.2 inf n(r0)| > 0,
(2.2) eggd_li‘;%'”(T )

where 7 denotes the Fourier transform of 7.

DEFINITION 2.1. Let n be as in (Z2)), and 0 < & < 1.

9
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10 2. STATEMENTS OF THE MAIN RESULTS

(i) Define five semi-norms by

(2.3a) K]

sup (Ui s KOs do
0

n
j<:5,1

(2.3b)  [[Kllgcn, == Sup h™*® / I * [KD(a+ hes, -) = KW (o, )]l p2(pay da,
0
0<h<1

(2.3c) IK||lx. 5 := sup // (14 |ou|)?| K (e, )| dx dev,
' 1<i<n
R>0 R<|z|<2R

(2.3d)  ||K|lx.,:= sup h™° // (a+ hej,x) — K(a, )| de da,
! 1<i<n

OR>0 R<|z|<2R
(2.3e)  [[K|x., := sup R® / |K(a,z —y) — K(a, x)| de dev.
R>2

yer?  |z|=Rly|

(ii) The space K. is the subspace of LS'(R™ x R%) consisting of those K for
which the norm

24)  AKlx. = 1Kllxr, + 11K, + 1 Kllx. o + 1K, + [ K]lx. 5
is finite.

The definition of || - |%. depends on a choice of € S(R?) satisfying (2.2).
However, the equivalence class of the norm does not depend on the choice, and the
constants in the equivalences of different choices of 1 will not depend on n. This is
made explicit in Lemma [B.1] below.

EXAMPLE 2.2. Let € € (0,1) and let x € S'(RY)NL}

L (R {0}) be a convolution
kernel in R satisfying

(2.5) [Elloe <€

and

(2.6) sup R sup / |k(z —y) — k(z)|de < C.
R>2  yeRd J|z|>R]y|

Let
K(z,a) = X[O,l]n(a)/i(:c) .
Then K € K5(R™ x R?) for § < € and
(2.7) 1K locs Ss.e C-
The details of (7)) are left to the reader.

We state a preliminary version of our boundedness result (see Theorem [2.§]
below for a more definitive version).

THEOREM 2.3. Let e >0, § >0 and n as in [22).
(i) There is a constant C = C(d, d,&,m) such that the following statement holds
a priori for all kernels in K. which also belong to L*(R™ x R?). The multilinear
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form

A[K] (b1, ..., bpye) = // K(a,z—y)bpt2(2)bpt1(y) H bi(x—a;(z—y))dadx dy,

satisfies
n+2

(2.8) A[K] (b1, - bg2)| < On®log™(L+ )| K [lsc. T Ibilly.
i=1

for all b; € LP*(RY), 146 < p; < o0, Y2 prt=1.
(i) The multilinear form (K,bi,...,bny2) — A[K](b1,...,bnt2) extends to a
bounded multilinear form on K. x LPt x -« x LPn+2 satisfying (Z8) for all K € X..

The proof of Theorem 23] we will heavily rely on a decomposition theorem for
the class K., to which we now turn. This decomposition will specify further part
(ii) of the theorem, i.e. describe how to extend the result from part (i) to all kernels
in X..

2.2. Decomposition of kernels in X,

In the following definition eq,...,e, will denote the standard basis of R™.

DEFINITION 2.4. For n,d € N and 0 < e < 1 we define four (semi-)norms

@9)  lsls. = max [0+ ad)ls(a,0)] dade,

(2.9b) lsllB. . = sup h~ // |s(a + hes,v) — s(a,v)| da do,
1<z<n

(2.9¢) lsllB.., := sup |h|75/ ls(a,v 4+ h) — ¢(a,v)| da dv,
0<h|<1

@00 sy = [ [+ DK@ 0] dade

Let B.(R™ x R?) be the space of those ¢ € L*(R™ x R%) such that the norm

(2.10) Islls. = llslls., +llslis. . + lIslls..s + lslls. .

is finite.

For 0 < ¢ < 1 the space B, is a type of Besov space, hence the notation. See
also §&3 below. Recall the notation ¢ (o, x) := t%(a, tz).

DEFINITION 2.5. (i) Let ¢ € Cg°(R?) such that [¢(z)dx = 1, let Q;
denote the operator of convolution with 2/9¢(27.) —20~14$(27-1.), When
acting on K € LS'(R™ x R?), we define Q,;K by taking the convolution
in R?.

(i) Set
(2.11) GK] == (Q,;K)* .
(iii) For K € LS'(R" x RY) let

(2.12) 1l = sup fls; (KTl 2 ey -
je
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12 2. STATEMENTS OF THE MAIN RESULTS

(iv) Let & be the space of all K € LS’'(R™ x R™) such that

K] %. := sup ||s;[K]|5. (rn xra)
JEZ

is finite.
The relation between the spaces K. and 8. is given in the following theorem.

THEOREM 2.6. (i) A distribution K € LS'(R" x RY) belongs to Uy ., Ke if
and only if there ezists an € > 0 and a bounded set {s; : j € Z} C B.(R" x R?)
satisfying

/§j(a,v) dv=0

for all j, a and

K= Zg@j),

JEZL
holds with convergence in the topology on LS’ (R™ x R?) (and thus also in the sense
of distributions).
(i) Let K € X.. Then for ¢ <,

K55 < Cse.al Klla. -
(iii) Let K € R.. Then for § < ¢/2
1K loc; < Cse,all K|

Re *

2.3. Boundedness of multilinear forms

For any ¢ € B.(R" x R%) and for b; € LPi(R?) with Z?if p; ' = 1 the multi-
linear form

A (b1 busz) = [ sl = pbsa@bosa ) [[ 0o = aa( =) da dy da
i=1
is well defined; more precisely we have

LEMMA 2.7. Let ¢ € L*(R™ x R?). Suppose for 1 <1 < n+2, b; € LPi(R?)
with Z?:Jrf p; ' =1. Then, for all j € Z,

) n+2
|A[§(2J)](b17 .- '7bn+2)’ < ||<||L1(R"><]Rd) H ||b2 Pi *
i=1
PRroOOF. This follows easily by Holder’s inequality. O

Theorem suggests to define the form A[K], for K € K., as the limit of
partial sums

N )
(2.13) ST AN, bag2)

as N — oo.
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2.3. BOUNDEDNESS OF MULTILINEAR FORMS 13

Our main boundedness result (a sharper version of Theorem 2.3)) is

THEOREM 2.8. Let 0 < d <1, let p1,...,pni2 € [1 46, 00] with En+2 =1,
(i) Let J be a finite subset of Z and let {s; : j € T} be a subset of Be (R" x R%)
so that for every j €3, [¢j(a,x)dz =0 for almost all o« € R™. Let

Kj = Z §j(-2]) .
JET
Then for by € LP'(R?) we have

A5 (b1, -, b))
n+2

up;ez |l |,
S C,d,énz sup ||S; 1 (mntd 10g3 (2+ SHPjez 1IS7 1B ) bl
e (jeZ 1651l L1 ) supsez [l H 1164],

where the constant Ce q.5 is independent of n and J.
(ii) Let K € X so that K =}, gj(-QJ) in LS'(R™ x R™) with [ ¢j(a, x)dz =0
for almost all o € R™. Let sup; [|s;ll5. < 0o, by € LP*, ..., byio € LPr+2. Then

Z;’;im A[gj@])] converges in the operator topology of (n + 2)-linear functionals to
a limit A[K] satisfying
n—+2

ALK buga)] < Copan® | K 105 (24 m HKH )Hn bill -
O

We now turn to the multilinear forms defined by adjoint operators. More

generally, given a permutation w on {1,...,n + 2} we define the multilinear form
A= [c] by
(2.14) AZ[S](b1, ... bnug2) = AS](bo(1), - - - 5 beo(nt2)) -

We have the following crucial result which will be proved in Chapter @ It
shows that operators of the form (23], and their limits as N — oo, are closed
under adjoints.

THEOREM 2.9. Let € > 0. There exists € > c(€) (independent of n) such that

for any permutation w of {1,...,n+2} there exists a bounded linear transformation
Uy : B(R™ x RY) — B (R™ x RY) with

(gwg)(t) = KW@(O)a t>0,

and
AZ[¢] = Alle],
such that
1<l < n*lslls,
and

[l = llsllzs-
Furthermore, if [<(a,v)dv =0 a.e. then also [l5c(a,v)dv =0 a.e.

In light of Theorem 2] the result in Theorem 28] is closed under taking ad-
joints, and therefore follows from the following result and complex interpolation
(see Chapter [IT).
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14 2. STATEMENTS OF THE MAIN RESULTS

THEOREM 2.10. Let § > 0, by,...,b, € L¥(R%), p € [1 +6,2], and let p' =
p/(p—1). For b,y € LP(RY), by, 4o € L' (RY) we have

[A[K] (b1, -y bny2)| <

supjez llsills, | (1
Ceasn?sup |1l log® (2 -+ n=— <020 ) (TT lorfloc ) s b2l
€ jeZl J | ( StueZ H§j||L1) ll;[ll |Oo | n+ |p| n+ |P

The structure of the proof of Theorem [Z.10 will be discussed in Chapter B and
the details of the proof will be given in subsequent sections.

2.4. Remarks on Besov spaces

2.4.1. Equivalent norms. In Definition 2.4l we chose a particular form of the
norm || - [|5, which is well suited for our goal to prove estimates with polynomial
growth in n. There are other equivalent norms which could be used, for instance,
one might replace the expression

sup h_e/ ls(a + he;,v) — ¢(a,v)| da dv
0<h<1
1<i<n

with
sup \h|_6/ ls(a 4+ h,v) — ¢(a,v)| da dv
0<|h|<1
and one ends up with a comparable norm. These two choices differ by a factor

which is polynomial in n. Fortunately, the result in Theorem 2.8 only involves
[sjlls, through the expression

SUPjez ||<j||B6

log®(2 +n .
S

Thus, if one changes sup;cy [|s;ll5, by a factor which is polynomial in n, this only
changes the bound in Theorem [2.8] by a constant factor, and therefore does not
change the result in Theorem [Z8 In this way, one can use any one of a variety of
equivalent norms when defining || - HB6 (as long as one only changes the norm by a
factor which is bounded by a polynomial in n) — we picked out the choice which is
most natural for our purposes.

2.4.2. The role of projective space. Though it may not be apparent from
the above definitions, the space RP™ plays a key role in the intuition behind our
main results. In this section, we exhibit a special case where the role of RP™ is
apparent, and we return to a more general version of these ideas in 4.5

Recall that RP™ is defined as R**1\ {0} modulo the equivalence relation where
we identify a, 8 € R"T1\ {0} if there exists ¢ € R\ {0} with a = ¢3. This sees RP™
has an n-dimensional manifold. Traditionally, there are n + 1 standard coordinate
charts on RP™. For these, we consider those points in @ = (g, ..., a,41) € R*TH\
{0} with a; # 0. Under the equivalence relation, « is equivalent to a;la =
(a;lal, ces 0o, 1 a;lajﬂ, cag Qpt1). This identifies such points with a
copy of R™ and yields a coordinate chart on RP"—every point in RP™ lies in the
image of at least one of these charts. This sees a copy of R™ inside of RP" given

by (a1,...,an) = (o1,...,05-1, 1, 041, .., ).
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2.4. REMARKS ON BESOV SPACES 15

Functions on RP™ can be identified with functions f : R**1\ {0} — C such
that f(ca) = f(a)-i.e., functions which are homogeneous of degree 0 and are even.
Suppose we are given f : RP®™ — C. We obtain a function fy : R® — C by
viewing R™ — RP” via the map (aq,...,a,) — (a1,...,0p,1). Thus, given an
even function f : R"™\ {0} — C which is homogeneous of degree 0, we obtain
a function f : RP™ — C, and therefore a function fy : R®™ — C (and fy uniquely
determines f off of a set of lower dimension in RP").

We consider here the special case when

K(a,v) =~(a)k(v)
and k is a classical Calderén-Zygmund kernel which is homogeneous of degree —d
and smooth away from v = 0. For o € R™ and functions b1, ..., b,42, consider

o) = [[ o~ y)burae )an(y)Hb(x—ai(x— ) do dy

// bpto(x on—vH (z — a;v) dz dv.

The multilinear form we wish to study (in this spemal case) is given by

[ @@ da.

One main aspect of our assumptions is that this operator should be of the same
form when we permute the roles of by, ..., b, 2. Many of these permutations are
easy to understand: permuting the roles of b, ..., b, merely permutes the variables
a1, ..., 0p. Switching the roles of b,1 and b, 42 changes a to (1 —ay,...,1 —ay).
Thus, the major difficulty in understanding adjoints can be reduced to understand-
ing the question of switching the roles of b; (1 < j < n) and b,y1 (as every
permutation of {1,...,n + 2} can be generated by the these three types of permu-
tations).
Define a new function F : R**1\ {0} — C by

F(ag,...,apq1) = // k()b (x—aqv) -+ bp (2= )by 1 (X — 0y 10)bpgo(z)dzdy .

Because of the homogeneity of x, we see (for ¢ € R\ {0}), F(ca) = F(a). By the
above discussion, F' defines a function on RP™, and therefore induces a function
Fy : R" — C as above. This induced function Fj is exactly the function of the
same name from (2I0). Thus, we have defined Fp in a way which is symmetric in

(2.15)

bla cee abn+1-
F(«) defines a function on RP”, and therefore if y(a)da were a measure on
RP”, it would make sense to write

[r@F(@) da.

Indeed, our main assumptions in this special case are equivalent to assuming that
y(a)da is a density which lies in the space (J,.. ., Bf o (RP™) (where Bf . (RP")
denotes a Besov space of densities on RP™, see 4.0 for a proof of this remark).
When we write the expression as

[r@Fs(a) do,
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16 2. STATEMENTS OF THE MAIN RESULTS

we are merely choosing the coordinate chart R™ < RP™ denoted above. With this
formulation, the operator

/ ~(a)F(a) da

clearly remains of the same form when by, ...,b,,1 are permuted, and from here it
is easy to see that the class of operators is “closed under adjoints.”

REMARK. In our more general setting, K (a,v) is not homogeneous in the v
variable, and therefore we cannot define a function F' on RP" as was done above.
Nevertheless, these ideas play an important role in our proofs, see §4.5 below.
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CHAPTER 3

Kernels

In this chapter, we prove various results announced in Chapter[2l We first show
the independence of the space K. of the particular choice of 7 satisfying (2.2)) and
then give the proof of Propositions and B3]

3.1. Independence of 7

The following lemma shows that K. does not depend on the choice of € S(RY)
satisfying ([22)).

LeEMMA 3.1. Let n,7 € S(RY) and n be as in @2). Let 0 < ¢ < 1. There
exists C = C(n,n') such that for all K € X,

1K g < ClIEK |52
The constant C is independent of n.

PrOOF. Let K € X.. Only two of the terms of the definition of || K ||, depend
on the choice of 1. Thus, the result will follow once we prove the following two
estimates.

(31) sup / (14l I * KO (@, )| 2 ey da
1<i<n
t>0

< C sup /(1 + | |)¥||m * K(t)(a7 ')”LQ(Rd) da,
1<i<
>0

and

(32) sup h / o * (KO (a + hes, ) — KO (a, )] g2 gay da
o
0<h<1

<C sup b7 [ |n*[K©(a+ he;, ) — KD (a, N 2 (ray da.
1<i<n
>0
0<h<1

The proofs of these two equations are nearly identical, so we prove only ([B.1]).

Let x € C§°(R?) be supported in {¢ : 1 < [¢| < 2} with the property that
Srezx (2772 =1, for £ € R*\{0}. Since ’ € S(R?), we have ||X(2_k)7/7\/()||Lac <
Cnymin{27* 1}, By ([Z2) and the compactness of { : § < [¢| < 2} there is a

finite index set © and real numbers 7,, > 0 such that

1
Z (r.€))* > ¢>0 for 3 <l¢ <2
veo

17
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18 3. KERNELS

Let
e O
A = TR

then ||m, ||~ < C, and we have

(€)=Y x@7F)NE©) Y mu(2 k7€)

kez ved®

Hence,

I+ KO (a, )| L2y S D min{27 5N, 133 [l [|oo [7(27 1) K© (0, ) 2oy,
kEZ ve®

where the implicit constant depends on N. Note

P ) kL
1727* 7 ) KO (@, )| 2 gay = (25 /1) Y20+ K27 (@, )| 12(ga),
and so taking N > d/2 we obtain

Ja fa?l « KO, o da

S min{2 FNTA/2) ghd/2y N7 C’l,/(l + i)l * K@D (@, )| 12 gay dar

kEZ vee

Ssup [(L+ sl K () 2y dr
T

which completes the proof of B.1I). O

3.2. Proof of Theorem

The theorem follows from two propositions. In the first we prove an estimate
for the ¢; as in (ZI1]), which arise in the decomposition of K =3}, ¢; )

PROPOSITION 3.2. Suppose € € (0,1], 0 < é < e. For every K € X, let

= ()7
Then {s; : j € Z} is a bounded subset of Bs(R"™ x RY) satisfying

/gj(a,v) dv =0,

for all j and almost every o € R™ and

sup [|jlls; < Co.c.all K.
JEZ

and such that

K-

JEL
with the sum converging in the sense of the topology on LS'(R™ x R?).

The second proposition provides Ks-estimates for kernels that are given as sums

Zj gj(»zj), with uniform B.-estimates for the g;.
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3.2. PROOF OF THEOREM 19

PROPOSITION 3.3. Let € € (0,1], and 0 < § < /2. Suppose {s; : j € Z} C
B-(R™ x RY) is a bounded set satisfying [ j(o,v) dv =0, for all j. Then the sum

= Z gj(?J)(a, U)
JEZ
converges in the sense of the topology on LS'(R™ x R?), and K € Xs. Furthermore,

[Klscs < Cse.asup lls;lls, -
jEz

The proofs of these propositions will be given in §8.2.1] and §3.2.2

3.2.1. Proof of Proposition We need several lemmata.

LEMMA 3.4. Let ¢ > 0. Then, there exists 6 = d(e,d) > 0 such that for
s € B-(R™ x RY), we have

/ o=l (er, )] dax dv < Ceal<]ls, .

PrOOF. Clearly [f , [v]°ls(e,v)] dadv < [s]lrr < [s]s,, so it suffices to
prove

(3.3) / / _ (e e 5 sl
v|<1

By a weak version of the Sobolev embedding theorem (see [35] or [39]), there exists
p = p(e,d) > 1 such that

/ ( / [s(o )l” dv)% do 5 <], -

Let p’ be dual to p and let § < 1/p’. We have, by Holder’s inequality, and then
Minkowski’s inequality,

// ls(cv, v)| dav dv < (/ v| =% dv_/ / /kav\da dv);
|'u\<1 [v|<1
PN\
(/( /|§(a,v)|da) dv)” dov 5 <],

This shows (B3) and completes the proof of the lemma. O
LEMMA 3.5. Let {s; : j € Z} C B.(R"xR?) be a bounded set with [ ¢;(c,v)dv =
0, for all j € Z. The sum
> ()
JEZ

converges in the sense of the topology on LS'(R"™ x R?) (and a fortiori in the sense
of tempered distributions).

PROOF. Let f € S(R" x R?). We will show, for some & > 0,

\/cf”(ow)f(aw) dadv| S2701°  sup " (14 [a])|0] (e, 7)),

n d
a€eR™ xR lvI<1

and the result will follow by the completeness of LS’.
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First we consider the case 7 > 0. In this case, we have
| / / %) (0,0) f (0 0) dev do = | / / (0, ) f(a, ) — f(,0)] dav dv
s sw Y sn)) [[ 1 @0l doda

n d
@€R™ERY ) 1<1

2 (s ST s n)) s s,

a€R™ xcRa lvI<1

as desired.
We now turn to j < 0. Take § > 0 as in Lemma 34l We have

’//cjej)(a,v)f(a,v) dadv‘ < ( sup \a:|5\f(a,x)|)//\gj(_2j)(a7v)| o]0 dav dv

a€R™,zERY

—(swJelflf@a)) 2 [[ g 0llel dade

a€R™ ,zcR4

§ i§
SO osup [zl f(a,2)]) 2|5,
a€R™ xeRa

where in the last line we have used our choice of § and Lemma [3.4] O
Let ¢ € C§°(B%(1/2)) be a radial, non-negative function with [ ¢ = 1. For
j € Zlet ¢ (v) = 279(2v). Let ¢(z) = ¢(x) — Lo(x/2) € Cg°(B4(1)). Let
Q;f =[x »@). Note that f = > ez Qf for f € S(R?) with convergence in the
sense of tempered distributions.
The heart of the proof of Proposition is the following lemma.

LEMMA 3.6. Suppose 0 <e<1,0<d<e andlet K € X.. Let
s(a,v) = QoK (a,v).
Then, s € Bs(R™ x R?) and

Isllg, < Cseall Kllx. -

PROOF OF PROPOSITION B2 GIVEN LEMMA B0 Since K(?) is of the same
form as K, the lemma also yields, with ¢; := (Q;K)®"),

K]

3’16112) [sillsc. < Coeall K|ls. -

As [¢j(a,z)dz = 0 for all j it follows from standard estimates that K = (27)

jezSi
j
in the sense of tempered distributions. Since we know Zjez %('2 ) converges in the

sense of the topology on LS'(R™ x R4) it follows that the sum can be taken in that
sense as well. The result now follows from Lemma O

PROOF OF LEMMA Note that, in light of Lemma Bl we may replace the
test function n with ¢ in the definition of || K|, .
We begin by bounding ||s||5,, as in (Z9al) and split, for fixed 1 <1i <n,

//(1—1—|ai|)6|g(oz,x)|dxdoz://+ // + // — () + (IT) + (IT1).

lz|<1 1<|o[<1+]e;| [2[>14]a;]
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3.2. PROOF OF THEOREM 21

For (I), we apply the Cauchy-Schwarz inequality to see

= Q 4 o, T T ac
(”‘//m(” D)lo(o, 2)| d d

1
S sl ( [ o Kol dr) da < K,
For (II), we have

(II) = // (1—|—|ai|)6|<(a,x)|d:t do

1<|@|<14|ov]

S (1+|Oé¢\)5\¢*K(a,x)\d:Eda
>

U1y |>2"
2k <Ja|<2M !

<) ke // (1+ | )*|K (a, )| da do S || K|, -

k>0 2k —1< || <2h+3

For (III), we use that [+ =0 and supp(¢)) C B4(0,1) to see

(IIT) = // (1+ |as])’|s(a, )| dz da

[z[>14]evi]

S //z|>1+a1:(1 + Iai|)5‘ /w(y)[K(a,x —y) - K(a,2)]| de da

Y2 [l [[ 1K@ =) - Koo dedady

k>0 ng‘ai‘SQkﬂ
|z|>2"
§22k5 // |K(a,z —y) — K(o, x)| de da dy
k>0 ly|<1 |z|>2k

S 2K k., S IIK]

£,5 ~v
k>0
as desired. Combining the estimates for (I), (I), (I11) gives
sl S WK llgew | + 1Kl o + 1K 5. s S 1. -

£,5 ~v

Ke,59

We turn to bounding [|||s,,. Let 1 <i <nand 0 <h <1 and split

//\c(a+hei,x)—<(a,x)ldxda=//+ // + // = (IV)+(V)+(VI).

|z|<2 2<|z|<10h=1 |z|<10h—!

Our goal is to show (IV), (V),(VI) < h®||K||x.. We have, by the Cauchy-Schwarz
inequality,

(Iv) = / ls(a + hes, x) — o(a, z)| de da

|| <2

5/(/|¢*[K(a+hei,-)—K(a,-)](:c)|2 d;v)% dov < 1| K s -
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22 3. KERNELS

For (V'), we have

(V)= // ls(a + he;, x) — ¢(a, z)| dz da

2<|z|<10h~1

< Z / |K(a+ he;,x) — K(o, )| de da

1§2kgloh_12k—lglw‘g2k+2

S Y KKk, Shflog(2+h YK, , -
1<2k<10R—1

For (VI), we use that [t = 0 and supp(y)) C B%(0,1) and obtain

(VI) = // [s(a+ he;, x) — s(a, x)| de do < 2 // | * K (v, z)| dz do

|z|>10h—1 |z|>10R—1

s [ ][ - - Ko ds da

|z|>10h—1

5/\¢(y)|// K (a,2 —y) — K(a, )| dx da dy
|z|>10h 1
S hEIK . s

Combining the estimates for (IV), (V), (VI) we get

I<llgs.e S WK llow, + 1K 5o + 1Kl s S 5.

£,5 ~v

We now turn to bounding ||s||s,,. Fix h € R? with 0 < |[h| < 1. Using that
[ =0, we have

/ ls(a,z + h) — ¢(o, x)| do do

< //‘/01<h,V$1/J*K(a,x+sh)>ds’dxdoz

|| <10

+ Z // ‘/01<h7vz¢*K(a,x+sh)>ds‘da:da

8<2k<10|h 1t 2k <[z <2hH1

+2//x|29h1 /w(y)[K(aw_y) _ K(a,2)] dy‘ i de
=: (VII) + (VIII) + 2(IX).

We need to show (VII),(VIII),(IX) < |h)°||K||x. -
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We begin with (VII) and use the Cauchy-Schwarz inequality to see

(VII) = //‘/;(h,vmgb*K(a,x—i—sh)) ds‘dmda

|z[<10

< |h| / [V * K (o, )| do do
jz|<11

il [ ([ 1venK@ap i) da

< |hl|| K .
S MK o,
For (VIIT) we have
1
(VIIT) = Z / ’/ (h, Vot x K(a,x + sh)) ds| dz da
8<2F<10[h| =1 i |31 Lokt 0

< |h Z [V K (o, z)| dx do

8<2k<10|h|—1L k=1 |p|<2k+2

<Y K (o, 2)| d da

8<2k<10[h|1 2k—2< |p|<2k+3

Sl Y K, S hllog(2+ [RITIK I, -
8<2k<10[h| -1

For (IX) we use supp(¢)) C B%(0,1) and estimate

)= //uzgh—l

S/Iw(y)\ / K (o, x — y) — K(, )| dz do dy
|| >9|h| 1
SEGRYIES

[HwlK (@.a = 9) = K(a,0)) do] de do

£,57

as desired. Summarizing,

IllBss S NEN o + 1K loco s + 1K 5. 5 S 1.
e,1

where in the last inequality we have used Lemma [3.1]
Finally we estimate ||<||5., and split

//(1+|x\)6\§(oz,x)|dozdx=//+// . (X) + (XT).

|z|<10 |z|>10

We have, by the Cauchy-Schwarz inequality,

)= [[ _ arbseaiias [ ( K )P ) dor S Ky

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



24 3. KERNELS

Using that [ =0 and supp(y)) C B4(0, 1), we have

(XI) = //x|>1o(1 + |2)%|s(a, )| dx dex
sy 2 [ ] [owis —y) - Kao)dy| de do

23 gkgjz|<oen
$Y2 [l [[ 1K=y - Kl dedady
k>3 |z|>2%
S 20K ke, S K| s
k>3
Hence
I<ll.s S 1B g, + [ K lsc.s S NE .
This completes the proof. O

3.2.2. Proof of Proposition 3.3l We begin with a preparatory lemma. Let
® € S(RY) satisfy [@(z)dz = 1, and let ¥(z) = ®(2) — +®(%). Define Q;f =
[ w@),

LEMMA 3.7. Let e > 0 and s € B-(R™ x R%). Then, forl >0,

(3.4) // |Qis (v, )| do dov + 27 // |V Qis(a, z)| dax da < 2_lg||g||567

(3.5) / |Qis(a, x)| do do + 27 / IVeQis(a, x)| dv da S R™°|[s]5, ,
|z|>R |z|>R
and for |h| <1,

(3.6) // |Ql<(a,x +h)— ng(a,x)’ dr da < min{2l|h\7 1} min{2_l5, R_E}||<||BE.
|[z|>R

Let0<d <e. Then for R>0,1=1,...n,
61 f[ 0t el IQus(e )l drda S minfa7 0, B ol
and for all0 < |7] <1,5=1,...,n,

(3.8)
7|0 // |Qis(a + 7ej,2) — Qisla, z)| dv dor < min{27 "= R=E=D || 5_.
|z|>R
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PRrROOF. First observe that (3.4) is an immediate consequence of the definitions.
Next, for the proof of ([BE) we may assume R > 1. Also, observe, for every N € N,

//\Qm(a,x)I dx da+2_l/ IV:Qis(a, z)| do da

= <SR
2ld

< 71 . all.\N —

= /// (14 21y |s(a,x —y)| dx da dy
lz|>R

=Cn /// +Cn /// = CN((I) 4 (II))_
‘1|2R ‘I|ZR
lyI<R/2 ly|>R/2

For (I) we have

2ld
< —€ - _ g _ < —€
s [[] gm0+ b ul)lslone =)l deda dy S Rl

|z|>R
ly|I<R/2

For (II), taking N > d + 1, we have
21d : 1
11 S sl / oy WS 2 R) sl < R l<lls
wi>ry2 (L4 20y)N
and (B3] follows. ([B6]) follows by combining ([34) and B3).

We now turn to ([B.7) and we separate the proof into two cases, R < 2! and
R > 2! For R < 2! we have, by (8.4,

//(1+\Oéi|)5|Ql<(a,a?)|da:da§ //+// =: (IIT) + (IV).

|z|>R lag | <2t o |>2F

For (IIT), we apply (B4) to see

0,4’

15 —l(e—6
(IT1) <2 / Qs (e, )| da dor < 274 >||<||BE.
Also, we have
(V) < 271 / (1+ ou])? / Qus(e, )| di da
<9l / / (1+ Joi)e s ()| do da € 274 o] 5.

In the second case, R > 2!, we have

//(1 + |ai)?|Qis(a, )| da do < // + // = (V) +(VI).

[z|>R lai|<R e |>R
[z|>R

Using (E3),
(V) SR / / 1Qus(er,2)]| dr dax < RO|o] ..
|lz|>R
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And,

vnse |

lovi| > R
SR // (L+ i) (e, 2)] dz da S RO#[d]|s,

which completes the proof of ([B.1).
Finally, we turn to (88). This we separate into four cases. In the first case,
R <2, 7>27" we have

T_6 TE; —
I7| //lmZRng(aJ’_ e, x) — Qis(a, x)| dz da

(1+ |l / Qus(a.2)] i do

<90 / / 1Quc(er 7)) d dav < 271 o5,

In the second case, R < 2!, |7| < 27!, we have
7|70 // |Qis(a+ Tej,x) — Qis(av, x)| do dov
2|>R

< 27U ) =e // ls(a+ Tej,2) — ¢(a, z)| do da < 2’1(5’5)||g||58.
In the third case, R > 2!, |7| > R™!, we have

|7~ //|sz |Qis(a+7ej,2) = Qis(a, )| dz da

S8 [ Qe deda S B,
lz]>R
where in the last inequality we have used (3.5). In the last case, R > 2!, |7| < R7!,
|7|~° // |Qis(a+ Tej,x) — Qis(a, x)| do do
|z|>R

SR [ [ et + rej) - c(a,a) do da S R,
as desired. This completes the proof. ([l

PROOF OF PROPOSITION B3] CONCLUSION. Let ¢; be as in the statement of
the proposition. By Lemma we already know the sum >, §](2]) converges
in the topology on LS'(R™ x R?). Our goal is to show convergence of the sum
I Zjezgj(-zj)ﬂgcd in Xs for 0 < § < ¢/2. Fix j1,j2 € Z, j1 < j2. Define K =

27 . . . . .
D <i<ia gj(- ). We will show [ K[, < sup; llsjlls., with the implicit constant
independent of j;,j2. The result then follows y a limiting argument. In what
follows, summations in j are taken over the range j; < j < jo. We assume, without

loss of generality,
sup [I5;lls, = 1.
j

Let xo € S(R?) be so that Xxo(¢) = 1 for |¢] < 1 and Xp is supported in
l -1
{€:1€] <2}. Forl>11let x; = x((J2 ) X((JQ ), so that sup;cz X1(§) = 1 for £ # 0.
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3.2. PROOF OF THEOREM 27

‘We write ) _
_ (27) _ (27)
K=) =23 g
J >0 j
where
CjJ(O&, ) = X1 *Gj5 (av )
and the convolution is in R<. Let
_ Z (27
= 251
J

The proof will be complete once we have shown || K%, < 2
Our first goal is to show, for 1 <i <n,t € R,

(39) /(1 + |a7,|)5H77 * Kl(t)HLZ(Rd) do 5 (1 4 1)271(576)

7[(6725).

which gives [[Kif[sn < (14 1)2=1=9) To prove [B3), we will show

. e—06 .
(2UEe=027t) "= if 27t > 21
(3.10) /1—1—\041 Hn*g(2 (e, )| da < { 27U0) if 272 < 271 < 2,
(21Hit)d/2 if 27¢ < 272

Summing (3I0) in j yields 39), so we focus on (BI0).

First we consider the case when 27t > 2!, Letting » € [1,27t] be chosen later,
we use that [¢;;(a,z)dz =0 to see

/ (1 + e} || * 510( )0, dov

s faslad®( [] [ =0 - n@l@ 0 sie 2t b ds)” da

< / (1+ o ])? / (e o) — 52) — 7 gy dv da
5//(1—}—|ai\)5\§j’l(a,v)\min{%,1}dvda

://U|gr+//u>r — (1) + (I]).

We have, using (31) with R =0,
r
) < __9—U(e=9)

S g7 [l Plsiata,) dvda 5 2o,

Using B17) with R =,
s [[ el laao)| doda g
lz|=r

We choose r so that r1te=0 = 2L(==9)27¢. this yields (3I0) in the case 27t > 2!
under consideration.

For 272! < 27t < 2! we use the trivial L' — L? bound for convolution with 7,
and a change of variables, combined with (3.1) (with R = 0) to see

/(1 )15 63 e, o da S /(1 + o) llza(a, )l da S 271E2,

as desired.
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Now assume 29t < 27! Let u € S(R?) be such that u(¢) = 1 for [¢] < 2, so
that @(27!-) = 1 on the support of ¢j;. We then have, using ||@(277=1¢~1)7(- )||2 s
(2j+lt)d/2

27 +
Jasla i@l da s [+ fa)lns O allaen ) da

5/(1+Iail) @@= )R0) allsga (e, )l da S (27972,

This completes the proof of ([B.I0) and therefore of (B.9)).
A simple modification of the above proof, using ([B.8)) in place of ([B.7), gives for
Tl <1,

_ (27¢)=(==9) if 21 R > 2,
(271) . (27 t) < 5. ) 9—i(e—6) e -2l j l
[n[s;7 7 (atTej,-) =<5 Nlyde S I71°- 4 2 if 272 < 27R < 2V,
(2HiR)d  if 2R <272,
Summing in j shows that for 0 < h <1,
h /Hn KD (0 + her, ) — KO (a, ]|, da < (141271

and hence ||Kl||g<77 < (1 41)27 19,
Next we wish to show || Kjx,, < (141)271=9) that is, for 1 <i <n, R >0,
(3.11) // (1+ )| K (o, )| doe da < (1 +1)27 1,
R<|z[<2R
To prove (B11) we will show
_ (27R)=(==9) if 2R > 2!,
(3.12) // 1+ |ai|)6|<j(-3j)(a,x)| dz do < < 27He=9) if 272 <2/R < 24,
R<|z[<2R (2 R)? if 27 R <272,
Summing (3I2) in j yields (BI1). Now, applying (371,

// (1+ [aal)162 (0, 7)) da dax < // (L + |a])? s (@ 2)| da dar

R<|z|<2R 27 R<|z|
< (27R)=(==9) if 2R > 2!,
~ 1 2-He=d) if 27R < 28

Thus, to complete the proof of ([B.I2) we need only consider the case when 2/ R <
2721, We have

// (1 + o)’ <2 (0, 7)) di doc = // (1+ loil)? |y (o, )| dz dov
R<|z[<2R 2/ R<|2|<29+1R

S @R [+ (e aoy do

S @R [ (1) (e ) o eey do
< @HR)Y,
competing the proof of ([B:I2]) and therefore of [B.ITI).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3.2. PROOF OF THEOREM 29

A simple modification of the above yields, for 0 < |7| <1,

_ _ (29R)=(==9) if 2R > 2!,

// |<(.,2lj)(04+7'ei,x)— ﬁ”(a,xﬂdmda < |r)°-{ 2-Ue=9) if 2720 <2/R < 21,

R<[z|<2R (2! R)d if 27 R < 272,
Summing in j yields, for 0 < h <1, R > 0,

B0 // |Ki(a+ hei,x) — Ko, z)| de doe S (14 1)2—(5—5)1
R<|z|<2R
and hence ||K||g<574 5 (1 + 1)2—(575”.

Finally, we wish to show, for R > 2, y € R?,

(3.13) R° // |K (o, x — y) — K (o, 2)| do dow < 271729,
|z|>Rly|

First, estimate

R’ // <5 (a2 —y) = <7 (@, 2)| da da

lz| = Rly|

=R’ // s (e, — 2jy) — g1, x)| dx dev
|z|>27|y|R
< R min{1, 27 |y[} min{27", (27|y|R)~°} =: £(j, L, R).

Here we applied ([B.6]) with 27|y| in place of |h| and 27|y|R in place of R. Note the
left hand side of (3.13) is bounded by >, £(j,1, R).

In the case R > 221, we estimate

> EGLR) S
J
>oORTE@) T+ Y 2@ TR Y Ry

27 |y[=2~ 2!/ R<27|y[<27! 27|y|<2'/R
The first two sums are O(R°~¢2!¢), and the third sum is O(R2~12(2=9)); here we
used R > 2%,

In the case R < 2%! we have

> EGLR) S
J
Z R575(2j|y|)75 + Z R52fls + Z R52j|y‘2l(176).

27]y|>2/R 271<27|y|<2!/R 27 Jy|<2~!

The first sum is O(R?27!¢), the second sum is O(R°2~" log(1 + 2% /R)), and since
R < 22! the third sum is O(R°27%). In both cases we obtain > EGLR) S
2-1==20) " This completes the proof of ([B.I3). Combining all of the above inequal-

ities completes the proof of the proposition. O
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CHAPTER 4
Adjoints

This chapter is devoted to studying the space B,; in particular will give the
proof of Theorem 2.9 It will be advantageous to work with a variant of this class,
for functions on RY, with N =n +d.

DEFINITION 4.1. Fix ¢ > 0 and N € N. We define a Banach space B.(R") to
be the space of measurable functions v : RN — C such that the norm

Plle. = max [ (4 lshhlds+ sup 57 [ (s +he) =2 ()] ds
<i 0<h<1

1<i<N

is finite. Here ey, ..., ex denotes the standard basis of RN,

REMARK 4.2. The spaces B.(R"*9) and B.(R" x R?) coincide; indeed, for
s € B.(R™ x RY), we have the equivalence
[sllss. = llsls, »

with implicit constants depending only on d. In this section we find it more useful
to use the space B, as it treats the a and x variables symmetrically.

The following two propositions involve operations on functions in B, involving
inversions and multiplicative shears. They are the main technical results needed
for the proof of Theorem

PROPOSITION 4.3. Let e >0 and § < /3. Let v € B.(RY) and
Jiy(s1,. .., sn) =87 2y(s7 1t 82, ., 8N),
v € B (RN). Then Jiy € Bs(RY) and
[y lles < 17]s..-

PROPOSITION 4.4. Lete > 0 and § < /3. Let v € B(RY), n € {1,...,N}
and set

M~y(s1,...,8N) = 3?717(51, $182y .+ 81Sn, Snd1y Snt2s -« -5 SN)-
Then M~ € B (RY) and
[MAls,s < nllvlls.
For later use in §4.5] we state these results in a different form:
COROLLARY 4.5. Let 1 <n < N. For v € B.(RY) define two functions

Ti(s1y...,8N8) := sf”fl'y(sfl, sflsg, ce, sflsn, Snt1s--+y SN,

Ta(s1,...,8N) i= sl_(n_l)'y(sl, 87 80,0 87 S0y Snal, - SN)-

There exists ' = € (e) > 0 (depending neither on N nor n) such that
IT1lls., +T2lls,, < Ceenllvs..

31
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ProoOF. Notice that I'y = JyM~, I'y = Jy M J;y where J; and M are as in the
propositions above. ([l

4.1. Proof of Theorem

We assume Proposition [£.3] and Proposition 4] and deduce Theorem It
¢ € LY(R™ x R?) and w is a permutation of {1,...,n + 2}, we shall show

AlS)(beo(1)s - - s beo(nr2)) = Allec] (b - - Do),
such that [[{5¢||r = ||s||z: and such that there exists &’ > cg, with ¢ independent
of w, and
Ieslls, < n2llls,

for ¢ € B..

Every permutation of {1,...,n+ 2} is a composition of at most four permuta-
tions of the following three forms, with the permutation in (iii) occuring at most
twice.

(i) A permutation of {1,...,n}, leaving n 4+ 1 and n + 2 fixed.
(ii) The permutation which switches n+1 and n+2, leaving all other elements
fixed.
(iii) The permutation which switches n + 1 and 1, leaving all other elements
fixed.

Case (i) If w is a permutation of {1,...,n}, leaving n+ 1 and n + 2 fixed, then
it is immediate to verify
(41) éwg(a, 1)) = g(aw*1(1)7 <oy Og—1(n), 1))7
and thus [[{o<|ls, = [slls. and [[€oc|pr = [Is][z1-

Case (ii). If w is the permutation which switches n + 1 and n + 2, leaving all
other elements fixed, then it is immediate to verify that

(4.2) los(ayv) =¢(1—ag,...,1—ap,v).
We have [solls, ~ [[<[|s. and [[sollzr = [l]L:-

In both of the above cases, if [¢(a,v) dv =0 Vo then [ ¢ (a,v) dv =0 Ve
Case (#i). We compute

AS](bng1, b2, -, by b1, Do)

/// @ 0)bn+1( I_alv)(ﬁbi(x_aiv))bl(ﬂ?—U) byy2(x) dvdr do

1=2

:/] |~ (@, a7 )by (2 — w) x

n

(H bi(z — azaq 'w))bi (7 — af 'w)byto(z) do dw da

B /// Bd‘"—%(ﬁllaﬁllﬁziz.%.,/ﬁllﬂmﬁlw)x

[0z = Biv)bnia(z — w)bpio(z)da dw dp

i=1
where we have first changed variables v = aflu, then interchanged the order of
integration, and changed variables a; = Bfl, o = Blﬂfl for i =2,...,n. Hence if
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4.2. PROOF OF PROPOSITIONS [3] AND 4 33

w is the transposition interchanging 1 and n + 1 and leaving 2,...,n,n + 2 fixed
then A¥[¢] = A[lx¢] with

(4.3) lLos(Qyy .oy Qp,v) = g(ozl_l,al_lozg, R al_lan, a1v) .

Now if we define the inversion J, with respect to the a; variable, and multiplicative
shears M,,_1, My by

Jglag,...,an,v) = a;Qg(afl,ag, ceeyQp, V)
Mnflg(al, oo ,O[n,’l)) = a?ilg(ala a1, ..., Q10n,, ’U)
Mag(aq, ..., qn,v) = ailg(al, ey Qi QD)

then it is straightforward to check that the linear transformation ¢ in ([£3]) can
be factorized as

(4.4) b =JoMyoJoM, 10J.

By Remark the B.(R™ x R?) and the B.(R"*¢) norms are equivalent with
equivalence constants not depending on n. By Proposition i3 we have || Jg||5.
lglls., and by Proposition B4 we have [|M,_1glls. < nllglls., and |[Magls.
llglls., for & < e/3. Hence |[ns|5; < nllsl|s., at least when § < 37%¢.

Finally if w is a general permutation than we can split w = w; o wy 0 w3 o w4,
each w; of the form in (i), (ii) or (iii), with at most two of the form in (iii). Hence we
get A% [¢] = Allws] where |[ln6|5, < n?|sl|s., at least for § < 370, We remark
that if we avoid the factorization ([{4]) and use the formula for ¢, directly we should
get a better range for § but this will be irrelevant for our final boundedness results

on the forms A®. O

NN

4.2. Proof of Propositions [4.3] and [4.4]
We first prove several preliminary lemmata, then give the proof of Proposition

43 in §4.2.2] and the proof of Proposition 4.4l in §4.2.31

4.2.1. Preparatory Results. We first recall a standard fact about Besov
spaces Bf ;(R); 1 < ¢ <oco. If 0 <& <1 then there the characterizations

1
dh \1/4
@s) e, ~ I+ ([ 1+ = fligEs) " 1<a< .
and
(15) £l ~ 17+ sup A5G+ 1) — fl
0<h<1

Moreover there are the continous embeddings

(4.6) B

La © Bin’ T < G2-

For (@3] and (8] we refer to [35] §V.5] or [39]. As a corollary we get
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LEMMA 4.6. Let 0 < § < e < 1. Then for functions in L*(R) then there are
constants ¢,C > 0 depending only on €, such that

dh
Afh+e [ niCm - g

<[Ifllr+ sup A7EF( 4 R) = flla
0<h<1

<Clfls+C [ welfe+m =G

0<h<1
We let e;, i = 1,..., N, denote the standard basis vectors in R and let ;- to
be the orthogonal complement For g € LY(RY) and w € e} define
(4.7) Tg(s) = glses +w);

this is defined as an L!(R) function for almost every w € e;-, and by Fubini w
Jg |7 g(s)|ds belongs to L'(ei). Moreover if g € B, (RY) for some ¢ > 0 then for
almost every w € ;- the function h — [, [1¥g(s + h) — 7g(s)|ds is continuous.

LEMMA 4.7. Let 0 < § < 1. Then the following statements hold.
(1)
ol ) < oy [ [0, o
(i) If 0 < 6 < e <1 then there exists C = C(g,d) > 0 (not depending on N )
such that for all f € B.(RY)

vy [0l nyte < Clls, v

PROOF. (i) follows immediately from the definitions of B5(R) and B;(RY).
For (i) fix i € {1,..., N} and split [ , H7r}”g’|%§(R)dw = I + II where

I= / /(1 + 15])°|g(se; + w)|ds dw
e

II:/ sup |h|75/|g((s+h)ei+w)—g(sei+w)|dsdw.
e 0<h<1

It is immediate that I < [|gls,@®y) < [|glls.@®~y. For the second term we use
Lemma [£.6] to estimate

dh
II<C’5/ / [h|~ 5/|g (s+ h)e; + w) — g(se; + w)|ds — dw
0<h<1 h

dh
= C&/ h€76h7€/ |g(.’[ + h@l) ( )|d.’[ 7
0 RN
< Cs(e—08)"" sup |h|~%[lg(- + hei) — gl @y
0<h<1

and hence 1T < C(g,9)|9lm. mv)- O

LEMMA 4.8. Let R > 1 and let Q% = {x € RN : |z;| > R}. Then

| lo@lde < Rl v,

R
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PrRoOF. This is immediate from

/ l9(e)| dz < R~ / (1+ |9 @) de 0
Q

The following lemma is a counterpart to Lemma [£.8 which is used when inte-
grating over sets whose projection to a coordinate axis has small measure. It can
be seen as a standard application of a Sobolev embedding theorem for functions on
the real line. For measurable J C R we denote by |J| the Lebesgue measure.

7
R

LEMMA 4.9. Let 0 <e <1 and f € B.(RY), and let 0 < &’ <¢e. Let E C RN
and let

proj;(E) = {s € R: se; +w € E for some w € e;"}.
Then

[ 1 @de < Colprois(E)F £, g,

Moreover fori=1,...,N, § <e,
[ el lr@lds < Cen)l s, .
e Jlzi|<1

PROOF. For k > 0 let B, = {z € RY : 27771 < |z;] < 27%}. The second
inequality is a consequence of the first applied to the sets Ej.

To prove the first statement pick p = (1 —¢&’)~! > 1 so that ¢ =1 —p~1. By
Hoélder’s inequality,

sz < i@ [ ( fistevwypas) v,

Let 7 f(s) = f(se;i + w). Let ¢ € S(R), [¢(s)ds = 1 such that the Fourier
transform ¢ is supported in {|¢] < 1}. Let ¢, = 2Fp(2k.) — 2’“‘1¢(2f_1~). Choose
¢ € S(R) whose Fourier transform is equal to 1 on {|¢| < 2} and let ¢ = 2F¢(2%.).
Then

T f= b Ty Gpxhp TS

k=1

and thus, by Young’s inequality,

172 fll pory < 1@l Leylld * 7l o) + Z x|l Lo ey ¥k * 720 fll 21 )
k=1

Sl fllor@ + Y25 VP e %7 fll 11 my-
k=1
Since [ 1 (s)ds =0 we have
s’ = | [ = ) - 75|

2k w w
S /mm f(s—h)—m; f(3)|dh~
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Using this in the above expression we get after integration in w
1/p
/ (/ | f(se; + w)|pds) dw
o
S k(- 3) 2* v w
§||f||1+z2 p m’ﬂ'z f(S—h,)—’]TZ f(s)‘dsd’lUdh

2K |pe £ 4 ues) = £l
< (2
171l +Z / Ty omape ™ 52 ful

ok(2=1)

+Z/>1 TRt Il

The last term is estimated by C'Y 7o 2_k(1+1/p)||f\|1 < || flli. The middle term
is < 000 2k(=e+1=1/P)| |l and since 1 — 1/p = &’ < ¢ we obtain the required
bound O

4.2.2. Proof of Proposition 4.3l The main lemma needed in the proof is
an estimate for functions on the real line.

LEMMA 4.10. For g € B.(R) let Jg(s) = s~2g(s™'). Then for § < ¢e/3
1791l @) < C(e; )9l m)-
PROOF. First observe that for &’ < e

Jasloh? go)ldo = [ @+1s17) g()lds < llglla. o
by Lemma Thus, in light of Lemma [l it remains to prove that for p < 1/2,
2p
dh _ ¢
(4.8) [7g(o +h) = Jg(o)ldo—= 5 p” llgls..
P

for any ¢’ < &' < €/3. Choose any 8 € (6'/e,1/3). We have using changes of
variables

2p dh
[ ] bsosni+ agolass;
p Jo|<ph
< / Tg(0)|do < / l9(s)lds < p%[lgll.
|o|<3ph

[s|>p=B/3
by Lemma 8 Also

2 dh
[ sesmi @l s [ g
p Jo|>p=8 lo|<pf/2
<[ la@lds <ol
[s|<2pP

by Lemma E:Ql It remains to consider

2 20 » : dh
// ot + 1~ dgloiaoyt = [ [ () - o(9as 2
P

2p h
/ / | (1+hs)2g 1+hs ’dS
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here we have performed the change of variable s = 0~!. We now interchange the

order of integration and then change variables u = %> — s = — 15:;;5' Observe
that du/dh = s*(1 + hs)™? and thus % |1+ hs|™? ‘ldfﬁl Therefore for |h| ~ p

and p? < |s| < p~? we can replace |dh|/|h| by |du|/|u|. Also observe that h =
—u(su+s?)"! and 1+ hs = s(u+s)~!. Thus the last displayed expression can be
written as

S2

T 14ps
[ e et ) — (o) s < (1 (11)
pP<s|<p=8 J— 282 |ul

T 1+2ps

where

2 du

= [ 1 g+ i s
p’<|s|<p™?
|u|rps?

(IT) := // lg(s +u) —

pP<|s|<p™?
|u|rps?

u? + 2|us| du
Ws [ [ g
P <Is1<p=5 Jjulmps? 52 Jul
Cp=28  cpPf
s [ el adsdu
0 cpP

AP+ S 2 / lg(s)|ds

k>0 kE<|s|<21—Fk
27%>cp?

First estimate

and, since by Lemma [£.9] e lg(9)|ds < 27" ||g||s. for £” < e, we get
|s]<2 ~ e

0 s (gl + > 20 glh, ) S 01 g,

k>0
27k >cp?

Finally,

in< Y / g+ ) —gnl%

o—k 1—2
k:27F<Cpt =205 kg <otk

< Y 27gllss . S "9l
k:2=k<Cpl—28

Now collect the estimates and keep in mind that 8 < 1/3 is chosen close to 1/3.
We may choose ” above so that 30" < ¢” < e. Then the asserted estimate (L)
follows, and the lemma is proved. ([l

PROOF OF PROPOSITION 3], CONCLUDED. Let 7¥g(s) = g(se; + w) be as in

(@). We have

1<i<N

i

1 771lls, < max / 172 (T1g) s gy -
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By Lemma 4.7 and a change of variable wy wfl we obtain for 2 <i <n, §; >,

[ I gl = [ gl sy S lglhs, -

€; €3

Let 36 < € < €. For the main term with ¢ = 1 we use Lemma[£.10] and then Lemma

AT to get
[ hgllagmdu = [ 10 mymdo S [ Imgla.mdo S o, e
€1 €1 €1

This concludes the proof of the proposition. O

4.2.3. Proof of Proposition[4.4l. We now turn to Proposition£4l Fixe > 0,
ne{l,...,N}, v € B.(RY) and recall the definition

M~(s) = 8?71’}/(81, 8182y -+ 818n, Sntly -+« SN)-

We separate the proof into three lemmata. The most straightforward one is

LEMMA 4.11. Let0<e<1. Foré <e/2,i=1,...,N,
/ (14 5:)° M (s)] ds < 1],

PROOF. Let ¢’ > 0 be a number, to be chosen later. If i =1orn+1<:< N,
we have, by a change of variable,

Jas o drrldo = [@tlsh hlds S s, & <

Let 2 < i < n. We have by a change of variable
’ SZ‘ /
Jaslop @l = @+ 127 ) ds
Let Q) = {s:[s1| >3}, Qo = {5 :|s1| < 3,si] > |s1| 71}, Q3 = {s:|s1] <3, 34| <
|s1|71}, and bound the integrals over the three regions separately. First, for &’ < e,
S’L E' E'
[ a2 s s [ s ) ds <
(o} 51
Next, for ¢’ < e/2,
S; 6’ E/
/Q (1+ |i ¥ v(s)lds < /(1+ Isi)%* |v(s)] ds < [|7]s...
2

Finally, for the third term we use Lemma to estimate, for ¢’ < /2,

S; ’ o/
/ (L+ =D Iv(s)| ds <o / (1+ s 72 (s)] ds < [lyl]sm. -
Q3 51 s1]<3
The asserted estimate follows. O
LEMMA 4.12. (i) Forn+1<i< N,e>0

sup h™[|[M~y(- + he;) — My|l1 < |7,
0<h<1

(i) For2 <i<n, d <g/2

sup ™| M~ (- + he;) — MAll1 < [|y]]s. -
0<h<1
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PROOF. In the case n+ 1 < i < N a change of variables shows,

/ M~ (o + hes) — Mr(o)| do = / (s + hes) — (s)] ds,
RN RN

and the result follows.
Now consider the case 2 < i < n. By Lemma it suffices to show that for
p<1

2 dh _
@) [ [ e he) Myl do TS ol £ <2
P R

Our assumptions are symmetric in s, . .., S,, and thus it suffices to prove ([@3]) for
i = 2. The result is trivial for 1072 < p < 1, so we may assume p < 1072, In the
inner integral we change variables, setting

(817'-'7SN) = (01701027~-~70170n70n+17---7UN)
and the left hand side of (@3] becomes

2p dh
/ / |’y(51,52+51h,5153,...,sn,an,...,sN)—’y(s)|dsf
]RN

// + // (1) + (1)

p<h<2p p<h<2p
[s1|>p™" [s1]<p™?

where 8 € (0,1) is to be determined. We have the following estimate for the first

term:
) <2 // |ds—< / lv(s)| ds

|p<|h<2% \81\Zp_ﬁ
s1|=p”

< / (1 + [s1)° ()] ds < 05111,

For the term (17 ) we interchange the order of integration and put for fixed s,
h = s1h so that dh/h = dh/h. Also, on the domain of integration of (1), we have
|h| < 2p'~#. Thus we may estimate

s [ ke Ol
ol
1-8

2p N B
Sl [ B S 0
If we choose 8 = 1/2 then ([49) follows from the estimates for (I) and (I7). O

REMARK. One can replace the application of Lemma by a more careful
argument to show that (£9) implies that the statement (ii) in the lemma holds
even for the endpoint 6 = /2. However this is not important for the purposes of
this paper.

The main technical estimate in the proof of Proposition 4] is an analogue of
Lemma .12 for regularity in the first variable, given as Lemma [£.14] below. We
first give an auxiliary estimate for functions of two variables.
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LEMMA 4.13. Let 3 < 1/2, &' <e. For g € B.(R?), and 0 < p < 1,

dh

/// 1+ 81—|-h ( )82) (81+h,52)‘d81d527
pP<s1|<p™?
p<h<2p

< C(B,e) (057 + %) ||g]lw.. (r2) -

PROOF. We may assume that p < 10~2/8 since otherwise the bound is trivial.
We wish to discard the contributions of the integral where |sy| < p? or |sy| > p~F.
We estimate the left hand side by A+ I; + I + 11y + 15 where

dh
A= /// Jg(s1+h, (1+ hl)SQ)_g($1+h,82)’d81d827,
pP<s1],52<p™ 7
p<h<2p

L+11 = /// /// g(s1+h,(1+ 1)52)‘d51d52%a

pP<s1|<p™?  pP<s1|<p”
|s2|<p? |s2|>p~"
p<h<2p p<h<2p

Iy +115, = /// /// 81+h 52)|d$1d52%

B<|sl\<p713 pP<|s1)<p™ P
ls2|<p” |s2|>p~"
p<h<2p p<h<2p
To bound I; we change (for fixed h, s1) variables as 0o = (14 h/s1)s2 and observe
that (1+h/s;) ~ 1. Thus the oy integration is extended over o5 < p?, and we may
apply Lemma [£9] A similar argument applies to I, and we get

L+ 1o S 0% ||gll . (re)-

The same argument applies to the terms I1;, 115, with the o, integration now
extended over |oy| > p~# —2p > cp~P for ¢ > 0. Now we apply Lemma 8 instead
and the result is

I+ 115 S p% g, z2)-
We now consider the term A and estimate A < II] + IV where

dh
mr = [ gt 1 2sa) = g1+ s dsadsa
pP<s1],ls2|<p™"
p<h<2p

IV = /// 81 + h, 82)‘d81d82d:

pP<s1],ls2|<p™"
p<h<2p

Since h = p and |s1| > p? in the domain of integration we immediately get
1V 50 Pllgllr ee) -

In the estimation of 111 we may ignore the factor 14 h/s; which is O(1). We make
the change of variable o1 = s1 + h which does not substantially change the domain
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of integration since % p? <|oy| < 2p~ P for the ranges of p we consider here. We see

that
X dh
TS ‘9(01,(1+m)52)—9(01,52)‘d01d527

1pP <ol ]s21<2p7 "

p<h<2p
We now interchange the order of integration, and then, for fixed o1,s2 change
variables u = u(h) = hs? . Then observe that
8u 0182 du o1 dh.

oh~ (01—h)2 w  o,—h R’

moreover the range of |u| is contained in [%p'T27, 4p'=28]. Since |dul|/|u| ~ |dh|/|h|
we get the estimate

du
IIT < / / \g(ol,sz—l—u)—g(01,32)‘d01d82m
2

2— k— 1<41 23

S > 2 gl S 0P llglls. g2 -
2—k—1<qpl—28

We collect the estimates and obtain the desired bound. O

LEMMA 4.14. For0<e <1, 6 <¢/3,

sup h™%|| M~ (- + her) — MAll1 < nll7yl|s. -
0<h<1

PROOF. Let € < g, §; > ¢ be such that § < §; < £/3. By Lemma [£.0] it suffices
to show for p < 1 the inequality

2 dh _
(4.10) 1M (- +her) = MAlli== S p7 ], -
p
We let 5 < 1/2 to be chosen later; a suitable choice will be g € (§1/€,1/3). We

may assume p < 10~2/# since otherwise the result is obvious. We first discard the
contributions of the integral for |s1| < p? or |s1| > p~#. We estimate

2p
[ MG her) = MG S 07 < ()4 () + (T2) + (1) + (IT)

where
2p dh
(4) = / / (M(s + her) — M(s)] s
s:pP<|s1|<p~ P
2p 2p
() + (Iy) = / / |M~(s + hey \ds— / / |M~(s |ds—
sils1]<pP sils1|<pP

2p 2p
ay+r) = [ s [ el
p Jsilsi2pm0 o Jslsi|2pms
We make a change of variable o = (s1 + h, (s1 + h)s2, ..., (S1 + h)Sn, Spt1,- -5 SN)

and estimate
2p
(1) / / 10) e < 0Pl v
|01\<p‘3+2p
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where we have used Lemma [£9] Similarly

2 dh _ 4
ary< [ ()] dor S < 0%l v
p  Joiloi|>p=P-2p

by Lemma [£§] and the estimate 2p < % p~# which holds in the range of p under
consideration. The bound (I3) + (I12) S p% ||yl &) follows in the same way.
It thus remains to estimate (A). We change variables and write

// 51—|—h” Yy(s1+h, (514 h)sa, ..., (514 h)Spy Snits - s SN)

p<h<2p
S:pP <s1|<p™?

_ dh
— ST T (51,8182, - -+, 5180y Sndls - -3 SN |d57
-1
// |(1+£)n ’Y(Sl+h7(1+%)527"'5(14_%)STL?SH-FI’"WSN)
p<h<2p
s:pP<|s1]<p P
dh
_’7(3178%"'asn,sn+1a"'7 |d8—
We split the integrand as a sum of n differences Ak (s, h), k =0,...,n — 1, where

Ao(s,h) = (s + hex) —(s)
and, for k=1,...,n—1,
k
Ak(S, h) :(1 + %) 7(81 + h, (1 + %)82, ey (1 + %)Sk, (1 + %)Sk+1,sk+2 e SN)
k7
-1+ ﬁ) 17(51 +h,(1+ ﬁ)sz, a1+ ﬁ)sk,skﬂ, ceySN)-

Then (A) < 32770 (Ag) where

2p
s:pP<|sy|<p~F

It is immediate that
(Ao) S P lI7llss. -

For the estimation of (Aj) we make a change of variable in the s; variables where
2 < i < k; this replaces (1 + h/s1)s; by s; (i.e. there is no change of variable if
k =1). This gives, for 1 <k <n—1,

2p
(Ak):/ / ‘(1-{-%)’}’(814—]1,82,...,Sk7(1+£)Sk+1,8k+2...,81\1)
s:pP<|s1|<p~F

dh

— (814 h,S2, ..., SkySkt1y---,S )ds—
By symmetry considerations we may assume k = 1. We may now freeze the
$3,...,sny-variables, apply the auxiliary Lemma [13] for functions of (s1, s2) and

obtain for ¢/ < €

A0S 77+ 072) [ [ ltersnecoml oo s

Since € < ¢ this also implies, by Lemma 7]
(AR) S (077 + 0 72) gl wv)-
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We collect estimates we see that the quantity on the left hand side of (LI0) is
estimated by

C(B,e,e)n(p’ + p'=%) If Nl rvy

and with the correct choice of ¢/ € (30,¢) and then 5 € (§/¢’,1/3) we see that
([£I0) is established. O

4.3. A decomposition lemma

Later in the paper, we will need a decomposition result for B.(R" x R?), which
we present here.

LEMMA 4.15. Fiz 0 <e<1and 0<d <e/2. If ¢ € B.(R™ x RY). Then there
are 6, € Bs(R™ x RY), m € N, with supp(s,,) C {(a,v) : [v] < 1/4} and

— Z (27
m>0
such that
llsmllss S 272 <]ls, -

PRrROOF. Let 1y € C§° be supported in {|z| < 1/4} such that with 0 < ng < 1
and no(z) = 1 for |z| < 1/8. Set n1(v) = no(v) — no(2v), so that 0 < |ny| < 1,
supp(m1) C {15 < |[v| < 1} and 1 = no(v) + Y m>1M(27™v). For m € N, define

_Jno(w)s(a,v) if m =0,
Sm(v) = {nl(v)2md§(a, 2My) it m > 1.

Then ¢, () = 0 for |z[ > 1/4 and ¢ = 3 -, &, Clearly [lsolls. < lIslls, - It
remains to bound ||, ||, for m > 1.
We show

(4.11)
/ / (1+ o) s (1, ) dev o + / / 1+ [0])? o (v, 0)] daxd S 27D gl 5.,
(4.12)

sup |h|” 5//|<m o+ hei,v) — (o, )| dadv < 27|15, -
|h|<1

We change variables and see that the left hand side of (11 is bounded by

[faxlairsaime o) dades [ [+l i olmE ) dado.

We estimate

// (1 + |a))®|s (e, v)|dodv

[ |<2™
[ol~2m

s // (1+ [o])[s(e v)|dadv < 27 EDq|l,,
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// (1 + |a))®|s (e, v)|dodv

| >2m
Jv|=2™

s 2mE) // (1+ [ea])?ls (@, v)[dadv < 27 [g|ls,,

// (14+27™v))°|s(av, v)|dexdv

|v]2™

<27 [0+ pi)itas)ldade £ 270 s,

and ([LII) follows.

Next, we consider, for |h| < 1, the expression
/ lsm (a0 + hei, v) — (e, v)| dadv < / |7 (27™0)||s(a + hey,v) — ¢(a, v)| da dv

and distinguish the cases 2™|h| < 1 and 2™ |h| > 1. If 2 > |h|~! then we estimate

// s(a+ hei,v) — (o, v)| dadv
\U|~2m
<27 [ el )] dade 5 12 g,

and if 2™ < |n|7t,

//h,mm (e + hei, v) = <(a, v)

Now ([I2)) follows. Note that so far we have only used § < e.
For our last estimate we need ¢ < €/2, and we need to show

@) [l - Gulaldado S 12 o
The left hand side is estimated by (I) + (I1) where
— [ (o + 1) = n(@) 2" 270 4 1)) do o,
(II) = / In(v) 2™ s (e, 2™ (v + h)) — (a, 2™0)| da dv .

Note that [n(v + h) = n(v)| < X{L<jvj<2ylh| and so the first term is estimated as

32

0 <l // 94| (0, 2™0)| dax dv = || // lo(, v)| dav do

&H< vl 2m=8L|y|<2m

S27en| // (1+ o) s, v)| dadv S [R127" o],
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which is a better bound than the one in (£I3)). More substantial is the estimate
for (II). Here we first consider the case |h| > 272™ and bound

(1) 5 // 24 ¢ (v, 2™ (v + h)) — s(a, 2™)| da dv

2-4<|v[<2-2
<2 // 246 (o, 2™ )| dav dv < // |s(cr,v)| dox dv
2-8<|v|<2- 1 2m—8<L|y|<2m—1

- - §o—m(c—20)
s27 [+ pistan)] dado S 27 o, < A2

Finally for the case |h| < 272" we get

(I1) S/ (e, v +27h) = ¢(a,v) dadv S (277 [l<]l5, < 1hI°27™ 2 Ic]|s..

This yields (@I3]) and the proof is complete. a

4.4. Invariance properties

We state certain identities concerning the behavior of our multilinear forms
with respect to scalings and translations. These will be used repeatedly. The
straightforward proofs are omitted.

LEMMA 4.16. Let ¢ € LY(R™ x RY), and <) (a,-) = 299¢(a,29.). Let b; €
LPi(RY), fori=1,...,n+2. Then

(i) Let mnf = f(- — h). Then
Al (7ab1, - - Thbnga) = Al (b1, - .- baga) -
(i)
Ac@(by, .. bpsa) = 2799A[] (b1 (2774), .. ., by (2794)).
(iif)
A@)(by, .. boa) :/bn+2($)/dekj@jx,?jy)bnﬂ(y) dy dx

where

n

k() = / (a7 — ) [[ 5:(2 7 (@ — au(w — 9)) da

i=1

(iv) If g = 2794/Pib;(279) then ||g;

pis and

) n+2
A[GBN(br, . bpya) = AlJ(g1s- s gng2) i D byt =1,
=1

(v) Letki,...,Knt2 be bounded Borel measures and /@Et) = tk(t-). Setby(x) =

b;(279x). Then

A[§(2j)](m * D1, .oy K2 % bpyo) = 2_jdA[§](ng27J) xby,.. ., figf_;;) * 6n+2).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



46 4. ADJOINTS

(vi)
A[g(Qj)](m b1,y Kppo kbpyo) = /2jdEj(2j:1:, 2jy)bn+1(y) bpto(x) dx

where

%j(% Y) ://§(a, w—z2) H ﬁgzij)*[bi(Q_j-)](w—ai(w—z))dﬁn+2((a:—w)dnn+1(z—y) .
i=1

4.5. The role of projective space, revisited

A particular special case of Theorems and 2.8 involve the case when
K (o, v) = 70(a) Ko(v),

K is a classical Calderén-Zygmund convolution kernel which is homogeneous of
degree —d, smooth away from 0, and 79 € B.(R™) for some € > 0. We saw in
Section 2.4.2] that such operators would be closed under adjoints provided we could
see the space of 7y as a space of densities on RP" in an appropriate way. Indeed,
this is the case, and this section is devoted to discussing that fact. These results
are not used in the sequel, and are intended as motivation for our main results.

For a measurable function f: R" — C, and 0 < € < 1, we set

1£1Bs oy = [l flle + max  sup |hz‘|_6/|f(8 + hiei) — f(s)| ds,
’ i=L...,no<h, <1
where ey, ..., e, is the standard basis for R".
Let M be a compact manifold of dimension n, without boundary. Let p be
a measure on M. Take a finite open cover Vi,...,Vr of M such that each Vj is
diffeomorphic to B™(1)-the open ball of radius 1 in R™. Let ®; : B"(1) — V; be
this diffeomorphism and let ¢1,..., ¢y be a C°° partition of unity subordinate to

this cover. On each neighborhood V}, let @f i denote the pull back of i via ®;. We
suppose @f u is absolutely continuous with respect to Lebesgue measure on B"(1)
and we write dfbfu =: vj(z) dx where dz denotes Lebesgue measure.

REMARK 4.17. #y; is called a density, because of the way it transforms under
diffeomorphisms.

DEFINITION 4.18. For 0 < € < 1 we define Bf (M) to be the space of those
measures p such that the following norm is finite:

L

IillBs _any =D Nlds 0 ®5( )7 (llss -
j=1

REMARK 4.19. The norm || - |

finite open cover, the diffeomorphisms ®;, and the partition of unity ¢;. However,

the equivalence class of the norm || - [|gs _(ar) does not depend on any of these

Bf (M) depends on various choices we made: the

choices, and therefore the Banach space Bf . (M) does not depend on any of these
choices.

We now turn to the case M = RP". Given a measure u € Bf . (RP"), we
consider the map taking R™ — RP™ induced by the map R™ — R™*! given by
(x1,...,2n) = (21,...,2,,1). Pulling u back via this map, we obtain a measure
on R"-since 1 € B{ ., (RP") this pulled back measure is absolutely continuous with
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respect to Lebesgue measure and we write this pulled back measure as () dz.
This induces a map taking measures in Bioo(RP") to functions R™ given by p — ~g.

THEOREM 4.20. The map i+ Yo is a bijection
U Bi@®P") = ] B.(R")
0<e<1 0<e<1

in the following sense:

(i) Ve € (0,1), 3¢’ € (0,¢], and C = C(e,n) < oo such that Vi € Bf (RP"),
Yo € Be(R") and [|voll»,, < Cllpllss  wen)-

(i1) Ve € (0,1), 3’ € (0,¢], Vo € % (R™), there exists a unique p € Bel o (RP™)
with p v o under this map. Furthermore, 3C' = C(e,n) such that HuHBG/ ®pn) <
Cllvolls. -

PrOOF. Fix € € (0,1) and let u € Bf  (RP™). We define an open cover of
RP". For j =1,...,n+1, let V; denote those points {(z1,...,2j-1,1,%;,...,Zp) :
z € R", |z| < 2}, written in homogenous coordinates on RP™. V; is an open subset
of RP™ which is diffeomorphic to B™(2), and U;”rlle RP™.

Let ¢;, 1 < j < n+ 1 be a smooth partition of unity subordinate to the
cover Vi,.... Vi1, p = Z?:l ¢jp. By the assumption that p € Bf (RP"), it
follows that gi)ju = ~j(x) dz, when written in the standard coordinates on V;, and
||fyj| B; &) < |lwllsg _wpny. Since 7; has compact support, we have ||v;[ls, <

villBe _@ny S il

Bf . (RP™)- Finally,
W’O(fﬂ) dr = ypi1(z) do
—n—1 1 -1 -1 -1 -1 -1
+E T; V(T L, T T2 T T, T T, Ty T, @) AT

It follows from Corollary B3, applied to each term of the sum, that [vols, <
CullpllBs _(mpny, and part (i) is proved.

Because ~o uniquely determines p except at those point which cannot be written
in homogeneous coordinates as (z1,..., 2y, 1), it follows that there is at most one
B € UesoBi o (RP™) which maps to a given 7o (because such a p is absolutely
continuous with respect to Lebesgue measure in every coordinate chart, and gives
such points measure 0). Hence, given vy € B.(R™) there is at most one p such that
u+— y. We wish to construct such a pu.

Let ¢; be the coordinate charts from above. Given vy € B.(R") define
i1 (2) 42 = G2 (2)70(2) do and for 1 < j < m,

vi(z) da == ¢j(x), ™ oy by, oyt g, ey by, e ) da
Define dpu; := v;(x) dz on V;. By Corollary IZEL there exists € > 0 with [|y;[ls,, <
n+1
Cllvlls.. We set p= Zjil pj- We have L(®RP7) = < C'[Jyollss. and g = 7o, as
desired. 0

REMARK 4.21. In this section we were not explicit about how each constant
depends on n. The above can be set up in such a way that all constants are
polynomial in n, which is natural for our purposes-see §2. 4.1l In fact, it would
be hard to avoid this polynomial dependance on n, since there are naturally n + 1
coordinate charts in the definition of RP™.
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REMARK 4.22. Corollary .5implies that the space | J . B(R") (when thought
of as densities on RP") is closed under the action of a particular diffeomorphism of
RP™. Namely, if v € (.o, B(R™), then

s y(syt sy b sn, ., 8] tn) € U B(R").

e>0
Theorem tells us that more is true: |J.,B:(R") is closed under the action of
any smooth diffeomorphism of RP™ (as (J. Bf o (RP") clearly is). It is not hard
to see that, when taking adjoints of our multilinear operator in the special case
when K (a, z) = vo(a) Ko(x) where K is a homogenous Calderén-Zygmund kernel,
each permutation of by,...,b,42 corresponds to the action of a diffeomorphism of
RP™ on vp. In fact, each permutation corresponds to an action of an element of
GL(n + 1,R) on RP™ (where the action of GL(n + 1,R) on RP" is defined in the
usual way).
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CHAPTER 5

Outline of the proof of boundedness

In this chapter, we begin the proof of Theorem [Z.I0] on the boundedness of our
multilinear forms. Let ¢ be an even C§° function supported in {|z| < 1} such that

¢ >0and [¢=1. For j € Z define d)(zj)(x) := 274$(27z) and define the operator
Pif=fx #?"). Furthermore, we choose ¢ to be even so that Pr=P; = 'P; (here

P? is the adjoint of P; and 'P; is the transpose). There are two key facts to note

about P;. First, for all f € S(R?),
(5.1) dim Pjf=f, lim Pjf=0,
Jj—+oo Jj——00

with convergence in &’. Secondly, by the nonnegativity of ¢ the operator norm on
L™ is bounded by 1:
(5.2) |1Pjll Loe—p = 1.

In Theorem [ZT0 we are given a bounded family in B,
(5.3) S={s:je}.

For (parts of the) proof of Theorem 210 we shall also need to assume the cancel-
lation condition

(5.4) /gj(a,v) dv =0

for all j € Z. Of particular interest are the choices in Proposition B2, namely
g = (Q;K)2 ), given K € X,, for some a > ¢. Theorem ZI0 concerns the sum

N )
(5.5) Abr, - boga) = lim AN (br, . b)),
j=-N

where by,...,b, € L®(R%), b,1; € LP(RY), and b, 4o € ¥ (RY), with p € (1,2]
and p’ € [2,00) is the dual exponent to p. We have not yet shown that this
sum converges in any reasonable sense though it is easy to see that it converges
if all b; belong to C§°(R?). One first establishes estimates for the partial sums
Z;VZ_N A[§](2J)](b1, ..+, bpy2) which are independent of N. Thus, in order to state
a priori results one should first assume that all but finitely many of the ¢; are
zero. In the general case we shall establish convergence in the operator topology of
multilinear functionals (or in slightly stronger convergence modes). Throughout we
take n > 1, as the result for n = 0 is classical. Our estimates will involve quantities
depending on the family ¢. It will be convenient to use the following notation. Let

sup; ||s;
(5.6) I.=T.[q:= M
sup; [l

49
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50 5. OUTLINE OF THE PROOF OF BOUNDEDNESS

and forn > 1, v > 0 set
(5.7) M= = Me[S] = sup ||, log"(1 +nT(<)).
J
We split the sum (B.3]) into various terms which we study separately. For
1<l <ly <n+ 2, we define
Al117l2 (bl, ey bn+2) =

(58) ZA[%(Q )Kbla BERE) bllfl’ (I - Pj)bll’ijll+1’ ceey
JEZ
Pibi,—1, (I = Pj)biy, Pibiyq1, - - ., Pibpia).

For 1 <1 <n+ 2, we define

(5.9)

AF (b, buga) == D Al C(Pby,..., Pibiy, (I — Py)by, Pibis, ..., Pibuya).
JEL

Finally, we define

(5.10) A3, baga) = S AL (Pyba,. ., Pibasa).

JEZL

One verifies (by induction on n) that
(511) A(bla'~-7bn+2)
= Z Alll,lg(bh" n+2 Z A2 b1,... n+2)+A (b17...,bn+2).

1<l <la<n+2 1<I<n+2

For by,...,b, € L®(R?) fixed, we can identify the multilinear form A with an
operator T' = T'[by, ..., b,] defined by

(5.12) /g(:c) T, ...,b,)f(z) dz := A(by,...,bn, f,9).

In this way we associate operators T}} ; , T/ and T to the forms A} ; , A7 and A®.
We shall see that the sums defining these operators converge in the strong operator
topology as operators LP? — LP (for fixed by,...,b, € L®(R?)), see L3 for the
definitions.

The main estimates. We separate the proof of Theorem 210 into the fol-
lowing five parts.

THEOREM 5.1. Let p € (1,2] and p' € [2,00) with + + =1.
(a) Suppose that g; = 0 for all but finitely many j. Then
@
Mgt a2 (0055 bus2) | S OGS (T T bill oo ) Bt llze b2l 1o
i=1

(IT) For1<ly <n,l € {n+1,n+ 2},

AL 1, (b1, baga)| S ML H 193 llo0) 1bn-+111pl1n-+2 [l -
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(III) For1 <1y <ly <m,

AL 1, (b1, bag2) | S I (TT billoe) 1041 o lbrs2]l,

i=1
(IV) Under the additional cancellation condition (&4l we have, for 1 <1 <
n+ 2,

A7 (b1, bag2)| S D] (LT 10illoo) 1on1llp a2l

i=1

(V) Suppose that [BA) holds. Then

n
(A3 (b, b)) S 12 D[ (T 0t lloe) st B
i=1

In the above inequalities the implicit constants depend only onp € (1,2], d € N,
and € > 0.

(b) For general families &= {s; : j € Z}, bounded in B., the sums defining the
above five functionals converge in the operator topology of multilinear functionals
and the limits satisfy the above estimates.

(¢) Let T}, . [b1,. .., bu], TP[b1, ..., by] and T3[by,...,b,] denote the operators
associated to the forms Allhlz, A? and A3 via (BI2). Then the sums defining these
operators converge in the strong operator topology as operators from LP — LP.

Summing up the estimates for the five parts yields Theorem 2. 10l
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CHAPTER 6

Some auxiliary operators

In this chapter, we introduce some auxiliary operators which play a role in the
proof of Theorems .10, 5.1l Recall that in Chapter [5] we introduced the operator
P;, which was defined as P;f = f * ¢‘(2J), where ¢ € C5°(B4(1)) was a fixed even
function with [ ¢ =1, ¢ > 0, and ¢?") (z) = 299¢(272).

Define ¢(z) := ¢(x) — 279¢(z/2) € C§°(B%(0,2)), and let Qi f = f * v g0
that

(6.1) Qr =P, —Py_1.

Note that, in the sense of distributions, we have the following identities

(6.2) I=>"Q;, Pi=> Qn I-P=) Q

Jez k<j k>j

with convergence in the strong operator topology (as operators LP — LP, 1 < p <

REMARK 6.1. There is one subtlety that we must consider. While for f €
Ce°(R?) (or even f € LP, p # o0) we have lim;j_,_, P;f = 0 it is not the case that
limj ,_o Pjf = 0 for f € L>°. Indeed, this is not true for a constant function.
Thus, the first two identities in ([62) do not hold when thought of as operators on
L°°. However, the third identity does hold (with the limit taken almost everywhere),
which we shall use.

Let xo € S(RY) so that xo(¢) = 1 for |¢| < 1/2 and xj is supported in {|¢| < 1}.
For j > 1 let n; be defined via

(6.3) 75(6) = x0(277€) — x0(2'77€)

so that 7; is supported in the annulus {£ : 2772 < [¢] < 27} and 3, 7;(§) = 1
for £ # 0. Let 79 be a Schwartz function so that its Fourier transform vanishes in
a neighborhood of the origin and is compactly be supported, and equal to 1 on the
support of ny. Let n; = 7](()2J). Note that 7, 7; belong to So(R?) — the space of
Schwartz functions, all of whose moments vanish. Define

(6.4) Qif =fxmy, Qif=f*;
and note that
(6.5) Q; = Q; éj = éij

and I =3 ;5,95 => .y 0,9, = diez Q;9Q;, where this identity holds in the
weak (distributional sense) and also in the strong operator topology, as operators

53
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on LP if 1 < p < co. We also have the following well known estimates for the
associated Littlewood-Paley square functions: for 1 < p < oo, f € LP(R?),

(6:6) i1~ | (S 1002) | ~ (S 12:07)°
JEL JEZ

with implicit constants depending only on p and d. The same estimates hold with
Q. and Q. replaced by their adjoints.
We introduce a class of operators generalizing ();, Q;, and Q;.

P

DEFINITION 6.2. U is defined to be the space of those functions u € C'(R?)
such that the norm

l[ull = Sélﬂgd(l + |2 2) (Ju(@)] + |Vu(x)])

/u(:c) dx = 0.

DEFINITION 6.3. For v € U and j € Z, define @j [u] f := [ u®).

is finite and such that

REMARK 6.4. Note that ¢,n9,70 € U and Q; = Q;[¢], Q; = Q,[no], and
Qj =Q j [70]-

The class U comes up through the following proposition (which is very close to
a similar one in [7]).

PROPOSITION 6.5. If {f;}jez C L%(R?), then
||, < sw (X))
JEZ

ue .
fully=1 J€Z

in the sense that Zj Q;f; converges unconditionally in the L? norm if the right
hand side is finite.
6.1. Proof of Proposition
We need several lemmata.
LEMMA 6.6. For £ < 0, ¢ € C(B4(2)), u € S(RY) if we define v_y :=
¢ xu® ), we have v_y € U and ||y_ellu < 2¢/2.

PROOF. It is clear that v_, € C(R%), so it suffices to prove the bound on
lv—¢llu. Because, for v = 1,...,d, 0y, v7—¢ is of the same form as v_g, it suffices
to show |y_g(z)| < 2¢2(1 + |2|*+1/2)~1. This is evident for |z| < 4, since |y_,| <

[Dlloo f[ull < 1.
Since ¢(z — y) is supported on |z — y| < 2, we have for |z| > 4 and any m,

y—e(@)] < / L2 )y S 27 2 )
r—y|<2

Taking m = d + 1/2, we have
Voe(@)| S 271+ 27 )2 S 2P+ 2 TR Ja| > 4,
as desired. (Il
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LEMMA 6.7. Suppose u; € S(R?), uy € So(R?). For j >0, let uj := uy * ué2j).
Then, form=0,1,2,...,

D 10w S 27 (L + )
jal<m

PROOF. The goal is to show, for every m, {2/™u; : j > 0} C S(RY) is a
bounded set. To do this, we show {2/™; : j > 0} C S(Rd) is a bounded set. We
have, for every «,

(O] =1 Y Condlm©TmEIOIS Y 20fE € @am) 2 e)|

fy=a Btr=a
S Y0 2P+ g TR A+ 27 TP S 2T (L4 g
Bry=a
The result follows. O

LEMMA 6.8. There erists functions ¢1,...,¢q € C§5°(B(2)) such that 1 =
d
ZV::l 837:/ Pu-
PROOF. Indeed, write

U(@) = p(z) — 27927 "2) = Zwy
where v, (z) is given by
27(”71)(;5(3:1/2,12/2, e Ty 1/2, Ty Tyt 1y e X))
—27P(x1/2,22/2, ..., Ty /2, Ty, -y Ta)-
Letting ¢, (z f Vo (T1, oy T 1, Yo, Tg1s - - -, Ta) dYy, the result follows. O

LEMMA 6.9. Forj, k € Z, éjJerj = 2*|k‘/2§j [ug], where up € W and |lugllu S

PROOF. By scale invariance, it suffices to consider the case j = 0; then uy =
P * n(2 ). When k < 0, we use Lemma B8 to see

d
-y [@red i e =ty =2 [ 0@ 70) ) dy

From here, the desired estimate follows from Lemma [6.61 For & > 0, the result
follows immediately from Lemma O

PROOF OF PROPOSITION 6.5, cONCLUSION. Let {f; : j € Z} C L*(R%) and
let g € L?(R?) with ||g||z= = 1. Let (-,-) denote the inner product in L2. We have,
letting uy be as in Lemma

Jo Jo
‘<97 > Qit) <> > ‘<Q§+k97 QikQjfi)

Jo
= ‘<9’ D> 95kQ5 Q5 1)

j=J1 j=J1 k€Z kEZ j=J1
1 J2 1 1
(SN all) (S18m@nl) ! £ S22 S @ mnl)
kEZ j=J1 j=J1 kEZ j=J1
The result follows easily. O
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6.2. A decomposition result for functions in U
The proof of the following result follows closely a similar result in [33].

PROPOSITION 6.10. Let w € U. Then there exists u; € C§(B(3)) with
lujllco S llullw, [u; =0, and
u= Y 0,

§<0

PRrROOF. Let xo € Cg°, supported in {|z] < 1/4}. with 0 < xo < 1 and
-j

Xo(x) =1 for |z| < 1/8. For j > 1 define x;(z) = xo(277z) — X0(2 x) so that
that for j > 1, supp(x;) € {297% < |z| < 2972}, and
o0
1= x;(=)
§=0
Observe that
(6.7) /M@MZWLN/M@WZW~
Also let
< _ XJ( )
fXJ
Set a; = [u(z)x;(z) dz and A; = Zij ap = Zogkq‘ ay (where the second

equality follows from the fact that > a; = [u =0).
Note |ag| < 1, and for j > 1,
(6.8)

ol < [ @@l < | (1 Jaf*12) 7 el S 2797l
20-4<|z]<2i—2
Thus,
(©9) 4 < 3 el 2772l
k>j
Notice, Ay = 0. We have,
(@) = X u@)xs(a) = S (ulahns (@) =~ 4%, (0) + (4, — Ajaa) 2)

Jj=0 j=0 7>0
=>_(ul — 4% (@) + D A4 (4G(@) = X1 @) = 3 Bie
7=>0 j>1 7>0
where Bj(z) = u(x)x;(z) — a;X;(z) + (4;(X; () — Xj-1(2)))¢; and ¢; = 1if j > 1,
€o = 0. Here we have used Ay = 0 and lim; ,,o A; = 0. Clearly [ B; = 0, and
supp(B;) C {|z| < 2772}. We have
B ()| < fu(z)x;(@)] + la;]Ix; (@) + [A51(1%; (@) + [X; -1 (2)])e;-

©7) shows |v;(z)| < 277 The support of x; shows |u(x)y;(z)] < 273 (dH3) ||y |o.
Combining this with (68) and B3) shows |B;(z)| < 2792 ||¢[ly. Setting, for
§ >0, u_j(x) = 27929/2B;(27z), the result follows easily. O
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CHAPTER 7

Basic L? estimates

7.1. An L? estimate for rough kernels
An essential part to many of our estimates is the following L? estimate.

THEOREM 7.1. Let u be a continuous function supported in {y € R? : |y| < 1/4}
such that ||ulleo <1 and

/u(y)dy =0.

Let Qy, be the operator of convolution with u®). Let0 <& <1, € B.(R"xR%) and
assume that supp(s) C {(a,v) : |v| < 1/4}. Then for all k € N, for bpi1,bpi2 €
L2(RY), b; € L®(RY), i=1,...,n,

A[] (D1, Qubisrs bus2)| S 275/ Ol 5 bnsa |2 ]1bnrallz T T 11650
=1

In §7.2/ below we shall prove a similar theorem without the support assumptions
on ¢ and u. In what follows we give the proof of Theorem [T.11

7.1.1. Applying the Leibniz rule. We have

(1) ARNbr-. ., Qubnsrsbusa) = / / Fuld)(@,9) busr (4)baga(z) dz dy,

where, using the cancellation of u we have

Frlsl(z,y) = //g(a,az— z)Hbi(x— a;(x — z))u(zk)(z— y) dz da

n

:// [g(a,x—z)ﬁbi(x—ai(x—z))—g(a,x—y)Hbi(x—ai(x—y))}

1 i=1
X u(Qk)(z —y)dzda.

We let Ty [s] denote the operator with Schwartz kernel Fj[g].
For further decomposition we use a Leibniz rule for differences

7=0 7=0
(ao-Bo)(I14) + 3 (T1B) @ - Bo( T] 4))+ (1] B)(A. - B.)
Jj=1 =1 7=0 Jj=i+1 7=0
Thus

Fy[s] = Z Fl.ils]
i=0

57
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where
Fiolc)(z,y) =
// c(ay— 2) - s(a,z — y)] jf[lbj(x oy —2)u®(z — y) dz dar,
and fori=1,....n,
Pl = [[ st =) Hb<w ~aufa— ) x

(bi(,’E —ai(x —2) = bi(z — a;(x — y))) X

n
H bj(z — aj(z— 2)) u(2k)(z —y)dzda,
Jj=i+l
with the convention that the products H?:1 and H?:n 41 stand for the number 1.
We thus have to estimate the L? — L? operator norms for the operators T} ;[c]

with Schwartz kernels Fj, ;[¢]. For ¢ = 0 we may use the standard Schur test and
the condition ¢ € B,

(7.2a)

sgp/ | Fk,0[s)(x, y)| dy

n k
<swp LIl [ 10 [lster—y =) s )l dydect
j=1 =27

x

S IT il sup /II<(04, - = h) = <(a, ) da S 27 [T IIbs s <lls.
j=1

[h|<2—k j=1
and similarly
(7.2b) Sup/ | Fols) (@, y)ldz < 275 T 1195 llsols]l 5. -
Hence
n
(7.3) T olsllzer2 S 275 T IIbslloclIslls. -
j=1
We shall now turn to the operators Ty, ;[s], ¢ = 1,...,n. We start with a trivial
bound.

LEMMA 7.2. For1 <p< oo

n
||Tk,z'[§H|LP—>LP S ||€||L1(Rand) H 16l oo
j=1
PRrROOF. This follows immediately from Schur’s test since

Sup/le7i[<](w7y)|dy+sup/|Fk,i[<](w,y)Idw5 lsll 2t @ ) [ Ibilloo O
x Yy

j=1

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



7.1. AN L? ESTIMATE FOR ROUGH KERNELS 59

We begin with a regularization of ¢, in the x and the a; variables, depending on
a parameter R to be chosen later. Here 1 < R < 2¥ (we shall see that R = 2+/(34+3)
will be a good choice).

Let ¢ € C°°(R?) supported in {z : |z| < 1/2} so that [¢(x)dz = 1. Let
¢ € C*°(R) be supported in {u : |u| < 1/2} so that [ ¢(u)du = 1. Define
sh(a,v) = //X[_R,R](a — se;)s(a — sej, v — 2) Ro(Rs)RG(Rz) dz ds.

LEMMA 7.3. Fori=1,...,n,
(i) ‘
s — Skl @nxrey S R°°
(i)
[ Tk,ils = <klllz2—r2 S B8 |<lls. -

PROOF. We expand ¢ — ¢k = I + I + II] where
I{a,v) = / [¢(a,v) = s(a,v— z)]qub(Rz) dz,
II(a,v) = // [c(a,v — 2) — ¢(a — se;,v — z)| Rp(Rs)R G (Rz) dz ds,

I (a,v) = // X[ r,r)e (@ — s€;)s(a — sej, v — 2)Ro(Rs)R¢(Rz) dz ds .
Then

e S [ Bt [[ Is(a,0) = slavo = 9| dado|Ro(R2)| dz

S R *[slls. .-
For the second term,
11Tz S [ RliotBs)] [ [ Ista0) = sl sei, o) dadods £ B oo
Finally
ey S [ [ lsao)ldado S Rl
[-R,R|C

and part (i) follows. The second part follows from Lemma applied to ¢ — ¢k,
and the first part. |

For the more regular term g}é we shall need the inequalities

LEMMA 7.4. Let0<e<1,d>2. Then

Q)
J ([ skt av) o < REfsls.

(ii) Let 6 € S4=1 and let 8+ the orthogonal complement of RO. Then

1
/sup (/ sup |k (a, vt + 89)|2d’l)91_) “da SR
0

B
0 1 seR
and
i 1 2 3 3 e
sup ( sup |da, spc, v + s6)| dng) do SR = “¢<|s. -
0 0+ seR
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PROOF. Let By € S(R?) so that Bo(f) =1 for [{] < 1/2 and By is supported in

k—1 ~
{|¢] < 1}. Let 1 = 2 —Bo and By, = 512 ) so that B has support in an annulus
{|¢] = 2k}, and f = Zk o Bi * f in the sense of distributions. Let Bo € S(R?) be

such that its Fourier transform equals 1 on the support of ﬁo Let 51 be a Schwartz
function so that its Fourier transform vanishes in a neighborhood of the origin and

~ ~ ~rok—1
is compactly be supported, and equal to 1 on the support of 8;. Let S = [3;2 ),
Let

Shav) = / / Xir.m)(@ — sei)s(a — sei, v) Rp(Rs) ds

so that ¢ (a, ) * pr = <% (the definition of ¢ was given right before the statement
of Lemma [(3]). Then

Zﬂl*CR SEXIET

By Young’s inequality
ISk, 0) % B % Bill2 < [ (e, ) * Bl I8y * @2
and it is easy to see that
1B, * ®rll> < Car2/* min{1, (R27)M} .

Thus
/(/‘<§(a,v)|2dv)%da

S i2ld/2 min{17(R2—z)M}// ’ /51(1) —w)sh (o, w)dw| dv da

S Y2 mind1, (R27)M )27 |Gk s, S REF s,

e I

N
I
=

The first inequality in (ii) is proved similarly, except that we first use the
one-dimensional version of Young’s inequality in the #-direction. Since the Fourier
transform of 3; is supported on a set of diameter O(2') we have, for fixed § and
almost every «a,

(/ sup|,8l>kgf%(04,11L—|—59)|2dvl)5 < 21/2(/ / ‘ﬁl*gg(a,Ul+59)|2dsde>§.
6 0L J 0o

L seR

Notice that the double integral on the right hand side is just the L?(RY) norm of
g}é(a, -) and thus does not depend on 6. Take the sup over 6, then integrate in «,
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and sum in [. Arguing as above we obtain:

/SUP(/ Sup|ﬂl*§3(a vt 4 50)2dvt )_da
0 0

L seR
. /2
5221/2/(|Bl*§}%(a,v)\2d1}) do
1>0
< Z?l(d"’l)/z min{1, (R2~! M}//\Bl * S (v, v)| dv do
1>0

. — —le~i M,
< S22 mind1 (R2)MY2 G ls. S RF s,
>0

The second inequality in (ii) is proved in the same way. The differentiation in
«a; hitting the mollifier Ryp(R-) produces an additional factor of R. O

By the support assumptions on ¢ and u, we have
supp(Fiilsk]) € {(z,y) : |z —y| < 1}.

We shall use the following lemma to obtain the bound C'(R)27%¢" of the L? operator
norms.

LEMMA 7.5. Suppose V (x,y) € L (R% x R?) is supported in the strip {(z,y) :
|z —y| <1} and let V be the operator with Schwartz kernel V.. Then,

IR Ssup [, Vo)l dody
ly—z|<1

PROOF. Let A denote the quantity on the right hand side. For 3 € Z9 let g; be
the cube 3+ [0,1]¢ and f; = Xgq,- Then f =3 f; and for each 3, V f; is supported
in the union ¢; of cubes which have a common side with ¢;. By Hélder’s inequality
it is immediate that

||Vf:,||2 S <//q*><q ‘V($,y)|2dl‘dy) 1/2||f3||21 < C(d)AHfz”Qa
and then
o= [ vl < ()
= C(d <Z||f3|| ) < C'()A|fl2. -

In light of Lemma the following proposition gives a basic L? bound for the
operators Ty ;[sr].

PROPOSITION 7.6. Fork >0

1 n
@) (s [[ o Pkl dedy) S 27 R T b

ly—yol<1 =1
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7.1.2. Proof of Proposition Note that the class of operators is invariant
under translations. That is, if 7, f := f(
[t i
Tabj. Therefore we may take yo

), then the kernel of 7,7} ;[Sp]T—q, i€
Fy. ;[sp)(x — a,y — a), is of the same form of Fj, ;, with the functions b; replaced by
(7.5)

i
ions b,
0 in Proposition We may also assume
[bjllc <1, 1<j<n.

As in §4 we decompose a as a = a;e; + «

+ where o = (...,
R"~!. We bound, using the Cauchy-Schwarz inequality in the z-variable, and then
Minkowski’s inequality in the ;- variables, as well as (5) for j # i

Q1,4 1, ) c
// |Fxilsk] (2, y)|? d dy) :

|z]<1
lyl<1

U] # s

|z],|y|<1
ly—z|<27"

(z—aj(z—2)) —

2

bi(z — ai(z — y))]doy

dz dx dy) 1/Qdcuf‘
/ okd /// /gRav[bi(x—ai) bi(z — ayw)]day

], |v],|w|<2

[v—w|<27F

2 1/2
dv dw da:) dai

where for the last integral we have changed variables to v = — z, w =z — y. The
ition [7.0] wi

proof of Proposition will be complete after the following lemma is proved

LEMMA 7.7. Let ¢, be as in Proposition [[.6. Then for g € L>(R%) and k > 0

(2 /// | /gg(a,v)(g(x — ) — gz — ag ))dar e dv ) :
|z|<2

[v],lw]<2
lv—w|<2~F

S R 278 | gl
PrOOF. We may and shall assume ||g||z= = 1. Let gr(x)
and gr(x) = 0 i

(7.6)

x) = g(x)if |x| < 2R+
if ] > 2R + 2. We first observe that since ¢h(a,v) = 0 for
|a;] > R+ 1 we may replace g by gr in the above expression. Note that

lgrllz <

Rd/2
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We interchange the (v,w)- and a-integrations, then apply Plancherel’s theorem,
and interchange integrals again to get

/ de /// ‘/gRav )(gr(z — ajv) — gr(x — ayw ))da‘ dwdvdw)édi

lx]<2
[v],Jw|<2
|[v—w|<27F

= [ ([ Groppzei
1
// /(R (a,v) (627”0"(” £ 627”0"(“’5 doy; ‘ dv dw d§)

o], lw]<2
lv—w|<27F

For a constant U > 1 (to be determined) we split the &-integration into the parts
for || < U and |¢| > 1.

For |£| < U we bound |e?™@i(v:&) — e2mai(w.&)| < RU2F since |oy| < (R + 1)
and |v — w| < 27%. Hence we obtain

(7.7)

J ([ meter2vx
[§I<U
. 2
// ‘/ﬁg(@,ﬂ) (627rzai<v7£> _ 627rzai<w,£))dai

[v],lw]<2
|[v—w|<27F

R : 1/2
S RU2 gl [ ( [ Ish(eno)fdo) da

dt2 _
S RT U2 grll2l<]s.

1
dv dw dg) * da

where in the last inequality we have used part (i) of Lemma [T

Next we consider the part when || > U. Using the symmetry in v, w we may
estimate

[ ([ antp2x
|€1>U
. 2 1
// ‘/ﬁ{(a,v) (62m<v,§)ai _ 62m<w,§>ai)dal_ dv dw df) 2 dot

[v],|w]<2
lv—w|<27F
§2/(/ |gr(£)[22% // ‘/gRav 2miv "faida‘ dvdwdf)
l€1=U
[v],|lw|<2
lv—w|<27k

, 2 3
s awr [| [<itaiemeondal dodg) ot
€=U

For fixed ¢ = |£|6 (6 € S971) we separate the v-integral into two parts. Let
0 < b < 1 (which will be optimally chosen later). For fixed 6 = £/|¢[, ;- we have
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v = MLV + $O where g1 v is the projection of v to the orthogonal complement of
RO and s = (6,v). We split

_ 2 _ 2
/}/g}z(a,v)ezm@’g)“idai‘ dv://‘/gﬁ(a,ﬂeiv—l—s@))ezms‘g‘o‘idai‘ dsdvg.
=:Iy(ai, [€]0) + TTy(;, [£]6)

where

, 2
I(eg, [€]0) == //[ . ‘/%(a,wwv+80))ezms|5|"”dai’ dsdvg.

Hb(az'Lv|§\‘9) = //[b,b]c

so that
_ 5 1
J ([ ae@F [| [ sht@vem oo i avde)” o
[€1>U

1
S (] an@)Piat &) + ot olde) dat
|§1>U
The expression [}, is estimated as

) 2
Ib(af‘,|§\0)| < 2b/ sup {/|§}’%(a,7r%v+30))|dai} dvgL
[s|<b

. 2
/Cﬁ(a,ﬂ'giv + s@))ezms‘g‘o‘idai’ dsdvg.

and we get using part (ii) of Lemma [[-4]

/(/|€|>U “Z]\R(Q)|2[”(O‘z‘l’ﬁ)dﬁ)EdoziL
§b1/2||9RH2/ (Sgp/sgp [/|§§%(a’ﬁ9”+59))|dai]2dvgi)l/2dai¢

a1
(78)  SHPRTT s, llgrll2 -

To estimate ITy(cv),&) we observe that the function a; — ¢&(a,v) is smooth
and compactly supported. We use integration by parts to write

/g}é(m7r9Lv+39))62ms|5‘°”dai = —/aai§};{(a,7T91_’U—|—S€))(27TZ|§|)_1S_1€2ﬂzsaidOéi

and thus for |£| > U
o0 . 2
I, |€]6)] g/ |§‘*2\5\*2d5/sgp [/\3ai§§(oz,7r%v+t9))|dai} dvg.
b

. 2
<U %! /sup [/|8ai§§3(a,7rglv—|—t0))|d041} dvg. .
¢

Hence, by the second inequality in part (ii) of Lemma [7.4]

/</£>U |§R(§))\2Hb(%l,€)d€)%daj

A 2 1/2
< U71b71/2||gRH2/<sup/sup [/\3aic§(a,7rmv+t0)|dai} dng) dog-
0 t

(7.9)
SUTV2RF |, [lgnll2-
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We combine (1), (), (Z9) to deduce

(7.10) |
/ (de /// ‘/ﬁg(a,v)(gzg(x - Oziv) — gR(ac — O‘iw))da’z de do dw) §daiL
|z| <2
vl |w] <2
|[v—w|<27k

S(RFU27% + R% b2 + RT U "7Y2)|s|5.1|9zl2 -

We choose b, U so that the three terms are comparable, i.e. b= RU', U = 22+/3,
The result is that the left hand side of (ZI0) is bounded by a constant times

at2 —ea—
R 27|, |lgrll2 S R 272 c|ls..

by ([Z6), and the proof is complete. |

7.1.3. Proof of Theorem [7.1. By (73),

n
1T 0l6]llz2 2 S 27 slls. [T 1oelloo-
=1

By Lemma [.3] and Proposition we have for i =1,...,n,
Tl 222 < Thils = skl 2 r2 + [ Thilk]ll 222
n
SR+ 27 R fels. [T Hoelloo -
I=1

Choosing R = 2¥/(34+3) yields the bound

n

DI Tilelllze e S (127 /Ol TT lbillo
=0 =1

and thus the estimates for the multilinear forms claimed in Theorem [71] O

7.2. Generalizations of Theorem [7.1]

We shall now drop the support assumptions on z — ¢(a, ) and on « in Theorem

[Tl Moreover, we extend to LP estimates and replace ¢ by the scaled versions g(Zj)
(with the scaling in the = variables).

THEOREM 7.8. There exists ¢ > 0, independent of n and €, so that the following
statement holds for all 1 < p < oco. For all ¢ € B.(R™ x RY), for all j,k € Z,
1<l #lp <n+2, b, € L2(RY), by, € L2RY), b € L=(RY) for | # 11,1z, and
ue U,

(A (br, - biy 1, Q[ulbiy, Biy i1y - - s buya)]

< mindn2=0 P s, ol Hlelly ( TT oillas ) o, lbrs -
I#l,l2
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ProOOF. Inlight of Theorem[2.9] Theorem [T.8follows immediately from Lemma,
277 and the estimate (for some ¢ > 0, independent of n)

(7.11)  AG®](b, ..., by, Q)b i1, boya)

S sl 2™ = e ( T ol ) 1Dzl
=1

By scaling (Lemma [T6) it suffices to prove (CII]) for j = 0. Theorem [Z]
covers the case of ¢ supported in R™ x {|z| < 1/4}. To cover the general case we

-1
apply Proposition [6.101 to write u = leo 2_l/2ul(2 ) where u; is continuous and
supported in {|z] < 1/4}, [w; =0, and ||u||co < ||ullw. We apply Theorem .15 to
write ¢ =3 < 2-me1ec2™) for some ¢; > 0, where ¢, € Be,c, llsmlls.,. < llslls.
and supp(sm) C {(a,v) : [v] < 1}. We then have

|A[] (b1, - by Qp b, brya) |

< Z Z 2_l/22_mcls|A[§7(37m)] (bla e bna@k[ul@il)]bn%&; bn+2) ’
>0 m>0

= Z Z 2—l/22—mcla |A[§m] (917 <1 89n, @k—l-}-m[ul]gnJrh gn+2)‘

1>0 m>0

where g1 = bl(2m)a l = 1,...n, In+1 = 2md/2bn+1(2m')a In+2 = 2md/2bn+2(2m')
(see Lemma [£16). By Theorem [7I] we have, for some ¢y > 0

|A[gm] (91; s agn7@k—l+m[ul}(gn+1)7gn+2)|

n
S min{1,n2~ %l (T lgillo ) g llzlgn s

i=1
Now > 150D m>0 2~ 1/29=mere yin {1, p2—(k-ltm)eaey < po—kese for some ¢y with
0 < ¢3 < min{1/2,cp} and (II]) for j = 0 follows easily. O
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CHAPTER 8

Some results from Calderon-Zygmund theory

In this chapter, we present some essentially well known results from the
Calderén-Zygmund theory which do not seem to be stated in the literature in the
precise form we need them. We begin by recalling some classical results (see [36]).

Consider kernels K € D'(R? x RY) such that K is locally integrable on (RY x
R%)\ A; here A = diag(R? x R?) = {(x,2) : z € R4}, Let Tk : C§°(R?) — D'(R)
be the operator with Schwartz kernel K. Then the expression

(Tk f,9) / K(z,y)f(y)g(z) dy dx

makes sense for bounded functions f, g with compact and disjoint supports. For
such kernels K we define the singular integral semi-norms

(8.1) S (] = sup [ K (2.y) — K(2,)| da.
l[z—y|>2|y—y'|

(8.2) SI®[K] := sup/ |K (z,y) — K(2',y)|dy.
z,x’ J|y—z|>2|z—2'|

Let 1 < ¢ < oo. It is a standard and classical theorem (see [36]) that if Tk
extends as a bounded operator on L4(R?%) and SI'[K] < oo then Tk extends as an
operator of weak type (1,1), as an operator mapping the Hardy space H'(R?) to
L'(R%) and as a bounded operator on LP, 1 < p < 2, and one has the following
estimates for the operator norms (or quasi-norms).

(8.3) Tkl sz + 1Tkl proe S I T llpas e + ST[E].

We note that in order to prove the H* — L! result, it suffices to check || Tkall; <
| Tk || a— pa +ST' [K] for g-atoms, see [29]. Let L be the subspace of L consisting
of functions with compact support (in the sense of distributions). Then we also have
forg>1

(8.4) |Tk lge~Bmo S 1Tkl Larpe + STT[K].
Furthermore (taking ¢ = 2), by interpolation
2-2 2
85) NTxllzr—rr < CpallTwllresre + |1 Tx 25 2 (STK]) P 7Y, 1<p<2,
and

2 _2
(8.6) TkllLr—rr < Cpa(ITkllLo—r2 + 1Tkl }ay 2 (SICIK])' ), 2 <p < oo.

We will apply these results to singular integral kernels given by

(8.7) K =) Dilyrm =Y 220,27
J J
where 7; satisfy suitable uniform Schur and regularity conditions.

67
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8.1. Classes of kernels

8.1.1. Schur Norms and Regularity Conditions. In what follows we con-
sider complex-valued locally integrable functions (z,y) — k(z,y) on R? x R%.

We formulate conditions related to the usual Schur test, involving integrability
conditions in the x and y variables. We let Int' be the class of kernels k € L}, (R? x
R?) for which

(8.8) Int'[k] = sup /|k x,y)|dzx
yeRd

is finite. Here and in what follows sup, is used synonymously with essential supre-

mum (or L>-norm). We let Int™ be the class of kernels k € Li (R? x R) for
which

(8.9) Int>[k] = sup /\k z,y)| dy
zER?

is finite. Here the supremum is interpreted as essential supremum (i.e. the L*°
norm with respect to y). The notation is motivated by the fact that for k € Int!
the integral operator with kernel k is bounded on L>(R?), with operator norm
Int'[k], and for k € Int™ this operator is bounded on L>(R?), with operator norm
Int>[k].

Next we need stronger conditions, which add some weights in terms of the
distance of (x,y) to the diagonal A. Define

(8.10) Int;[k;] = sup /(1 + |z — y|)lk(z,y)| dz,
yeRd

(8.11) Int°[k] := sup /(1 + |z —y))°lk(z,y)| dy.
rER4

Let

k1 (2, y) = k(y, @)

and note that Int>°[k] = Int! [k4].
In Calderén-Zygmund theory we also need some variants involving regularity,
in either the left (z-) or right (y-)variable. We define

(812)  Regly[k] = sup sup|h|™® / k( + hy) — k(z, )| dz,
0<|h|<1 ¥

(813)  Regl. [k = sup sup|h|* / Ik, y + h) — k(z, )| dz,
0<|h|<1 ¥

and

(814)  Reg[k:= sup sup|h|™ / k( + hy) — k(z,y)| dy,
0<|h|<1 =

(815)  RegX[k:= sup sup|h|™ / k(ay + h) — k()] dy,
0<|h|<1 =

so that RegZy[k] = Reg;,rt [ku2!] and RegZ[k] = Reg;,rt (e,
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8.1.2. Singular Integral Kernels. We now consider distributions K €
D'((R? x R?)\ A) which are locally integrable in (R x R)\ A. We define variants
of B1), B2) with more decay away from the diagonal (here & > 0)

(8.16) SI}[K] := sup sup RS/ |K(x,y) — K(x,y')| dz,
vy’ 22 lz—y|>Rly—y'|

(8.17) SIZ°[K] := sup sup Rs/ |K (z,y) — K(2',y)|dy.
z,x’ R>2 ly—z|>R|z—2'|

Note that for € = 0 we recover the norms defined in (&1)), [82).

REMARK. We shall also use the alternative notation [|K|[sp = SIL[K] etc. We
will say K € SIL if SIL[K] < oo etc.

We say that K € Li_((R? x R%) \ A) satisfies one of the uniform annular

loc
integrability conditions Ann®, Ann® if the respective expressions

(8.18) Ann'[K] := sup sup/ | K (z,y)| dz,
R>0 vy Jz:R<|z—y|<2R

(8.19) Ann®[K] := sup sup/ |K(x,y)|dy
R>0 = Jy:R<|z—y|<2R

are finite.

We say that K satisfies the averaged annular integrability condition Ann,, if
(8.20) Ann,, [K] = sup sup R~¢ // |K(x,y)| dy dx
a€Rd R>0

|z—a|<R
R<|z—y|<2R
is finite.

The last notion will be used in §8.2] below.
LEMMA 8.1. Let K € L} ((R? x R?)\ A}). Then

Ann,, [K] ~ Ann,, [Ka!].

Moreover,
Ann,, [K] < min{Ann*[K], Ann*°[K]} .

PrRoOOF. Immediate from the definitions. O

LEMMA 8.2. Let K € L ((R? x R%) \ A). Suppose that for some ¢ > 0,

loc
SI}[K] < B, Ann[K]< A.

Then
SIS[K] < Alog(2 + < 1B/A).

Proor. Fix y # ¢ and split
/ K (,y) - Ko,y do = T+ 11
lz—y|>2|y—y’|

where

I:/ |K($,y)_K(.’E,y/)|d.’E,
2ly—y'|<|z—y|<Rly—y’|

H=/ K (2,y) — K(z,y')|de.
lz—y|>R|y—y’|
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Then if we apply condition Ann; with O(log R) annuli to estimate

I < Alog R,
moreover we have
II < BR®.
If we choose R = 2 4 (B/A)'/¢ the assertion follows. O

8.1.3. Integral conditions for singular integrals. We formulate a propo-
sition which is used to verify the condition SI! , SI>® for kernels of the form (&.1).

PROPOSITION 8.3. Suppose that 7; € Int} N Regi,R and

sup Intj[7;] < A,
J

sup Int;[Tj] + sup Reg;rt [1;] < B.
J J

Then the sum &) converges in the sense of L (R? x R%)\ A) and the limit K
satisfies

(8.21) SIL;»[K] < B.
Moreover,
(8.22) SIg[K] < Alog(2 + B/A).

PrOOF. We fix y,3" and R > 0 and consider
IJR(y7 y/) = / |Di12jTj(‘T7 y) - DﬂQj Tj (.’L’, y/)| dx
z:|z—y|>Rly—y’|

|7 (2, 27y) — 7j(2, 27y/)| da.

/wilw—2jy2R2"y—2"y’

Clearly I jR(y, y') < 2A. We now give two estimates, the first valid when 27|y —y/| >
1/R, the second valid when 27|y — /| < 1; thus both estimates will be valid when
/R <2y -y <L
For 27|y — /| > 1/R we have
: (L 7 = 2y))°
(e, 2ylds < [ w2l m =2
/z:lz—zfyszy—w ’ ’ (R27|y —y'])
< 2y —y'[R) "ot [r] < B2 |y -/ |R)~".
Also note that if |z — 27y| > R[27y — 27y/| then also |z —27y/| > (R—1)|27y — 27¢/|.
Thus the last argument also gives (for R > 2)
/ 3, 2 o < By — o/ (R = 1)
x:|e—20y|>R[29y—27y’|
and hence
R ! j I\—€ p—¢€ j /
Iy, y) S B2y —y[) "R if2'|ly—y| > 1/R.
For 27|y — /| < 1 we obtain

Ify,y) < /|Tj(37a 2y) — 7j(x, 27y)| dw < Regl[r;](2 |y — /')° < B(Z|y —y/'|)°.
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Hence
S I,y < > B@y-vI)+ >  BRly-y)c
JEL J:2ily—y'|<R-1/2 32 ly—y'|>R-1/2

5 B R—E/ 2
and (RBZI)) follows. The same argument gives

S If(y,y) £ min{A, By — /)%, B2’y — y/'|)° < A(log(2 + B/A))
jez JET

which yields ([822]). O

The following proposition is useful for verifying membership in the classes Ann®,
Ann® for kernels of the form (87]).

PROPOSITION 8.4. Suppose that T; € Int; N Reg;,lt such that

sup Intg[;] < A,
J
sup Intl[r;] + sup Regélt ;] < B.
J J

Then the sum K =} Dily;7; converges in the sense of LL ((RYx RY)\ A) and
Ann'[K] < Alog(2 + B/A) .
This follows from the following lemma regarding functions in L'(R?).

LEMMA 8.5. Let 0 <e < 1, gj € LY(R?) such that

[ 1ta)ldo < 4

/|gj<x>|<1+ l2)° dz < By,
and

sup (4] [ lg5(a + 1) = g5(z)| do < Bs.
|h|<1

Then for every compact set K C R\ {0}, the series G(z) = djez 27dg. (29 )
converges in L*(K), so that G € L} _(R*\ {0}). Moreover, if Kp = {z: R < |z| <
2R},

Bi + By

sup/ |G(z)|dx < Alog(l + ————).
R>0JKp A
PRrROOF. It suffices to consider the case K = Kg. Let G; = 274g;(27.) then
1G5l (rr) = N95ll Ly (g ) < A
First assume that 2R > 1. In this case
lgillz,x,, ) S (27R)~°Bu.
For 2/ R < 1 we have by Holder’s inequality

9511y, < 7 R)YP g5l
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and by Sobolev 1mbedd1ng it follows ||g;|l, < B provided that d/p’ < e. Hence we
obtain for 0 < &/ < ¢ we get

_ o, B+ B

Gl (s S S min{A, Bi(27R) 5, By(2R)'} S Alog (1+ 2=2) . D
JEL

PROOF OF PROPOSITION [B4 Apply Lemma 85 to v — K(y + v,y). 0

8.1.4. Kernels with cancellation. We state a standard estimates involving
the Schur test for compositions with operators exhibiting some cancellation; this
will be used when proving L? estimates in §I0.2

LEMMA 8.6. Fiz 0 <e < 1. Let £ € Z with £ < 0. Suppose p, o¢ : RExR? — C
are measurable functions satisfying

(8.23a) Int'[p] < Ay, IntX[p] < A, o

(8.23b) Int'[oy] < B;, Int*[o] < B

and

(8.23¢) Int™[V,0,] < 27 By

Assume

(8.24) /p(x,y) dy =0 for almost every x € R%.

Let R, Sy be the integral operators with Schwartz kernels p(x,y), o¢(x,y). Then

IRSellz 1o S 27/2\/ A1 Ae oo B1(Boo + Bu).

PrROOF. Let ky be the Schwartz kernel of RS,. Then, by the cancellation
assumption,

bale,) = [ ple2)(o1(20) - or(z. ) do
Clearly for a.e. y € RY

[ k@it < [l [ 1o 2)ldedz £ B

Moreover,
[ atelay < (1) + (11)

where

= [ ol [ o) - outen)| dy

|z—z|<2¢
= [ ot 2 [ (el + ot ) dyd

Now by assumption, for fixed x, z

1oty + [ lowidy < B
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and
/}Ug(z,y)—ag(x,y)}dy—/‘/01<z—x,vmag((1—s)x—i—sz),y} ds| dy

1
<|z-— z|/ /|ang((1 —s)x+s2),y)| dydr < BOO272|3: —z|.
0

For (I,) we then get

(1) <Bo [ ol 2)2 o~ 2]z
|2—a|<2f
and estimate (using € < 1)

/ . lp(z, 2)|[27 % — 2| dz < / oz, 2) 2 — 2| dz

|z—z|<2¢

$2 [l )Lt o= 2ds £ 275 A
Hence (I,,) < Q_ZEEOOA&OO. For (II,) we have

(II,) < Boo/

|z—z|>2¢

a2 de S B2 [ p(a )14 o - ol d

|z—z|>2¢

and thus (I1,) < 2 % By A . Finally, we obtain by Schur’s test

1RS¢l 12— r2 < v/Inty[ke]\/Intog [ke] < /A1 By \/(BOO + Boo)Ac 00272

The assertion is proved. O

8.1.5. On operator topologies. We finish this section by stating a version
of the uniform boundedness principle which is used for the partial sums of operators
defined by kernels of the form (§7).

LEMMA 8.7. Let X, Y be Banach spaces and let ¥y : X — Y be bounded
operators. Assume that X converges in the weak operator topology, i.e. there is
a linear operator ¥ : X — 'Y so that for every f € X and every linear functional
gey’,

— 00
Then ¥ : X — 'Y is bounded, and there exists B < oo so that

IEllx—y <sup[|En]xsy < B.
N

PRrROOF. We have supy [(Enf, 9} < Cfy < oo for every f,€ X, g € Y'. By
the uniform boundedness principle this implies supy [|En flly < Cf < oo for all
f € X. By the uniform boundedness principle again there is A < oo so that
A:=supy | En|lxoy < oo. Thus Cy 4 < A| fllx|lg|ly . Passing to the limit we see
[(2f,9)] < Allflxllglly which implies |2 x—y < A. O

Given a formal series ) jez T of bounded operators we say that > jez T con-
verges in the weak operator topology as operators X — Y if the partial sums
YN = Ej\;_ ~ T satisfy the assumptions in Lemma B71
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LEMMA 8.8. Let X, Y be Banach spaces, let W be a linear subspace of X which
is dense in X. Let Xy : X — Y be bounded operators. Assume that

Slji]pHEN”XHY <A

and that for every f € W, and every g € Y’

where X : W — Y is a linear operator. Then X converges to % in the weak
operator topology (as operators X — 'Y ) and we have ||Z||xy < A.

lim
N —o0

PRrROOF. The assumptions imply that |Xf]ly < ||f|x for all f € W, and ¥

extends uniquely to a bounded operator X — Y with operator norm at most A.
Moreover, using |2y || xy < A it follows easily that ¥ — X in the weak operator
topology. O

8.1.6. Consequences for sums of dilated kernels. We now formulate
some consequences of the propositions above and the boundedness result (83]).

PROPOSITION 8.9. Let 7; € Intl N Reg! ;. so that
Into[r;] S A, Intz[7;] + Regg [7] < B.
Let T; denote the integral operator with kernel Dily; ;.

(i) Suppose that T = ZjeZ T; converges in the weak operator topology as oper-

ators L2 — L2. Then, for 1 < p <2, T extends to an operator bounded on LP such
that

2-2 21
1Tl oszr < Cape(ITNL2—sr2 + [Tl 27 2 (Alog(2 + B/A)) T ).
Moreover T extends to an operator bounded from H' to L' and
”THHlﬂLl < Cd,e(HT”L?aL? + Alog(2 =+ B/A))

(ii) Suppose that T = EjeZTj converges in the strong operator topology, as
operators L? — L?. Then the sum also converges in the strong operator topology
as operators LP — LP, 1 < p < 2 and in the strong operator topology as operators
H' — L'

PROOF. By Proposition B3 we have for K as in (7)) SIj[K] < log(2 + B/A)
and the assertion (i) follows from (&) and (83).

For (i) we examine the proof of H* — L! boundedness. Let a be a 2-atom
supported in a cube @ with center ygq, i.e. we have |lallz < |Q|7/2, [a(z)dz = 0.
Let @* be the double cube with the same center. By assumption ZjifN T;a
converges in L?(Q*) and by Holder’s inequality in L*(Q*). Also, by the argument
in the proof of Proposition B3]

I T5all L (ra\g+) §/|a(y)| "o |Dily; 75 (%, y) — Dilys 7(2, yo) | d dy
R *
< Bmin{(2diam(Q))F, (2 diam(Q)) )
and clearly Z;.VZ_N Tja converges in L' (R4 \ Q*) as well.

Let f € H'; we need to establish convergence of Zj T;f in L'. By the atomic
decomposition f = >"°7 | ¢,a, where a, are 2-atoms and Y |¢,| S || f|lgi. Given
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e > 0 take M so that > -, |c,| <e. Then there is C independent of M, ¢ so that

for all N we have
N e’}
H Z T( Z cual,)
j=—N  v=M

It is now straightforward to combine the arguments and deduce the convergence of
> j T;f in L'
In order to prove convergence in the strong operator topology as operators

‘ < Ce.
1

2_ _2
LP — LP, 1 < p < 2, we apply the interpolation inequality [|h|, < ||h]|T 1||h||§ ’

toh =3 ;c;Tjgwhereg € H'NL2. This yields that >_; Tjg converges in LP. Since
H'N L? is dense and since the operator norms jeg T are bounded uniformly in
J, it is now straightforward to show convergence of Zj T;f for every fe LP. O

In our applications we work with the following setting. Let ¢ € Cs°(BY(1))
have [ ¢ =1 and define P;f = f * #?). Set Y(z) = ¢(x) — 27%4p(2 x), and set
Qif = ). Wehave I =3,.,Q;, P =Y ,;Qrand [ —P; =3, Qy in
the sense of distributions.

COROLLARY 8.10. Let s; : R? x R* — C be a sequence of locally integrable
kernels and assume that

sup Inté[sj] <A, sup Int; [s;] < B.
J J

Let S; be the integral operator with integral kernel Dily;s;. Suppose the sum S =
ZjeZ S;P; converges in the weak operator topology as operators L? — L?. Then,
for1l<p<2 8§:LP — LP is bounded and

2-2 2_
1S r v < Cape(1SlL2—12 + (1527, 12 (Alog(2 + B/A))» ~1).

Proor. The kernel of S;P; is equal to Dily; 7; where

(2, y) = /sj(a:, 2)p(z —y)dz.

Clearly Int![7;] < Intl[s;] for e > 0 and in view of the regularity and support of ¢
we also have

Reg; . [75] < Intg|s;]
for 6 < 1. The assertion now follows from Corollary 8.9l O

COROLLARY 8.11. Let s, S; be as in Corollary BI0 For k € N define S* :=
ZjeZ S;Qjt+r. Suppose that this sum converges in the weak operator topology as

operators L? — L2, and suppose that for some &' > 0

Do i=sup 2| S| 2y 12 < 00.
k>0

Also define Do := supy ||S¥||L2 2. Then, for 1 <p <2,
1S 2o 20 <

2
P

Cpte (min{2™ Do, Do} + (min{2 ™4 Do, Do})*F (Alog(2t + B/A) P 7).
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PrOOF. By definition |||z 12 < min{27k6,De’ ,Do}. The integral kernel of
S;Qj+r is given by Dily; 7; 1, where

ralang) = [ 55220 ) de.
We have Int![7; ;] < Intl[s;] for € > 0 and now
Regs o [m5.6] < 2¥Intg[s;] < 2°A
for § < 1. The assertion follows from Corollary O
COROLLARY 8.12. Let sj, S;, S* be as in Corollary BRIl Define

§;: ZS](I_PJ):ZSk

JEZ k>0
Forl<p<2,

H§||LP—>LP <

DEI 27% 2_ DGI 2_ DS/ B
Cpae (Dolog (2 + Do)+ Dy TR og (24 1) logh (24 +))-

Proor. By Corollary BTl we have

[ [PRES

. ro—ke cro—ke 2-2 k 2
> min{27* Do, Do} + Y (min{27* Do, Do}) ™ ? (Alog(2¥ + B/A))» 1
k>0 k>0

Clearly, >, min{2%' Dy, Dy} < Dolog(2 + D.//Dy). Also, the second sum
equals

2-2 2.9 . ke Do y2-2 K, Biy2z-1
D, "A» gmm& Do,l} 7 (log(2 —i—Z))P .
To conclude apply the following Lemma BTI3] with 8 = —1 4+ 2/p. |

LEMMA 8.13. Fizxe >0, a>0,3>0. Let UV > 1, then

> (min{275U,1})* log”(2F + V) < Ceaplog(l + U)log’ (1 + U + V).
k>0

PROOF. Let Ji,(U,V) = (min{27*<U, 1})* log¥2* + V).
We first consider the terms with 27%¢/20 < 1. Observe

> U V) Slogf14V) Y (U27F)* Slogh(1+ V)

2—ks/2US1 2ks/2SU
2k<y
and
DA% B N (75 b S N (7P R R
2—ks/2US1 2—ks/2U21 k:z—ks/2U§1

2k >y
The main contribution comes from the terms with 2-%¢/2( > 1; here we use
Y UV)Sog’14V) Y 1S log(1+U)logh(1+ V)

2—k5/2U21 2k5/2§U
2k<y
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and
o US> K Slog® 1+ U).
k:27k/2U>1 ki2ke/2<U
2k >V
Clearly, all four terms are < log(1+ U)log®(1 4+ U + V) and the asserted bound
follows. O

8.2. On a result of Journé
For a cube @ let @Q* be the double cube with same center.

DEFINITION 8.14. Let T : C§°(R%) — D'(R?) be an operator with Schwartz
kernel K. We say that T satisfies a Carleson condition if there is a constant C' so
that for all cubes @ and for all bounded functions f supported in Q, T'f € L*(Q*)
and the inequality

| i@ < ciaiisi-

is satisfied. We denote by ||T'||can the best constant in the displayed inequality.

Journé [28] considered a class of operators associated with regular singular
integral kernels satisfying, say, |K (z,y)| < |z — y|=4, [V K(z,y)| + |V, K (2,y)| <
|z — y|7¢~1 and showed that the following conditions are equivalent.

e T satisfies a Carleson condition.

e T maps H! to L.

e T maps L to BMO.
He then used an interpolation theorem to show that each condition is equivalent
with

e T maps L? to L.

We now give versions of Journé’s theorem for larger classes of kernels which
arise in our main result.

DEFINITION 8.15. (i) A integrable function is called an co-atom associated to
a cube @ if a is supported on @, and satisfies ||a|« < |Q|™" and [ a(x)dz = 0.

(ii) A linear operator defined on compactly supported functions with integral
zero satisfies the atomic boundedness condition if

[T[a¢ = sup || Tal|y < oo
where the sup is taken over all oco-atoms.

REMARK 8.16. One can also make a definition of a class At(q) where one
works with g-atoms satisfying supp(a) C Q, |lall, < |Q|7***/? and [ a(z)dx = 0.
Define || T'||a¢(q) = sup ||T'al|; where the supremum is taken over all g-atoms. For
the case 1 < ¢ < oo one has T" € At(q) if and only if T" extends to a bounded
operator H' — L', and || T||a¢(q) = ||T|| 21— 1- This is a special case of a result by
Meda, Sjogren and Vallarino [29]. The equivalence may fail for the case ¢ = oo, as
was shown by Bownik [3]. We remark that for special classes of Calderén-Zygmund
operators the equivalence holds true even for ¢ = oo (see [30, §7.2], and the proof of
Theorem below). For most situations in harmonic analysis the use of co-atoms
(instead of g-atoms) does not yield a significant advantage, but in our application
it will be crucial to work with co-atoms.
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In the following three propositions 7 : C§°(R4) — D’(R%) will denote a linear
operator with Schwartz kernel K € D'(R% x RY) N LL (R x RY)setminusA). The
proofs use the arguments of Journé [28] §4.2].

PROPOSITION 8.17. Suppose that T satisfies the atomic boundedness condition
and the averaged annular integrability condition. Then

1T cart S 17l a¢ + Annay (K]

PROPOSITION 8.18. Suppose that SI®[K] < oo , Ann,,[K]| < oo and that T
satisfies a Carleson condition. Then T extends to a bounded operator from L§° to
BMO satisfying

1Tl —Bmo S T |lcan + SI[K].

PROPOSITION 8.19. Suppose that SI'[K] < oo and that T extends to a bounded
operator T : L3® — BMO. Then T satisfies the atomic boundedness condition and

1T a¢ ST || 2ge—Bao + ST'[K].

For the convenience of the reader we give the proof of the three propositions.
In what follows @ will denote a cube, xq its center, and as above @* will be the
double cube with same center.

ProOF OF PROPOSITION RI7 Let f be a bounded function supported in a
cube Q. We need to establish the estimate

(8.25) 1A S ClRNA I T+ Amnn ).

Let @1 be a cube with the same sidelength of @* and of distance diam(Q*)
to Q*. Let f1 be a function supported in Q U Q1 so that fi(y) = f(y) for y € @,
[f1lls < Il and [ fi(y)dy = 0. Then, if

a(z) = QI fII5 f1(x)

then there is Cy > 0 so that C’d_la is an co-atom. Set fo = f — fi so that fo is
supported in @) and split

/ T f|de < / T |da + / T fo]de
Q* Q* Q*

We estimate
(8.26) /Q T frldz < [Q T atl flloo-

Since dist(Q*, Q1) ~ diam(Q;) ~ diam(Q*) ~ diam(Q)) we may use the averaged
annular integrability condition and estimate

&/ | [ 1K g)ldyde £ Ay K],
This yields
g0 [ whies | [ Kl S QA K]
Since || f2lloo < 2|1 f]loo, (28] follows from (B20) and (R2T). O
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PrOOF OF PROPOSITION BI8 Let g € L and let @ be any cube with center
xzg. We have to verify

(8.28) inf )[ |Tg(z) — Cldx < ||T||carl + SI°[K]
Q

where the slashed integral denotes the average over Q.

Let g1 = glg+, g2 = glra\g~, so that g = g1 +g2. Since g has compact support
it is immediate by the assumed finiteness of Ann,,[K] that Tge(w) is finite for
almost every w in

Bg = {w: |w—zq| < (2d)"'diam(Q)}.

Now
inf ){2 Tg(a) - Cldz < ){3 Q [ ){2 Tor () ldz + )(Q Ty () — Tga(w)ldz ] dw

From the Carleson condition we get

)[ Tg1(2)ldz < 4°|Tl|cantllgrllso S 1Tl canllglloc -
Q

Moreover,
I, ) o ~Toidr v <l sp [5G~ Ko g)ldyde
Bg JQ wEBqg R\ Q*
S SIF[K] (|9l oo -
and (828) follows. O

PrROOF OF PrROPOSITION B19] Let a be an co-atom, associated with the cube
. We need to verify

(8.29) ITally S T g~ Bro + SIZ[K].

First estimate T'a in the complement of @Q*, using the cancellation of a:
[ re@ides [ | [ (K@) - Kool do
RNQ* RN\Q* ' JQ

< /Q awl [ K@) - Kso)ldedy

|[z—zq|>2ly—zq]

< SU'[K]lall, < ST'[K].

Let Q be a cube which is contained in CQ* \ Q* and has distance O(diam(Q)) to
Q*, say, a cube adjacent to Q* and of same sidelength. The above calculation also
yields

(8.30) [ Ta(z)|da < STK].
Q
We choose such a cube é and estimate

/ |Ta(z)|de S Ig+11g+ 111G
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where
Io :/ Ta(z) — X Ta(y)dy‘ dx ,
i =1@"I| { Tawyy ~ | Tat)]
11 = 11| | Tatu)s]
Clearly

ol < |Q*|[|Tallsro < ||T||ze—pmol@|llallL~ STl Le—Bro-

To estimate I1g we let Q** be a cube containing both @* and @, and of comparable
sidelength. Then

‘ )[ Taly)dy — )éTa(y)dy}
< X Ta(y) — X** Ta(z)dz‘ dy + )é ’Ta(y) — )[** Ta(z)dz’ dy

SJX

and thus

Taly) - | Ta(:)dz|dy 5 |Tal maro

[g| S Tl »Bmol@lllalle STl zee—nMmol@Qlllallo S I1T|Lge— B0 -
Finally,
[[11g| < |Q7|

)éTa@)dy\ < Ially ) S A,
by [B30), and the proof of (829) is finished. O

THEOREM 8.20. Let T : C§°(R?Y) — D'(RY) and assume that the Schwartz
kernel K is locally integrable in (R? x R?)\ A. Assume that

SI[K] := Ann,, [K] 4 ST'[K] + SI*®[K] < oo.
(i) Let 1 < g < co. The following statements are equivalent.

T satisfies a Carleson condition.

T maps L3 — BMO.

T satisfies the atomic boundedness condition.
T extends to a bounded operator H' — L.
T extends to an operator bounded on L9.

(ii) We have the following equivalences of norms.
(8.31)
1T lcar + SIK] = | T|| go—Brro + SUK] & |[T]|ac + SIK] &~y [T Lo e + SI[K].

Moreover,
(8.32) ITllas ~ [Tl -

PROOF. The first three equivalences are immediate from a combination of
Propositions BT7, BI8 and BT Since oo-atoms satisty |lal|gr < C it is clear
that

1Tl ac ST e pr -
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The converse
(8.33) (TN ez S 1T as

is not obvious (and the inequality without the term SI[K] might not hold if we
drop our assumption SI[K] < oo, see [3]). By the Coifman-Latter theorem about
the atomic decomposition (see [36, §III.2]) we may write f = >, Agagq, with
>0 Aql S [Ifllmr and ag being oc-atoms; here the convergence of the series is
understood in the L' sense. We immediately get

| > 2eTaa, <3 allTlallagl S IT)asl £l
Q Q

However the decomposition f = ZQ Agag is not unique and in order to prove that
the expression ZQ AgTag can be used as a definition for T'f we need to show the
following consistency condition for a sequence of atoms {a, }>2 4,

(8.34) Z lev] < o0, chay =0 = chTaV = 0.
Q v v

Fortunately, a version of an approximation (or weak compactness) argument in [30],
§7.2] applies to our situation. As stated above the atomic boundedness condition
implies the Carleson condition. Let ¢ € C§° be supported in a ball of radius 1/2
such that [ ¢(z)dz = 1. Set P, f = ¢2") % f. Let K,, be the distribution kernel
for P, TP,,. Note that we have

| Ko (2,y)] S 27 Anngy [K] if [ — y| > 227"

and
| Ko (2, )| < 27T cant if |2 — y| < 227

Hence K,, € L‘X’(Rd X Rd) and thus P, TP,, maps L' to L. This implies
> wPnTPra, = P, TP, (> c,a,) = 0. Now, since the P, form an approxima-
tion of the identity, it is clear that, for each atom a,,, we have || P, T Ppa,—Tay |1 —
0 as ¥ — oo. Taking in account that ) |a,| < oo, a straightforward limiting argu-
ment yields Y~ ¢,Ta, = 0. Note that the condition SI[K] < oo is used to establish
[®32) only in order to verify the implication (834]) (via the boundedness of K,,);
it does not enter in (832 itself.

We still have to show the equivalence of the first three conditions in (831))
with the fourth condition. Assume first that 7' is L9-bounded. Then we have
the standard estimates (B3], (84) and thus the H' — L' operator norms and
L — L* operator norms of T' are bounded by ||T||f«—r« + SI[K]. The other
direction uses the interpolation result (cf. the remarks below)

1 1-1
1Tl opa < Cll Tl 1T s 00

together with the equivalence of the first three conditions in [831]) and the equiv-

alence ([832). O

Remarks on interpolation of H' and BMO. In the above interpolation one uses the
interpolation formulas [H', BMOJg, = LP9, [H', BMOlg = L? for 1 — 6 = 1/p,
1 < p < oo, or a direct interpolation result for operators in §3.IIT of Journé’s
monograph [28]. One also has [L', BMO)g, = LP%, [L', BMO]g = LP for 1 — § =
1/p, 1 <p < 0.
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The result for complex interpolation can be obtained from [H!, LPt]y = LP,
1/p=1-9+19/p1, 1 < p1 < oo, (or its respective standard counterpart [L!, LP1]y =
LP), together with [LP°, BMOly = LP, 1/p = (1 — 0)/po, 1 < po < oo which can
be found in Fefferman and Stein [16], see also the discussion in Janson and Jones
[27]. The stated interpolation formula for H' and BMO follows then from Wolff’s
four space reiteration theorem for the complex method [40]. One can also use the
results by Fefferman, Riviere, Sagher [15] for the real method, and then combine it
with Wolff’s result [40] for the real method. From the above remarks we also get
an interpolation inequality for functions ¢ € L' N BMO,

1 1-1
(8.35) gl < Collgl PN F a1 <p< oo

which will be useful in the proof of Theorem below.

8.3. Sums of dilated kernels

We shall now formulate some corollaries for operators of the form (87 or its
relatives. We use norms combining the various Schur and regularity norms.

For each j € Z, let 7; : R? x RY — C be a measurable function. Let 0 < ¢ < 1.
Set, for 0 < e <1,

I7llop, = Int:[7] + It [r] + Reg: (7] + RegZq [7] + Regl 1 [7] + Reg i [7),
and set
I7llop, = Int(l)[T] + Intg°[7].
This means for € > 0

(8.36)

I7llop. =
Sup/(l +lz =y |7 (. y)| dy + Sup/(l + |z =y |7 (z, y)| dx

IT(x + h,y) = 7(2,y)]

|T l'+h,y) _T('Tay” d

dx + sup
|hl¢ G
O<\h\<1 0<[hl<1
h)— h) —
T R A U ELLT y
y |hl¢ z |h|¢
0<|h|<1 0<|h|<1
and, for e =0,
(837) [#llon, = sup [ r(w.9)|dy -+ sup| (2, )| d.
x y

We shall consider families {7;} for which the Op, norm is uniformly bounded
in j. We let T; be the operator with kernel Dily; 75, i.e.

(8.38) Ty f(x) = / 29 (2, 29y) f(y)dy

THEOREM 8.21. Suppose that sup; ||7jllop, < C- for some € € (0,1) and that
sup, [|7jllop, < Co- Let T be the operator with kernel Dily;7; and suppose that
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Zj T converges to an operator T : L5, — Ll in the sense that for compactly
supported L functions f and g

N

(> Tif.g) = (Tf,9)

j=-N

as N — oo and assume that there exists A > 0 such that for all x € R%, t > 0,
N eN,

N

(839) (Y Tifig)| < At Sl llgli~  if supp(f) Usupplg) © B (a,0).
j=-N

Then T extends to an operator bounded on L?(R?) and
Ce
1T z2—re < Cd,e(A +Colog (1+ C_)>

0
PrOOF. The inequality (839) implies || Z;VZ_ ~ Ljllcart S A. This inequality
extends to the limit 7. Let Ky, K be the Schwartz kernels of the operators
Z;VZ_ ~ I; and T respectively. Then by Propositions [8.3] and B4l applied to both
7; and its adjoint version we have SI[Ky], SI[K] < Cplog(2+C./Cp) . The assertion
follows now from Theorem |

THEOREM 8.22. Suppose that sup; ||7j[lop, < Ce for some € € (0,1) and that
sup; ||7jllop, < Co- Let T be the operator with kernel Dily;7; and suppose that the
sum T = Y T} converges in the sense of distributions on C§% (test functions with
vanishing integrals), i.e. for every f € Cg% and every g € C§° we have

N

(8.40) Jim Y7 (T;f.9) = (Tf.9).
j=—N

Then the following statements hold.
(i) If supy || Zj-vziNTjHHl*}Ll < A, for some A < oo, then we also have

N
supH Z Tj’
N =y
N

Moreover, T extends to a bounded operator on L?, Zj:
weak operator topology and || T 1212 S A+ Colog (1 +C./Co).
(i) If supy || Zévsz T2 12 < B, for some B < 0o, then we also have

SA—I—Colog(l-i-%).
2 CO

L2—L

_n T converges to T in the

N
c
TH < B+Cylog (14 =),
Sﬁij_ZN g1 S B+ Colos ( +Co)

N
Jj=
verges in the weak operator topology (as operators H* — L') and |T|| g1z <
B+ Cylog (1 + CE/CO).

(iii) The sum T = ZjeZ T; converges in the strong operator topology as opera-

Moreover T extends to an operator bounded from H' to L', _nI; = T con-

tors H' — L' if and only if it converges in the strong operator topology as operators
L? — L2
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PRrOOF. The assertions on the operators Z;\;_ n I follow immediately from
Theorem[8.20L Note that CgY, is dense in both H Land LP, 1 < p < co. The uniform
bounds for the operator norms of Zjvz_ ~ Ij and the convergence hypothesis (8.40)
imply convergence in the respective weak operator topologies.

Now we prove (iii). If T' = ZJ ez I converges in the strong operator topology
as operators L? — L? then it is immediate from Proposition B9 that 7' = 3
converges in the strong operator topology as operators H' — L.

Vice versa assume that 7' =) ._, T converges in the strong operator topology

JEZ

JEZ
as operators H* — L!. By the interpolation inequality (8:35) we have for any finite
set J € Z and any [ € Cg%.

DI A DL B DL

<d DI fH1/2H > 1 —

and since || 32, 7 T} HLOCHBMO is bounded 1ndependently of J we see that >, T} f

1/2 1/2

converges in L? for any f € C5%- Since CfY is dense in L? we conclude that ;T
converges in the strong operator topology as operators L? — L2. O

We now formulate a version of Theorem B2 which has a convergence statement
with respect to the strong operator topology.

THEOREM 8.23. Suppose that sup; ||7jllop, < C. for some € € (0,1) and that
sup; [|7jllop, < Co- Let Tj be the operator with kernel Dily;7;. Suppose that 3, T;

converges to an operator T : Ly, — L{ . in the strong sense that for any compactly

supported L™ function f and for any compact set K

]\;iinoo/’ZTf Tf(z)|dz = 0.

Suppose that there exists A > 0 such that for all z € R, t >0, N € N,

N
e [ ]S T de s Al i) © B0,
Then the sum T =Y

j=—N
L? - L? and and

jez Tj converges in the strong operator topology as operators

Ce
||T||L"’—>L2 < Cd75 (A + Co log (1 + C_O))

PROOF. If @ is an L* atom supported on a cube @ and Q* is the double
cube, we see that Z;-V:d\, Ta — Ta in L'(Q*). Standard arguments using the
cancellation of a yield

/ ma(mﬁ{lm[ @ diam(@) = i 2dian(Q)
Rd\Q*

>1
Reg! ,[7j] (2/diam(Q))* if 27diam(Q) < 1.

Altogether we see that Zj\;_ ~Tja— Tain L'. By Theorem B2T] we also have the
uniform bounds ||Talj; < Cg. (A + Cp log (1 + g—g)) for L>° atoms. Now, writing
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f € H" as f =Y cya, where the a, are oc-atoms and Y |c,| < oo, we easily
derive that Z;»V:_N T;f — Tf in L'. Thus we see that >_; T; converges in the
strong operator topology as operators H' — L' and we have the uniform bound

o C
H Z:NTJ-HHHHl < <A +Colog (1+ C—O))
P

We apply parts (i) and (iii) of Theorem B.22]to see that that . T); converges in the

strong operator topology as operators L? — L2, and obtain the asserted bounds on
the L2 — L? operator norms. O

The following lemma allows us to apply Theorems 8211 and to sums
of the form } . P;S;P; where P;f = f x ¢, and S; is an integral operator with
kernel Dily; s;, with sup,(Int}[s;] 4+ Int2[s;]) < occ.

LEMMA 8.24. Suppose that Int}[s] + Int>[s] < C. and Int'[s] + Int>[s] < Cj.
Let ¢ € C§° supported in {v: |v| <10}. Let

S(z,y) = // oz —w)s(w, 2)p(z — y) dw dz.
Then ||5]lop, < Ce and ||5]|op, < Co-
PROOF. Left to the reader. O

We also have

LEMMA 8.25. Let s € Op,, 0 <e < 1. Let ¢ € C supported in {v : |v| < 10}
and let

sl(xay) = /d)(x - w)s(way) dU),
s2(2,y) = /S(:vaZ)qﬁ(z —y)dz.

Then |[s1llop, < lIsllop, I9llcrs lIs2llop, < lsllop. lI#llcr-

ProoOF. Immediate from the definition. O
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CHAPTER 9

Almost orthogonality

We shall repeatedly use a rather standard almost orthogonality lemma which
involves the Littlewood-Paley operators Qj introduced in (6.4)).

LEMMA 9.1. Let Z be an index set. Suppose that for each j € Z, v € I,
Vi L2 — L? is a bounded operator such that for ki, ks € Z,

(9.1) 190 Vit Qi | oy S Ajias

where

Z Aj7k2 < Q.

J,k2
Then the sum V" := ZjeZ VY, converges in the strong operator topology (as oper-
ators on L?), with equiconvergence with respect to I, and we have

(9.2) sup IV llz2mze S Ajks.
ve

Jrk2

PROOF. Recall, from Chapter @ )", @ka =3, Qk@k = 1. Let f,g €
L*(R?) with || ]2 = [lgll2 = 1. By (6.8), we have

(S 18us13)" = [[(218er2)*
k k

(Z18i08)” = | (T 18102) [, ~ 1
k k

First observe, for integers J; < Ja,

~ 1,
2

Ja2 J2
\ <g Y V> | = ‘ <9 D> Ok Qu, VY Onof >1

j=J1 k1,k2€Z j=J1

Jo
- ‘ <9 Z Z éleklvj‘kagész >z

Jj=J1 k1,k2€Z
Jo—ky
* v
< ’< g D > Qe Vi ks Qi ke ik 4ka f >12
k1€Z j=J1—k1 k2€Z

~ 1 Jo—k1 . i
< ( > ||Qzlg||§) ’ ( > H DY QO V ik Qi ks Qj+k1+szHz) g
=

ki1€Z j=J1—k1 k2€Z

87
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Now
Jo—k1 _ 2\ &
( Z H Z Z le‘/jli‘rkl Qj+k1+k2 Qj+k1+k2fH2)
k1€Z  j=J1—k1 k2€Z
J” N N
N Z Z ( Z HleVv]l:i-lh Qjtkr+ks Qj+7€1+k2fH2)
JEZ ko €Z k1=J1—j
Jo—j _ 1
SN A X 19k fIB)
JEZ ko €Z ki=J1—j
We take the sup over g with ||g||2 = 1 and obtain from the two previous displays
(9.3)

Ja
| > vis
j=J1

The first inequality in (@.3) implies that for fixed f € L? the partial sums of
2f = Zf;f ~ Vjf form a Cauchy sequence, more precisely, for each ¢ > 0 there
is N(e, f) € N (independent of Z) such that || Xy, f — Xn, fll2 < € for Ny, Ny >
N(e, f). By completeness of L?, X% f converge to a limit Xf and X defines a
linear bounded operator on L?. Thus X% — X" in the strong operator topology,
and, by the above, we get equiconvergence with respect to Z. O

Jo—j

LSS A X 1%k ) S Y Al e

JEZ ko2 €Z ki1=J1—j JEZ ko €Z
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CHAPTER 10

Boundedness of Multilinear Singular Forms

In this chapter we give the proof of Theorem [E.1] which is devided into five
parts dealing with the five types of operators (I)—=(V) listed in that theorem.

10.1. Proof of the main theorem: Part I

We are given a family ¢'= {¢;} with sup, [|¢;|l5. < co. In this and the following
sections we use the notation

sup, sl
sup, Tl
introduced in (56). Notice that always I'; > 1.
Recall,
27
Al o (brye e baga) = A (br, b, (1= Pybsr, (I = Py)baga).

JEZ
Given € > 0 and ¢, it is our goal to prove Part [l of Theorem 5] i.e. for 1 < p < 2,
the estimate

(10.1) A} 1 pa(brse o b))

< Capeloup 512 log* (1 + n) (T otlloe ) 1041l B4
=1

We formulate a stronger result which will also be useful in other parts of the
paper. For this, we need some new notation. Let 1 < [y # I < n+ 2 and let
(b 1§ € Z,1# 11,13} € L®(R?) be a bounded subset of L>®(R?). Let ki, ks € N,
and fix uy,us € U.

Define an operator S,lcll”%z’ ; (which implicitly depends on {b? 1J €L H# 1, aY
u1, and ug) by the formula

/ o(x) (ST f)(x) da

N o _ S . ,
= Al N 0y Q] £ 6, - W0 Qg 2l b - B).
THEOREM 10.1. Let 0 < e < 1 and suppose that sup; |||

li,le E l1,l2
Sk17k2 - Squk27j

JEZ

B. < o0o. Then

converges in the strong operator topology, as bounded operators on L?. Moreover
there is ¢ > 0 such that

. _ !’
182 Nzasre S luallluz ]l sup ||s; )| o min{ 1, n2=®EFF2= Dy (T sup (16l
J #0102 7

89
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PrROOF THAT THEOREM [0l IMPLIES INEQUALITY (I0.)).
For this, fix L>°(R9) functions by,...,b,, with

(10.2) bjllc =1, j=1,...,n.
For ki, ks € N, define operators V, Vy,, and Vy, 1, by the following formulas.

[ o@0n@) doi= S AR by, by (2= P = P,
[ @)@ de = 3N b b Qi £ (= P,

/ 9(@) Vg £)(@) d = 3 AP (b1, b Qo [ Qs1s9)-
J

The estimate (I0.]) is equivalent to
(10.3) VIlr—re S sup ls;ll e log?(1 4 nl.).
J

In light of ([6:2), we have the following identities,

V=) Vi, V= Vi

k1>0 ko>0
To see [I0.3]) we first use Theorem [[0.] to deduce
Vi o ll 222 S mindsup ||; |5, n2~ *F 520 sup ||| 11}
J J

Thus, by Lemma B13]
||V;C1 HLQHLQ 5 Z min { SuP HCJ‘HBE 7’7,2_(/€1-‘rk2)czs7 SuP ng”Ll}
k1>0 J J
which implies

(10.4) Wiy Lz S sup IS min{nl.27%2¢ log(1 +nl.)}.
J
We turn to the proof of (I0.3). Define an operator W; by

A[gj(»zj)](bl, ey bn, bn+1, bn+2) = /ijn+1(x)bn+2(x) dl’

The Schwartz kernel of W; is Dily;w;(z,y) where
(10.5) wj(z,y) = /gj(a,x —9) H bi(279 (z — ai(x — y)) do.
i=1

We observe that Vi, = > (I — P))W;Qjtk,. If we set S; = (I — P;)W; then the
Schwartz kernel of S; is Dily; s; where s;(z,y) = wj(z,y) — [ ¢(z — 2" )wi (', y). It
is easy to see that Int'(s;) < |[¢[|z1 =: A and Intl(s;) < ||s||ls. =: B.

We wish to apply Corollary B2, with S* = 3 5;Q;1x, = Vk,. By Lemma

sup; [ls;l
0.4, we have D, < sup; |[s;]|5. and Dy < (sup; [|s;l|z1) log(l—l-nsup]j”—;lii). Plug-

ging this into the conclusion of Corollary RI12, ([I0.3) follows, and the proof is
complete. ([l
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Proof of Theorem [I0.1l In light of Theorem[2.9] it suffices to prove Theorem
0T in the case Iy =n+ 1, I, = n + 2. We may also assume the normalizations

sup ||b§||Oo =1, 1<i1<n,
(10.6) i
luaflu =1 = Jlug

With these reductions, our goal is to show

(10.7) 1S5 0 2l 2 S max { sup [l n2” *152 sup || 1 } -
J

To finish the proof we define, for j € Z, ki1, ko € N, an operator S; x, k, = Szzll’}gu
by
[ 9@) S af@) e = AN BT, 1)1 izl
so that S,?:,;’nﬂ = ZjeZ S ey kea -
We claim that there is ¢ > 0 such that for j, k], k) € Z, k1, ke € N,
(108) || Quy Sy oy oo Qi vy 41,

< min { sup [|g;]|5_n
J

L2— L2
9= (kitha)es g—|ka—kp|—|ki+i] sup lsillz}-
J

To see this observe first that using

19wy Qg o [un] | oy o S o~ Ikitil

1@ kg s [12) Qg g L2 2 S 271272l
it follows from the simple Lemma 2.7] that

- — ! - y
L2—L2 52 k2 =kl ‘lir]lHCj'i‘k?’l”Ll'

(| Ot Stk r ks Qi+

Using || Qg llz2 L2, |Qjtr;+hyllz2—r2 S 1, it follows from the main L2-estimate,
Theorem [7.8] that

B, ’I’L2_(k1 +ka)ce

| Qt Skt e s Qi || 1o o S i

for some ¢ > 0 (independent of n). Inequality (I0.8) follows from a combination of
the two bounds.
To prove ([I0.7) we use Lemma [0.1] and inequality (I0.8)) to conclude

[T P2

< Z min { sup IIs;7 ||Bs no~(kitka)ee 9~ k2 —k3|—|k1+j] sup lls; HLl}
j,k)€EZ J J
1/227(k1+k‘2)66/2

< min { sup || |5, 7 , sup |||z}
7 J

where we have used ||s;|[z1 < [|s;||5,. This completes the proof (with c replaced by
c/2). O

10.2. Proof of the main theorem: Part II

This section is devoted to the boundedness of the multilinear forms All,n 4o and

A}, ;. In §I0.2T) we shall formulate and prove a crucial L? bound for a useful
generalization of the form of All,n 4o and then deduce the asserted estimates for

All’n+27 and All’n+2. The proof of the main L? bound will be given in §I0.2.21
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10.2.1. The main L? estimate. For 2 <[ < n, fix bounded sets

{b] :j €2} C L®R?), with sup [t [l <1, 1=2,...,n.
J

For by € L>®(RY), j € Z define an operator
Wilsj,b1] = Wilej, b1, b5, .. b
by
[ 9@ Wils bl f(a) do = AL\, b B 1.9,

and we denotes its transpose by "W;[bi]:

/ F(@) Wils, bilg (@) de = Al )01, b, . B, £ 0),

Define an operator Ty = Ty (<, b1] by
N
Tv= > (I—-P)Wils;,(I - P)bi]P;.
j=—N
Using I — Pj =, ., Qj+r we decompose Ty = ;- TE where

No

TN = > QiwxWils;, (I = P)bi]P;.
j=—Ni1

We now state our main estimate and give the proof that it implies Part [IIl of

Theorem [E.1] in §10.2.3] below.

THEOREM 10.2. Let 0 < ¢ < 1, and sup, [[5j[|5. < co. Let T be as in (5.6).
Then TE converges to an operator T*, and Ty converges to an operator T, in the
strong operator topology as operators L? — L?. Moreover,

IT* 22522 < Cacllbilloo sup [|s; | .1 min{2_51knfg,1og3/2(1 +nl.)}.
j

and
TNl 2 < Caellballo sup [|5; [ 21 log™ (1 + nle).
J

10.2.2. Proof of Theorem For fixed k > 0, in order to bound 7% we
need to prove that for f € L? the limit

N

> QiWils, (I — Py)bi] P f

j=—N

exists in L? as N — oo and that the estimate

L2—1?2

N
(10.9) H > QikWilss, (I — Py)bi] Py
j=—N

< Iballoc sup 16 2 min{2~*nl'Z, log (1 4 nl'.)}
i
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holds uniformly in N. By Proposition [6.5], both statements are a consequence of a
square-function estimate, namely, for & > 0

(1010) (3 (@ nllWilss, (1~ Pl f]2)

JEZL
S Ibr oo f 2l sup [l ][ 2 ming2~=*nT2, log™ (1 4 nT.)}.
J

To show (I0.I0) one establishes the following two inequalities:

(X [ 1@ sl Wifeso 1 = P)biIPs s (o)

JEL
. 1/2
(10.11) QW s (1= PL) - P f@)])
< 112l el sup [ 2 min {2552, og (1 + T’ ).
J
and
1/2
1012) (3 [ [@eldWifss, (1 = P)nlia) - Pif @)

JEZ
S F 112110 llool el sup [l ][ 1 min{2~=*nT 2, log™2(1 4 nT.)}.
J

For the proof of (I0.I2) we need the notion of a Carleson function.

DEFINITION 10.3. We say a measurable function w : R? x Z — C is a Carleson
function if there is a constant ¢ such that for all k¥ € Z and balls B of radius 2~%

(k € Z),
<ﬁ/}3;€|w(x,j)|2daz)2 << oo.

The smallest such ¢ is denoted by ||w||cari-

REMARK. w is a Carleson function if the measure
dp(x,t) = Z|wxj|d:td52g()
JET
is a Carleson measure on the upper half plane (in the usual sense) and the norm
lw]car: is equivalent with the square root of the Carleson norm of p.

Carleson measures or Carleson functions can be used to prove L?-boundedness
of nonconvolution operators. This idea goes back to Coifman and Meyer [11, ch. VI]
and was crucial in the proof of the David-Journé theorem [13]. One uses Carleson
functions via the following special case of the Carleson embedding theorem. A proof
can be found e.g. in [28| §6.II1] or [36] §II.2].

THEOREM. Let w be a Carleson function. Then,
1
) 3
(3 [ 1Pss @ Pwte. ) i) < Callwllan 1
JEZ
Note that (I0.12]) is an immediate consequence of this theorem and the following

proposition.
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PrOPOSITION 10.4. The function
wi(x,§) = Q4[] Wj[ss, (I — Py)bi]1(x)
defines a Carleson function and there is C' < 1 so that for 0 < &’ < C~1e? we have

the estimate

(1013) [Jpllcart S @i lullloall ool sup 511 min{275'nl2, log™2(14-nT.)}.
J

Our next proposition is a restatement of the other square-function estimate
([I0Id), in a slightly more general form.

PROPOSITION 10.5. Let 0 < ¢ < 1. There exists C < 1 so that for 0 < ¢’ <
C~le

Z/|Q3+k Cja ]Pf( ) — Q3+k[ ]Wj[gjvb{]l(x)'ij($)|2)1/2

JEL
S £ 112 50p 107 [loo [l sup [ls; ]| 2+ min{27* nT'Z, log(1 + nl'.)}.
J J

We emphasize that the implicit constants in the above propositions are inde-
pendent of n and independent of the choices of b with ||b][|oc = 1.
10.2.2.1. Proof of Proposition [[0.4. We need to prove for 2o € R?, ¢ € Z,

(10.14)
_ j ) 1/2
(Z Tkl oy (@AW 5 (T = P, B, B (0)] do)
< b1 ool sup [l || 2 min{27*"nl2, log® (1 + nl.)}.
J
Now
1 )
_— <, (I — Pb,b,...,bﬁl x)|dx
|Bd(l‘0,2€)| Ba(zo.2¢) ’Q]-‘rk [J ( ) 1, Y2 ]f( )’

1

= 0] Joscon Q1 [ulWilsj, (I = Py)by, b, ... 0] f (o + 2°x) | dac

and we have by changes of variables

(10'15) §j+k[u]W [gjﬁ(l P)blv 2,...,()31}]0(&30—1—2[ )

- QJ+€+k[U] J+f[§]’ (I - PJ+€)bla 29 - - 7%]]0( )
where by (z) = by (xo + 20x), bl (z) = b (xo + 2'2), f(z) = f(xo + 2%x). Applying
this with f = 1 we see that it suffices to prove (I0I4) with zo =0, £ =0.

The somewhat lengthy proof will be given in a series of lemmata, partially re-

lying on the L? boundedness results in Chapter [l Our first lemma is a restatement
of such a result.

LEMMA 10.6. Let 0 < & < 1. There is C <1 so that for all ¢’ < C~'e we have
for all k >0, and for all u € U,

1Q; 4 1l Wl balll s 22 S min {n2™ " [igil15, 1155120 } 1o el
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PRrROOF. For f,g € L?, we have

/ 9@) @[] Wy 5, 1] (@) dae = AL )b, b, b, £, T [ulg)

From here, the result follows immediately from Theorem O
We now give an estimate on A[c2)](by, ..., byio) under the assumptions that

the supports of b; and b,, 42 are separated.

LEMMA 10.7. Let 0 < e < 1. For all j,k >0, s € B.(R" xRY), u €U, R > 5,
bi,. s bpi1 € L®(RY), byyo € LY(RY), with

supp(b1) € {|v| > R}, supp(bny2) C {|v| < 1},

we have

J —
IALSZ)b1, - b1, Qi ulbnso)|
n+1

S lllw (T loelloe) b2l min {(27R) =<l . ll<lz: }-
=1

PRrOOF. Without loss of generality, we take ||bj|p~ = 1, 1 <1 < n+ 1,
1brs2]lzr =1, and |Jullyc = 1. The bound

AL b,y bor Qanltlbas2)| S sl
follows immediately from Lemma 2.7 so we prove only the estimate

(10.16) AL (B, b, @ gulbnse) | S s, (27R) =5/

We estimate

|A[<j(-2 (b, .-, b1, Q)i [ulbrro)]

e

H bi(z — ;v))bypr(z — ) u® ) (@ — 2 Vbpyo(2') dz da’ da dv

= op // @) (@, v)||b1 (2 — ar0)[[u® ) (2 — 2')| dz do do.
z'|<1

Fix 2/ € R? with |2/| < 1. Then

// / <@ (0, 0) b (@ — on0) [ (@ — o) der dev do
< /// s, )| [b1 (z — @127 70) 220 (1 4+ 29+ |2 — 2/|) =42 dz do dv

-3 T

11=0102=0
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where
Z(ly, 1) =

) 9d(i+k)
sla, v)||b1(x — 12770 _ dz do dv

21 <14 |v|<2 !
2l2 <1420k | g g/ |<2l2H?

We further split

SN Il h)

11=015=0
=Y D> I+ Y, > I(hk) =)+ (D).
11=02l2>R2i+k-2 11=02l2 < R2i+k~-2

We begin with (I). We have, provided &’ < e,

H<Y Y grue-u J[[ avwrkeox

= 1 j+k—2
11=02!2>R2J 211 <1 [v|<2i+1
202 <1429k |p—g/ |<2l2t!
9d(j+k)

bi(z — 277 dx dod
brle = e iy g ey

SY > 2R s, S @R TV dls, S (27R)T <5, -

[1=02l2>R2i+k-2

We now turn to (I7). We have

(II):i S ghek/a

11=02!2 < R2i+k—2

/ ) 9d(j+k)
J[[ arehistaipe-azv) dndods.

(14 29+k|g — 2/|)d+3

21 <14 jv|<2h !
202 <1420 Fk | g/ |<2l2t?

On the support of the integral, |z — ay277v| > R (by the support of b;). Since
14 2%k |z — 2| < 2B+ we have |z — 2/ < 22 T1777F, Thus, |z| < 2kH7-F41<
B41< 84+ 8 < 3R Thus, [0;2790| 2 R and therefore |a;| 2 Zj% > 2i~hR,

Plugging this in, we have for &’ = ¢/2,

(U)gi S ol kA iRy /// (1+Jv])¥

h=020 <Rk 211 <14-|v| <21+t
22 <1429k |z g’ |<2l2H!
’ ) 2d(j+k)
(L+ e ) = [s(a, v)||b1 (z — @127 70)| dz do dv

(14 20|z — z/|)d+3

o0
S Y TRy R F s, S (TR) .
11=02l2 <« R2i+k—2
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Combine the estimates for (I) and (I7) to obtain (I0.16]) and the proof of the lemma
is complete. (Il

LEMMA 10.8. Let 0 < ¢ < 1. Then for all j,k > 0, w € U, R > 5, and

5
by € L>(RY) with supp(b1) C {|v| > R} we have

— 1/2
([ 1@taWyls 1) (e)? de)
o<1
S Il b lloo min {27 R) =/l lI, lissller }-
PRrOOF. Let B = {z : |x| < 1}. We have, by the previous lemma,
_ o \1/2

G AAMBLASRANEIE

<

J . . —
< swp AR b LR b))
[[bry2ll1=1
supp(bn4+2)CB

S W lullaclbrlloo 1b+2 ]l min { (27 R) % ls; 15, llsjlle1 }
supp(bn42)CB
and the assertion follows. |
S5l

For j, k1,ke > 0 and u € U, define an operator Vj g, k, = Vj,kl,kz by

/f(x) Viki ko9 (2) dw = /g(fv) (Qj 1k, [WIW; [, Qi F1) () doe

i . . —
= ASENQyka oD -6, 1,10y, Iulg).
LEMMA 10.9. Let 0 < e < 1. There exists ¢ > 0 (independent of n and €) such
that for €' < ce, ki, ks > 0, and for all f € L*(R9),
1/2 ) .
([ S 1Visinat@)? dz) ™ S Ufluellulhesup s, min {1027 #4507,
7>0 J

PRrROOF. From Theorem [I0.I] we get the bound

(10.17) |3 Vi ks
>0

N i —&' (k1+k2)
1212 "™ HUHU mln{LnQ 1+k2 Fa}-

Let 4; be any sequence of +1. Note that d;Vj i, i, is of the same form as Vj j, &,
with ¢; replaced by d;¢;. Thus, by (I0.I7),

t
H > 6" Vikr ko f
>0

where the implicit constant does not depend on the particular sequence §;. By
Khinchine’s inequality

1/2
([ Vit @P o) S sup | 365 Vi f
Jj=0 Jj=0

where the sup is taken over all +1-sequences {;}. The result follows. ]

| S el min {1, n2< G152, 3,
2

R
2
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98 10. BOUNDEDNESS OF MULTILINEAR SINGULAR FORMS

LEMMA 10.10. Let 0 < € < 1. There exists ¢ > 0 (independent of n and €) so
that for &' < ce2, for all by € L=(R?), for all u € U,

Z /:c|§1 (@1, [WIW [, (T — Pj)b1]1)(a¢)‘2 dx) 2

>0
< (e, d)|ulacllbr [l oo sup [l55]| 2 min{2 ™51 nl'2, log™ (1 4 nl'c)}.
J

PrROOF. Fix b; € L*®(RY) and u € U. We may assume ||by||p~ = 1 and
llullu = 1. Fix 0 < 8 <1 and § > 0 to be chosen later, see (I0.19) below. Given
ki,ks > 0 we decompose by = blf,lo’fz + b’f}o’k? where

blm,kz( )= bi(y) if |yl > max{10,521+5(k1+k2)}
1o 0 if |y| < max{10, g 21+3(ki+k2)} 7

byls™ (y) = bi(y) — b2 (y).

We expand I — P; =, Qjik, and then have

(X [ 1@l Wil (1 = i) ao) ™ < 1)+ (11

Jj=0

where

_ 1/2

0= (X [ 1@ Wil Qb @) do)
k>0 >0 B

1/2

(1= ¥ (2 [ 1@, Wyl Qa5 ) ) o)

k2>0 j>0

We begin by estimating (I). Because j, ks > 0,

supp(Qj+k2blf1’k2) C{y:|y| > Rk, k,} where Ry, j, = max{5, 52(’“1"’]“2)6},

, 00

we may apply Lemma [I0.§ to see

(1) = Z (Z/B ‘(@j+k1[u]Wj[§j,Qj+k2blff£2]1)(x)|2 d;v)l/Z

k>0 j>0

. , o 1/2
£ 3 (X min {2 Run) > sl sw sy )

k>0 j>0
< sup||§j/||L1 Z (Zmin{l,2_j6/2_(k1+k2)55/2,8_5/21"‘g>1/2
3’ k2>0  §>0

Ssuplgjflpr Y min{1, 27tk A=< A Y 10g1/2(1 4 g2E/4T2)
J ko>0

< sup || || 2 min{1, 2751594 3=/4T } 1og® 2 (1 + B=</4T,).
J
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We now turn to (I7). We have ||b’f7ldk2||2 < RZ{,ng‘|b]1€,ldk2||oo < RZ{,QI@ and use

~ ~

Lemma [T0.9 to estimate, for some ¢; € (0, 1),

S (X [ 1@ Wi 5, Qi M @) )

ka>0 >0
1
2
S (S [ Viraabi ) )
ka>0 j>07 DB

sup ”ngLl Z Hb11€’10,k2||L2 min{l, n2*61€(k1+k2)]_“5}
J k2>0

(NI

(I1)

N

(10.18)

A

sup [|s; |t Z (1+ ﬁ2k16+k25)d/2 min{1, n2-cek1tka)p_}
i ko>0

oo+ Y =)+ D)

k2>0 k2>0
1<B2k10+k28 1> gok1othas

We take

(10.19) B=(nl) Y, 5=

2d°
Notice that since 32%19+*20 > 1 in the sum (I1;) we may replace the power d/2 by
d and get, with the choice (I0.19),
(62k15+k25)d/2(n2—5'k1—5’k2FE) < Bdnre2(k1+k2)(5d7015)
< 2—(1{31-‘1—]62)015/2

and thus
(IL) S Y 27 titkene/2 gup gl o S 2719/ 2 sup g 1.
ko>0 J J
Next,

(I1) < sup|s;lle Z min{1, n2~(Fitk2)erep y
J ko>0

S sup [z %
J

< sup ||g;] 2 min{27 1R, log(1 + nl'.)}.
J

log(2 + 27kl n) if 27aekilp > 1
2—ackip p if 2—cekiT . < 1

Finally we use the choice (I0:I9) in the above estimate for (I) and get

c 52 e £ e £
(I) < sup [l ]l 2 min{1, 2% @ LT} 10g2(1 4 T2 )
J

< sup |6 ||z min{1, 2_’“1052111’3} log®/%(1 4 nl.)
J

with ¢ = ¢1/8d. Combining this estimate with the above estimates for (I7;) and
(I13) yields the assertion. O

PRrROOF OF PROPOSITION [[0.4, CONCLUSION. The lemma is just a restatement
of (I0.14) for zp = 0 and ¢ = 0 and by (I0.I5]) we reduced the proof of (I0.I4]) to

this special case. ([l
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100 10. BOUNDEDNESS OF MULTILINEAR SINGULAR FORMS

10.2.2.2. Proof of Proposition [[0.5. We start with an elementary observation
for f € L.

LEMMA 10.11. For allk >0, j € Z, by € L*(RY), and u € U,

1Q; 41 [l Wiy, bl fll e < Nullaellsillz 1B lloo 1 lloe-

PROOF. For g € L' with ||g||; = 1 we have, using Lemma 27,

| / QyrllWia]1) (@) do| = [ALV)b1, U, 0 .1 Q L)
S b lloo | flloo Qﬁk[u]glmlcjlly S s loslulllss 2

completing the proof. O

LEMMA 10.12. There is c € (0,1) (independent of n and ) so that for &’ < ce?,
and allk >0, j €Z, ue WU, by € L*(RY), f € L*(R?) we have

5 \1/2
([ 1@ saladWslss balr(o) Py (o))
< 17l miml s, m2 s s}

PRrROOF. We may normalize and assume ||b; ||cc = 1. We may assume, by scale
invariance of the result, that j = 0 (see (I0I0)). The assertion follows then from
the inequality

_ 1/
1020) ([ [@ulaWols, b1 @) Pof o) Ptz)
< el 1 2 min el 22,2~ 5, ).

Because the convolution kernel of Py is supported in B%(0,1), it suffices to show
([I020)) for functions supported in a ball B of radius 1. We may assume (by trans-
lating the functions b;) that B is centered at the origin. Let B* be the ball of
double radius.

Now || Poflleo S ISl for f supported in B, and therefore it suffices to show

(10.21) Q5 [W]Wols, i1l 25y S llulluw min{n2™*[[cls_, lls; 11}

To show ([I0.2I)) we split 1 = 1q,, + Ige, where Qis = {2 : |z| < 52"} with a
choice of § < ¢ to be determined.

It follows from Lemma [[0.6] (or directly from Theorem [T.8) that for some ¢ > 0
(independent of n)

1QxlulWols, ba]Lays llza(s) S L lallull min{n2 " ¢ls., [l £}
(10.22) S My min{n2 === c||5,, <]l 1}

and thus we want to choose § < ce(2d) ™!
Next we estimate the L2(B*) norm of Q[u]Wols, bl}]lﬂgé. Let

6(047’0) :§(1_OZ1, 71_04717/0)
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10.2. PROOF OF THE MAIN THEOREM: PART II 101

c < . < = . AN—
~ )
so that <18, < llslls, and [l = o]z We have, for llgllzase) = 1,

| / [u]Wols, ba]Log, ) (@) da
|A[c)(b1,09,..., by, Log, "Qrlulg)| = |A[G)(b1, 5, . .., by, "Qr[ulg, 11926)|
= ’////G(a,v)bl(x—aw)x
Hbo Toe (x )u(zk)(y—x—l—v)g(y) dz dy dv da‘

and this is estimated by

[ 00—+ ) de o oy

|| >5-2%%

< Z Z //// av||u(2)( — x4 v)g(y)| dz dv da dy

1
21222k 12=0 <|w|<2lt
2'2 <14 |v|<2l2 !
-3

SIP VD SRETD DD OE

2011 >92.9k8 I,=(11—3)V0  2l1 >2.2k6 l5=0

We estimate

n< > Z 9l

201 >2.2k8 [5=(1; —3)VO0

//// (1 + [v)*[e(a, U)||u(2 Ny — & +v)g(y)| dz dv da dy

2" <|z|<2h !
2'2 <14 |v| <22

o0
S > Y s, fullliglh

201 >2.2k8 [5=(1; —3)VO0
—ko —ko
< lislls, llullullglh2= < lislls, llullu2™",

where the last inequality uses the support of g to see [|gll1 < |lg|l2 = 1.
For (II), we use the fact that Iy < I3 — 3 to see that on the support of the
integral, since |y| < 1 (due to the support of g), we have |y — z + v| ~ 2. Thus,
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we have
1,—3

ins S 3 ulhex

211 >2.2k8 15=0
2kd
U dz dv dy do
//// 1+2k|$—v—y|)d+%|g(y)| Y

2l <z <2ttt
22 <14 |2l t!

l1—-3

S D D2 uflux

201 >2.2k6 [5=0
2kd
v 1 dx dv dy do

2l <z <2ttt
2l2 <14 |y|<2l2 !

l1—-3

Yo 2 2T i e g

211>2.2k6 [5=0
S lullallslzallglh2 =™ S 274 lullells]| 21

Finally, we have, by Lemma [I0.11] applied to f = ]19257

| [ 9(@)@ululWolta g, (o) da| < sl

where the last inequality uses the support of g again to see ||g|l1 < |lgll2 = 1. If we
take & = ce/(4d) then a combination of the estimates for (I) and (IT), and ([I0.22]),
yields (I0ZT)) for ¢’ < ce?/(4d). This completes the proof.

In what follows we find it convenient to occasionally use the notation
(10.23) Mult{g}f = fg
for the operator of pointwise multiplication with g.

LEMMA 10.13. Let 0 < e < 1/2. Then there is ¢ > 0 (independent of n,e) such
that for &’ < cg2, for allk >0, j,l € Z, ¢; € B, u € U, by € L®(RY),

1Q; 4wl W, 011P; Qi — Mult{ @ 4 o [ul W[5, b1]1} P Q| o, 12

< Jllulhellbr oo min{nllll5.27%", 27 clle} i1 >0,
[ullacl[by]|oo min{nll; |15, 2'/427* icllza}  if 1 <0.

PROOF. We may assume |||y = 1 and ||b1||p= = 1. We have
(10.24) 1P QjsillL2 2 S min{27, 1}
Now, by Lemma [I0.6]
(10.25) 1Q; k[ Wilbilll 22 < llsjll
and, by Lemma [[0.1T] and ([T0.24]),
(10.26) Mt {Q; 1 [u] Wi [, ba]1} Py Qjsall 2 2 S min{ 1, 27"}l o5
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moreover, by Lemma [[0.12],
(10.27) MW@ o [l W 5, ba 1P Qg all 2 2 S m27* o],

A combination of (I027]), (I026), and (I026) immediately gives the assertion for
[ > 0, and also the second estimate for [ < 0. It remains to show that

(10.28) ”(@g+k[u]wj (55,011 Pj Q41 — Mult{QjJrk[u]Wj (5,01 )1} P; Q5 il 12 1
< nllsjl|p. max{2'¢/2 2Y/4} if 1 < 0;

indeed the assertion follows by taking a geometric mean of the bounds in (I0.27)

and (I0:28).
By scale invariance (see (I0.15) it suffices to show ([I028)) for j =0, i.e.

(10.29) (R = R2) Q| o, 2 S nllsjlls. max{2'</2, 2174} if 1 < 0

for Ry = Qu[ulWo[s,b1]Py and Ry = Mult{Q, [u]Wols,b1]1}Py. Let p1, p2, p be
the Schwartz kernels of Ry, Ro, Ry — Rs, and let o_; be the Schwartz kernel of
Q;. We wish to apply Lemma (note the notation I = —¢ in that lemma). It is

immediate that o, satisfies assumptions (823D) and (823d) with By, B, Boo S 1.
The function p satisfies the crucial cancellation condition (824]) since

(Qr[u]Wo[s, b1] Py — Mult{Q[u]Wols, b1]1} Py)1 = 0.
It remains to check the size conditions ([823al). We have
)l < [[[ =)o = lio — o)l de' da dy
and thus clearly

sup [ |pr(e,y)ldo < ull <]z < 1
Yy

since [Jul; < ||uljw. Also for some M > d + 1,

/ 112, 9)[(1+ & — yl)dy

2hd (o, 2" — o)
< [(+]e- ///‘ : dz' da dy' d
Jasie-u) TEesaperre= S (e  dy

< // ls(a, 2" —y)(1+ |2 —y'|)°w(x, 2, y) da dy’ da’,

where

w(z,a',y') =

ghd / 1 (Lo —y)e
(It 25— )5 ) A+l =DM L+ =y

We have
sup [ fslaa’ = )I(1+ |o' = ') dardy’ < [

and thus it suffices to show that

(10.30) Sup/w(x,x’,y)dx' <1

z,y
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Now by the triangle inequality (1+|z—y|)¢ < (1+]|z—2'|)*(1+]2'—y'|)*(1+]y' —y|)¢
and hence

2k (1 4 |z — 2'|)¢ 1
, l7 d /</ / d d /
/w(m 2’ y)da’ < (1+2’f|x—x’\)d+% (1_|_|y/_y‘)M—a Yy ax

kd ALY
o [ R,
(1+ 2b|0 — a/[) 45

and (I0.30)) follows easily, provided that e < 1/2. Thus condition ([823al) is satisfied
for p;. By Lemma [[0.I1] it is immediate that condition (823al) is satisfied for po
as well. Thus we have verified the assumptions of Lemma B0 and (I0:29) follows.
This completes the proof of the lemma. O

PROOF OF PROPOSITION [[(L5], CONCLUSION. We may assume that [u[ly = 1,
[ fll2 = 1, and sup, [|b}[|oc = 1. For k > 0, define

Ryj = Quuil[u]Wyls;, b1 Py — Mult{Q,, , [u]W;[s;, b1} P
The proof is complete if we can show, for k& > 0,

1/2
(10.31) (Z ||Rj,kf||§) < sup ]l min {2-#4T., log(1 + nT.) ).
: J
J

Lemma [I0.13] implies

sup; |||z min{nl.2-k" 271}, if >0,

R . . < ’
|| k,ijJrlHL2—>L2 ~ {Supj ||§||L1 min{nF8215/42—k8 , 1} if Il <O.

Now

(ZHRk,ijQ) (ZHRkJZQg-&-lQ]-HfH )
S Z (Z HRk,jQJ-HQJ-HfH )2 S Zs;l/p HRICJ’QJ"-H”L"’HL"’(Z Héj-',—lf“%)lm

J

< sup llsill e {me{nf 9 ke’ , 27 l} + me{np gle/4g—ke’ 1}}
>0 1<0

< sup ||s;]| L1 min {2761’%1“5, log(1 + nI‘E)}
J

for some sufficiently small e; > 0, and the proof is complete. ]

10.2.3. Proof that Theorem implies Part [[1l of Theorem [5.1] Let
1 < p < 2. The asserted result follows from

(10.32) | S ALPIO by (= PbL Yy by (1= Pbuga, Pibuo)

410
JEL
Ssup gl o log® 2 (1 +nlo) ([T sup 167 lloo) 1Bl 1Bn1 llpl1Bnally
J i=1..m I
7 o n
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and
(10.33) ‘ZA N, by (= Pbi by b Pibaya, (T = Py)bays)
JEZ
S sup [lgjllz log™ 2 (1 +nTe) (- [ sup 167 [loo) 11B1llso Bn 1 llplbrs 2l
J i=1,...,n
i#l

Once ([0:32) and (I0.33) are established we use them for the choices b! = b, if
i <1, b = P;b;, if | < i <n. Now it is crucial that ||P;| =~ <1 (here ¢; > 0,
and [ ¢; =1 are used). Hence the two inequalities for All’n 41 and All’n 4o claimed
in Theorem [B.T] are an immediate consequence of ([0.32) and (I0:33).

In order to establish (I0:32) and (I0:33]) we may assume without loss of gener-
ality that [ = 1. This is because we can permute the first n entries of the multilinear
form and replace g; by £¢; as in ({fI)). We may also assume that

il <1, W]l =1, 2<i<n.
Now, in what follows let
Sila,v) =¢(l—au,...,1—ap,v)
(as in ([@2))). To prove ([I032) for I = 1 we observe

STAENI = P)ba, b, (1= P)bogr, Prboga) = /bn+2(l‘) "Thyy1(z)de

where
'T= ZPJth[gjv(I_Pj)bl](I_ Pj) = ZPjo[€j,(I—Pj)b1](I— b;).
J J
Now we expand [ — P; = >, Qj+x and we get ‘7 = >, *T"* where
= ZSijJ,.k, with Sj = Pjo[fj, (I - Pj)bﬂ.
J
The Schwartz kernel of S; is equal to Dily;s; where

52, y) = / oz — 2')o; (e, y)dy

with
(10.34)

aj(az,y):/gj(a, y)(I — P)bi (277 (z — cvii(z —y Hb (27 (z — ai(z — y)) da.

We wish to apply Corollary 812l It is easy to check that
Int'[s;] Ssupllsjller = A, IntZ[s;] Ssupllgylls. = B.
J J

Now |32, 8;Qj+xllr2 12 = | 7% 12— > and by Theorem [0.2]
H ZSijJrk‘
J

278> 8;Qyenlliasrz S sup gl panl2 = D, .
: J
J

< su ; log®/?(1 + nl.) := D
o ge SEUR I s log? 2 (1 4 0T 1= Dy,
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106 10. BOUNDEDNESS OF MULTILINEAR SINGULAR FORMS

Now we easily obtain from Corollary [R.12] that

=550,

k>0 j

and (I0.32) is proved.

Finally we turn to (I033)), for { = 1. The case p = 2 follows immediately from
(I032), by duality replacing ¢; with ¢;. For p < 2 we observe that

S A= P)b1, b, B Pibagr, (1= Py)by o) = / Do () S;Pibp s (x)dx
JEL

with S; = (I — P;j)W;[s;, b1]. The Schwartz kernel of S; is equal to Dily;s; where

< . 5/2
e S Cp Sup ;]I 1 log®?(1 + nl.)

53(,1) = 0(z,9) — / b — 2')o; (2’ y)dy

with o; as in (I034). Then s; satisfies Int'[s;] < ||s;]|z: and Intl[s;] < |s;]|5. and
([I033)) for p < 2 follows immediately from the case p = 2 and Corollary B10

10.3. Proof of the main theorem: Part II1

Let n > 2and 1 <13 <l < n. In this section, we consider the multilinear
functional

Alll (bl, N bn+2) =

(1035) ZA bla-~-7bl1—1;(I_Pj)bllapjbl1+1;---a
JEZL

Pjbi,_1,(I = Pj)b,, Pjby,41,- .., Pjbyi2),

where, for some fixed € > 0, &= {g; : j € Z} C B-(R™ x RY) is a bounded set. The
goal of this section is to prove, for p € (1,2], by,...,b, € L®(R%), b,1 € LP(R?),
bnyo € L (R?), the inequality

(10.36)  |A}, 4, (b1, bpg2)]

< Capee sup [l5;llzr log®(1+nT'e) (T ] I1belloo) 1Bn41 llpl1Bnrallp,
J =1

together with convergence of the sum ([I0.35)) in the operator topology of multilinear
functionals. Moreover the operator sum Tlll,l2 associated to Allhl2 converges in the
strong operator topology.

It will be convenient to prove a slightly more general theorem. Let {b{ :3 <

1 <n,jeZ}C L>(R?) be abounded set, with sup;y, ||b{||Loo =1,for3 << n.
For by, by € L°°(R?) define an operator S;[by, ba] by

/ 9()(S;lb1, ba) ) (&) d = ALY = )by, (1 = Py)ba, b b2, £ ).

THEOREM 10.14. With the above assumptions, for 1 < p < 2, the sums

> P;Sj[by, bo] Py

j=—o0
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converge to S[b1, ba], in the strong operator topology as operators LP — LP, and
S[b1, be] satisfies the estimate

(10.37)  [IS1.balllrosis < Cage sup i 12 101+ nTo )by o b2 .
J

Proor oF (I036) civEN THEOREM [[0.T4l Using Theorem we see that
Theorem [0.14] also implies the inequality

‘ZA[gJ(Z)](b{,...,b{l (I = Pybu, by

b (T = P)b by b b, baga)

S sup [l 21 1og® (1 + nLe) b1, loollbeslloo ( TT 1167 00) 1ot llp 1Btz -
J 1<i<n
i#ly Ll
Since || Pjbi|lq < ||bi]lq we may replace b; by Pjb; for Iy +1 <i<lpy—1,i> 13 +1,
and if we use also P; = 'P; then (I0.30)) follows. O

The rest of this section is devoted to the proof of Theorem [0.14 Thus, we
consider sequences b € L>(R?) fixed (3 <1 < n) with sup, [|b[|z~ = 1. The L?
estimates in §I0.1] will be crucial. We restate them as

ProPOSITION 10.15. There is C < 1 such that for & < ¢/C, and for all
collections

{bn+1 jEL}, {bn+2 JEL} C Loo(Rd), with supr +1Hoo*]- supr +2||oo—1
J

we have for f,g € L*(R?) and ki, ks € N,
‘ Z A[g_](? )](Qj-‘r/ﬁfv Qj+kzga béa ey bZH»Q)‘
JEZ

S £ 112llgll2 min {27572 nsup [|g|s, , sup [l z2 }-
J J
Let T, 1, be defined by

(10.38) AN Qi fr Qs b b ) = / 9(2) Thy ko i () da

Then Z Thr kes,j 0nd Z YTk1 k,j cOnETge in the strong operator topology as oper-

ators L? — L?, with equiconvergence with respect to b3, RN bn_‘_2

Proor. This follows from Theorem [I0.11 O

PROPOSITION 10.16. Let {(b),b), - j < =1} € L®(RY) be a bounded set with
SUp;<_g ||b e = 1, 1 = 1,2, and let byi1,bnta be L functions supported in
{y:lyl <1}

Z Al Pyt Pibpo)| S bt Lo [Ba | e sup i |-
J

j=—00
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PROOF. We may assume ||b,y1||r=~ = ||bny2]|Le = 1. Then by Lemma 2.7]

27 i
AP0, b2, Pibugr, Pibsz)| S sup 11zt | Pibnca ll2] Pbasell2
J
S sup (|65l 2227 [bn s [[1 | Pibnalls S sup [l L1277
J J

where we have used || Pj||r1 2 < 27%/2 and then the support assumption on by, 1,
bn42. Now sum over j < —1 and the proof is complete. O

LEMMA 10.17. Let 0 < ¢ < 1. For all R > 5, all j > 0, bys1,byo € L
supported in {x : |z| < 4}, by, by € L=®(RY) with supp(by) C {v : [v| > R}, we have
AN (br, b, b b, byt )|

< min {(27R) "% |lg;lls..» ll55ll1 } 11 111 oo
1e{1,2,n+1,n+2}

PROOF. We may assume ||b;]|p~ =1,1=1,2,n+ 1,n+ 2. The bound

(10'39) |A[§g('2])](b17 ba, bg7 T bgm bnt1,bng2)| S ng’”L1

follows immediately from Lemma 2.7 and the assumptions on the supports of b, 1
and by 42.

In order to establish the bound (2jR)_5/2||<j‘|35 we estimate, using the as-
sumption on supp(by),

’A[gj('2j)](b17 b27 b:j37 ey qu bn+1a bn+2)|

- | /// <) (0, 0)b1 (2 — a10)ba(z — azv)x

(H bl (z — @30))bp41(x — )by () dz do dv

=3
: / / / R—|x |<J(‘2j)(04,’l})”b1(x_alq))lda dv dx
|z|<4 J|v|<8 J|az|> ‘v\‘ﬂ

5/ / sj (v, w)| dex dw
Jw| <243 Jay > L1

2= |w|

here we have used R > 5. Let m < j + 3. Clearly

(10.40) / / |sj (o, w)| dev dw
27n—1§‘w|§27n |a1|2 R—|4]

2—J|w|
S (7R Eglls.. S 27 (27 R)E I,

e, 1 ~v

Also

(o.a1) [ [ lslaw)ldade S 27 gl £ 275 s
2miJw| <27 e |2

R—4|
2= 7 |w]

We use ([[0.40) for 2™ < (27 R)Y? and ([IQAI) for 2™ > (27R)'/2, and sum. The
assertion follows. O
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LEMMA 10.18. Forl=1,2,n+ 1,n+2, let {b)""* : j k1, ky € N} C L®(R?)
be bounded sets with sup; x, 1, ||b{’k1’k2||Loo =1. Let 8 >0, 6 >0 and assume
(10.42) supp(b?F*2) € {v:fv] > max{5,62k16+k25}}, Vi, k1, ke € N
and forl=n+1,n+ 2,

supp(bf"*%) C {v: o] <4}, Vi ki k2 €N.
Then

(@)1 1d:k1,k2 pgk1,ke 17 i pdkike gk ke
Z |A[§j Kbl 7b; ’b37"'vb%7bzb+1 ’bn+2 )|
J.k1,k2€N

< sup ||| log® (14 '),
J

Here the implicit constant depends on &, but not on B. The same result holds if

instead of (I042) we have
(10.43) supp(byF1+2) C {|v] = max{5,62k15+k25}}, Vi, ki, ke € N.

PROOF. Because our definitions are symmetric in b; and bs, the result with
([I043) in place of [I042) follows from the result with (I0.42]). Thus, we may focus
only on the proof with the assumption ([I0.42). Applying the previous lemma, we
have

Z 2y 3 g k1.k pgkike g i 2dkike g4k ke
|A[gj ](bl ’b2 7637""%’bn+1 7bn+2 )|
J.k1,k2€N

. —q —e/2
S Y. min {27792 (max{5, g2k 001 i sup [|;l 5, sup [|s;l 21 }
j:k1,ka €N J J

< sup [|g;]| 22 log® (14 87'T2),
J
completing the proof. |

PROPOSITION 10.19. Let by, ba, bpy1,bnia € L (RY). Let &; be defined by

(10.44) AN = Py)by, (I = Py)ba, b, b, Pibust, Pibuyo)
:/anrg(l') Gjanrl(x) dx.

Consider &; as a bounded operator mapping L™ functions supported in B40,1)
to LY(B4(0,1)). Then the sum Y. &, converges in the strong operator topology as
bounded operators L>=(B%(0,1)) to L'(B%(0,1)) and we have for byi1, bpio with
supp(bn+1),supp(bnt2) S {y : [yl < 1},

‘ ZA[C_]@J)]((I - Pj)blv (I - Pj)anb%-v e -7sz7ijn+17ijn+2)’
JEZ

< sup g 1 log® (1 4 nI'.) 11 1161]] oo -
J 1€{1,2,n+1,n+2}

PROOF. We may assume ||bj]|p~ =1,1=1,2,n+1,n+ 2.
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By Proposition [I0.16] the required estimate holds for the sum over negative j
and thus we only bound

(10.45) ‘ZA ((I = Py)by, (I — P;)ba, b, ... b1, Pibyi, Pibosa)
7>0
< sup ||j ]|z log®(1 4 nle).
J

Let 0 < 8 <1,0 < ¢ < 1be constants, to be chosen later (see (I0.48). Implicit
constants below are allowed to depend on ¢, but do not depend on . For [ = 1,2
and k1, ko > 0 define

bk1 ko (v) = {bz(v) if |v| > max{10, 3 - 2k1o+kz0+1}

"0 0 otherwise

and
by (v) = by(v) — by (v).
We have, by (6.2) and Remark [6.1]
‘ STARENT = Py, (1= Py)ba, b, b, Prbosr, ijnﬁ‘
j=0

Z ZA[gj('QJ)](Qj+/€1b17Qj-‘rkzb?ab?’;a'"’bzz’an+1ann+2)‘
k17k2>0j20
<)+ II)+(III)

where

SN AN Qe Y2 Qa2 B, B, Pibigr, Pibn2)|

k1,k2>035>0

Z Z‘A QJJrk?lbIlCO 7Qj+k2b§1£2vb] '-'7b7]z7pbn+17pbn+2)
k1,k2>032>0

(11 i= 7 [ DDA @k b, Qb5 b o bl Pibust, Pibuy2)]
k1,ka>0 35>0

Because j, k1, k2 > 0, and by the supports of the functions in question, we have
k1 K1,k
SUPP(Q; 41, DY), supp(Q;44,0555%) € {v: o] > max{5, 3 2¥19+k201 1,

and

supp(Pjbn+1), supp(Pjbp2) € {v : [v] < 4}.
Lemma [I0.I8] applies to show
(10.46) (D) 10D S sup s 2 Tog™ (1 + 57T,

We now apply the L? result in Proposition [0.I5l Let Ty, x,; be as in (I0.33).
Then > >0 T, .ko.; cOnverges in the strong operator topology as operators L? — L2,

with equiconvergence with respect to bounded choices of by, 11, bp 12 € L°°(B4(0,1)),
moreover the operator norms involve some exponential deacy in k1, ko. If we apply
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: kiks pkik : .
this to by, b5, we may replace the L? norms with L°°-norms. Hence if we
define operators &y, k, ; by

/bn+2($) Sky ks jbnt1(x) do

27 j i
:A[§J(» Q)b Qjryb2, b, o b, Pibyy, Pibyyo)

we see that [ > bnt2(2) Sy, ks, jbnt1(z)dx converges with equiconvergence in the
choice of b2 with ||b,42]lec < 1 and supp(b,s2) C B4(0,1). Thus we get conver-
gence of Z;io Sk, k,,; in the strong operator topology as operators L>(B4(0,1)) —
LY(B%(0,1)). For the quantitative estimates we apply the L? result in Proposition
10.15] and use the supports of blffdkz, bgfo’kz to get for &’ < ce?

(10.47)

—e'ky—€’ k1,k k1 ,k
(I11) <Y max {27 F2nsup [|g; |15, sup [[s; || xBTS 121165 12
k1,k2>0 J J

< Z max {2°° k1—e kznsup l5s 115, , sup s 21 }(max{5, 8- 9R10-+k261)2d
J J

k1,k2>0
Set
8/ 1
(10.48) §="17, B=(nlc) .
Note that

(8- 2hroHhad 2 (gl e qup |, ) = 27727 2 sup
J J

Using this in (I047), we obtain
IIT) < sup|ls;||rz max 275%175%271115, 1}(1 + 3 - 2kadthk20y2d
~ J
k1,k2>0

< sup [|5;]| . log(1 + nle).
J

Plugging the choice of § into ([0.46]) completes the proof of (I0.45).

Finally, we reexamine the proof to get the asserted convergence in the strong
operator topology. This is immediate for the sums corresponding to the terms (1),
(IT) in view of the decay estimates in the proof of Lemma For (III) we easily
get the assertion from the above statements about convergence of 35, &, k,,j
and the exponential decay estimates in kq, ks. (Il

Proof of Theorem [M0I4], conclusion. We shall apply Theorem We need
to verify that for every ball B4(xo, 1), byy1 € L=(B%(20,7)), [|brt1lleo = 1,

/ ‘ Z Pij[bl,bg]ijnJrl(l’)’dx —0
Balwor) T jji> N
as N — oo and
(10.49) supr_d/ ‘ 3 Pjsj[bl,bz]ijnH(x)‘dx
N Ba(wor) * 1<

< sup g5l p2 log? (1 + T ) |[byloo 12 o -
J

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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For g = 0 and r = 1 these statements follow from Proposition [[0.1J91 We argue by
rescaling to obtain the same statement for other balls. Let ¢ be such that 2t-1 <
r < 20 Let bi(z) = b;(wo + 2%2), i = 1,2,n + 1,n+ 2 and Ef(x) = b{fe(:co + 2%2),
3 <i < n. Then by changes of variables

/bn+2 S;lb1, bolbpt1(x) dz
— 2 N[N (T = Pyo)by, (T = Pyya)bo, b 0 By, b a).

‘We use the fact that the functions gn—i—l; gn+2 are supported in the unit ball centered
at the origin. Then the result follows immediately from the statement for zy = 0,
r=1.

In order to verify the Op_-assumptions in Theorem [R.23] we use Lemma [R.24]
with Cy < sup; [|5j]|z1 and Ce < sup; [[gj |5, - Now Theorem [B.23] yields

I1S[b1, ba) | 212 S 1balloe b2l zoe (sup [|s;] £1) log® (1 + nT.).
J

Finally we combine this inequality with Corollary B0, with the choices A <
sup, [|s;l[z+ and B < sup; ||gj[|5. . This yields the asserted LP bound. O

10.4. Proof of the main theorem: Part IV
Let 1 <1 < n+ 2. In this section, we consider the multilinear form

A7 (b1, bygo) = ZA (2J |(Pjby, ..., Pibi—1, (I — Pj)by, Pjbi41,. .., Pjbyy2),
jeT

where J C Z is a finite set, and, given some fixed ¢ > 0, = {g; : j € Z} C
B.(R™ x R?) is a bounded set with [ ¢;(a,v)dv = 0, Va,j. Our task is to show
that for p € (1,2],

(10.50)

n
A2 (b1, -, by2)| < Cagensup [l 1og® (1 +nl2) [ TT 1Billoo] 155111y 1Bn sl
J i=1
where the implicit constant is independent of J. Moreover we wish to show that
the sum defining the operator T} associated to A? via (EI2]) converges in the strong
operator topology as operators bounded on LP. The heart of the proof lies in the
next theorem which we shall prove first. Let I'. = I'.(<) be as in (&.6)).

THEOREM 10.20. Let by, ...,b, € L®(RY), b,11,b,y2 € L2(RY). Then,

lim Z AL 1(Pjb, ., Pibi—y, (I — Py)by, Pibiga, - .., Pibyyo)

N—>ool

=A2 5(b1,. .. bnyo2)

and A2, satisfies
[AD 42 b1y Do)

< Ca en(sup\|<gllLl)10g (L+nTo) [ T 1omlizebnsallzz [nsalize.
m=1
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Moreover the sums defining the operator T2+2 associated with An+2 converge in the
strong operator topology as operators L? — L2.

The full proof of (IOH0) will be given in §I0.43] below.

10.4.1. Outline of the proof of Theorem [10.20l We give an outline of
the steps and refer to §I0.4.2] for some technical details.
We first describe the basic decomposition of A2 (b1, ..., byyo) which is derived

from a decomposmon of A[ ](P bi,..., Pjbpi1, (I — Pj)bpo, for fixed j. Write
Al N(Pibr, -, Pibug, (I = Py)bayo)
~ lim (A[<§2’)](Pj+Mij1, o Piiai Pibpst, (I — P)bpya)

M —o0

— AP - niPiby, - Pt Pibas, (1 — P)bn+2))

M
. J
~ Jim_ _§M+1 (A[cj(-2 N(PismPiby,- -, Py Pibusr, (I — P;)bnso)

— Alg; @ )i(Pj-i-m—lebl;--- Pjim—1Pjbpy1, (I — P; )bn+2))
and use the multilinearity to obtain the decomposition

AN (Piba, ., Pibuia,(I — Pj)busa)

n+1 e}

(10.51) = Z Z Als 2 Pjym-1Pjb1, ..., Pjrm—1Pibi—1, Qjym Pjby,
=1 m=—o0
PiymPibii1, ... Pigm Pibny1, (I = Pj)bpya).
The terms for [ = 1,...,n are handled in a similar fashion, in fact the estimates

can be reduced to the case [ = 1 by using Theorem [Z.9, permuting the first and the

I*™® entry, and accordingly changing the family {g;}.
Now let

(10.52) Xi € {Py, Py}

Then we need to show

(10. 53)

‘Z Z AP X Piby, X2 Prbas o, Qg Pibu 1, (I = Py)bnsa)

—N m=—o00

<Sup||<g||L1 log?(1 + nl) HHb lloo) 1bn-+1ll2l1bn+2 (2
i=1

and

(10.54)
N

‘Z S AR N Qm Pty X2 Pbas o, X Pibis, (I = Py)bso)

—N m=—00

<SuP||<j||L1 log?(1+ nl.) HHb lloo) 1Bn+1ll211Bn2]l2
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with implicit constants uniform in N; moreover we need to show the existence of
the limits as N — oo, for the corresponding operator sums in the strong operator
topology. By another application of Theorem (this time permuting the entries
(1,n 4 1)), with the corresponding change of the family {g;}), we see that (I0.53)
can be deduced from

(10.55)
N 00

‘Z S AR NQim Pibr X2 P, XA Py, (I — P)bn+2)}

—N m=—o00
n+1

<Sup||<||L110g (1+nT0) (T oilloo) 11 l12]1Bnr2]l2-
=2

It remains to prove ([0.54), (I0.55). We shall also decompose further using (I —
Pj)bpio = ZmQGN Qj+msbny2. This leads to the following definition.

DEFINITION 10.21. Let m,mq € Z, mo > 0.
For b, 41 € L®(R?) the operators ;""" [b,1] are defined by

(1056) [ 9(0)S}" ™ bl (2) da

J n
= A[gg(‘z )](Qj+m1Pj97Xj+m1P ba, - X]+m1P bn, X]inlqlp bn+17 Qj+m2f)'
For by € L>®(R?) the operators T;"""™?[b] are defined by

(1057) [ g(o)T7 b1 (o) de

29 n
:A[gg( )}(Qjerlebl?XjerleQ?"' Xjerle X]_:r;“ jg7Qj+m2f)'

We formulate an auxiliary result. It gives bounds in the Op(e)-classes defined
in (836) for suitable normalizing dilates of the operators Si"*"™[by, 1], T, [by].
We use the same notation for these operators and their Schwartz kernels.

ProrosiTION 10.22. Let

(10.58) pmimz _ ) Dila=s (77 [bpa]) if my >0,
! Dily—j-m, (S]ml’mz [bny1])  if mi <O,

and
(10 59) Fmme {D112 ]( e [bl]) ifmy >0,
. ; —

D112—J—m1 (ijlmm [bl]) Zf my <0.

There exists €' > c¢(e) (independent of n) such that, for mg >0,

(10.60) o7 g, S 27 ™02 s, b oo
197 o, S NSl 151 lc-
and
(10.61) 1727 . S 27 D02 s, 1,
| 172 < sl oo -
Po
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10.4. PROOF OF THE MAIN THEOREM: PART IV 115

The proof will be given in §10.4.2 below. Note that we have the trivial estimate
Il llop, < |l -llop., and therefore the Op, bounds stated in Proposition will
only be used for 2¢(Im1l+m2) < p2p

The estimates (I0.54), (I05H) and the asserted existence of the limits follow
easily from the following Proposition.

PROPOSITION 10.23. Let ba,...,b, € L¥(RY), with ||billec <1, =2,...,n.
Let &= {g;} be a bounded family in Be, J C Z* with #J < oo and let m; € Z,
mo € N.

Then there exist ¢’ > 0 so that the following estimates hold, uniformly in J.

(i) If busn € L% (RY),

(10.62) H 3 spmma [bn+1]}
JjeT

L2—L?

S min {2—5 (|m1\+m2)n2 Sup ||§j| B> SUfp ||§j||L1}||bn+1||oo-
J J

(ii) We have limpy_, oo ij_zv Sml’m2 [bpt1] = S™™2([b, 1] in the strong op-
erator topology (as operators L* — L2) and the bound ([[0.62) remains true for the
limit S™1 ™2,

(i) We have ), <z Zm2>0 Smumz(p, ] — S[bpi1] with absolute conver-
gence in L(L? L?). Also Z]__N Silbn+1] converges to an operator S[b,41] in the
strong operator topology as operators L? — L* and

1S [bnalllzz— 22 < sup gl 2 log™ (1 + nTe) 1o oo
J

(i) In (ii), (i) the convergence in the strong operator topology is equicontin-
uous with respect to {bp+1 : [|bnt1lloo < 1}.

ProOF oF ProPOSITION [[0.23] GivEN ProprosITION [[0.22] For the proof of
(i) we apply the almost orthogonality Lemma [0l To this end we need to derive
the estimate

mi,m2 ,__

10 63 ||Qk1 ;7-7‘}-1];71’”2 [bn+1]Qj+k1+k2HL2_>L2 S 4,k =

{2—51(|m1\+m2)n2 ) 2—|j+m1|—|m2+k2|

min {|by 41 o sup <5 sup [|<; 1 }
J J

for some g7 > 0. To see this we note that the bound

172 ]| 1oy o S 100 [ [loo {275 2002 sup |5 s, }
J

(and hence the corresponding estimate for Qg, SJ\}"™ [b41]Qj 4k, +k,) follows from
Proposition [[0.221 The bound

< 27\j+m1|7\m2+k2

| Oy ST 2 bns 1] Qi ks || 2 g2 S ‘SU,P lljll 22
j

follows from the fact that |QrQillz2— 12, |Q1Qklr2— 12 < 271F7!, the definition of
ST and Lemma 271

otk
We now observe that for A7 as in ([0.63) we have

5. }-

Z AT S bt [l oo min { sup |55l 21, gmer(maltme) (|, | 4 my)2n? sup ||s;
J j

g,k
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116 10. BOUNDEDNESS OF MULTILINEAR SINGULAR FORMS

By an application of Lemma[@.]this yields (I0.62]) and the convergence result in (ii),
with equiconvergence with respect to b, 41 in the unit ball of L°°(R%). Summing in
my,me yields (iii). O

PROPOSITION 10.24. Let by, ..., b, € L¥(RY), with ||billec < 1,7 =2,...,n.
Let &= {s;} be a bounded family in B., J C Z¢ with #J < oo and let my € Z,
mo € N.

(i) If by € L=®(R%),

(10.64) H 3 qme [bl]‘

JjeT

L2—L?2

< min {27172 sup (|| s, , sup ||| zx log(1+ n*T2) b1 oo
J J

(ii) We have limpy_, oo Z;ysz ;"2 [by] = T™™2[by] in the strong operator
topology (as operators L? — L?) and the bound [I0.64)) remains true for the limit

Tma,ma

(iii) We have 3, c5 > myso T2 [b1] — T[b1] with absolute convergence in
L(L? L?). Moreover Z;V:,N T;[b1] converges to an operator T[bi] in the strong
operator topology as operators L? — L? and

IT[b1] |22 22 S sup ;e log® (1 + nTe) [1ba|oo-
J
Proor. Use Propositions [10.23] and [10.22], together with Theorem [8.22] to de-
duce that S™ "2 [by, 1] = 3, 7" [by41] converges in the strong operator topol-

ogy as operators H! — L', with uniformity in b,41, ||bni1llec < 1, and we get the
estimate

8™ B[] 1y 1o
S sup ||| o min{ log(1 + nQFa)v 276/(‘m1|+m2)n2ra}”bn+l”oo
Now for by € L*, b, 41 € L™ we have by (I0.50), (I0.57)

[ ) S @) e = [ b @) T ) e

Since in the strong operator convergence of - S/"*""*[b,11] we have uniformity
with respect to b,41 we obtain that T™™2[b;] = >°. T;"*""*[b1] converges in the
strong operator topology as operators H' — L', and we have the estimate

HTml’m2 [b1] HHlﬁLl S 16100 sup || || £r min { log(1 + n?I'.), 2*5/(‘m1|+m2)n2F5} .
From Theorem we then get
s 0l e S D0l sup s s min {Tog(1 + 2T, 2 Gmalmaly2r, )
which is (ii). Statement (iii) follows after summing in my, ms. O
10.4.2. Op.-bounds and the proof of Proposition
LEMMA 10.25. Lete > 0, ¢g € C, supported in {y : ly| < 10}, ¢ € B.(R"xR%).
For £ > 0 define

Fy(z,y) = /// @ (a, v)|o(y — arv — ) = doly — )| dv da dy' .
|z—v—y|<100
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Then,

sup [ (Ut [0 = y)21Fue, )l dy +sup [(1+] = y)21Fio,y)] do
T Yy
S 27 golln s, -
PROOF. We may assume ||¢||c1 = 1. We estimate, for each y,

/(1 + |z =y Fo(e, y)| da

N //// (14 |z = y)*/?s® (@, 0)lI¢o(y — 10 —y') = doly — ¥')| dv da dy dz

|z—v—y|<100

< ///(1 + [0))*/216@) (a, 0) || g0 (y — arv — ') — do(y — ¢')| dv da dy’
s //(1 +[0))*/21s@) (, v)| min{1, |a1v|*/?} dv da

< // |v|€/2|§(22)(a,v)| dv da + // \a1v|5/2|§(22)(a,v)| dv da.
Now

// 0|7/212) (o, v)| dov dv = 2_25/2/ w|*/%|s(a,v)| dev dv
S 272 ¢lls. ., S 275l

e/2 v

and

// a1 v]/21c ) (v, v)| dav dv = 2’25/2/ |10/ 2[5 (v, v)| da dv
<9t/ / / (o] + [o)F <, 0)| dar do < 275/l 5.

This completes the proof that sup, [(1 4 |z — Y2 Fy(x, )| do < 2_25/2H§HBE.
Next we estimate for z € R?,

[t 1o = o)1 Fita) dy

= ] s @ ooty — a0 ) — duty ) v deca

|z—v—y|<100

5 //// (1 + ‘U‘)s/Q‘g(Zl)(a’U”min{l, |alv‘€/2}1{|y7alv7y"§10 dU da dy/ dy

’
— <
|z—v—y|<100 or ly=y'|<10}

: /// (14 [o))/2|s2) (o, v) [ min{1, oy v]*/?} dv d da

|z—v—y|<100
& //(1 + [])*/2[s®) (@, v)| min{1, a1 v]*/?} dv da

and above the last quantity has already been shown to be < 27%/2|¢ I, . This
completes the proof of the lemma. O
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118 10. BOUNDEDNESS OF MULTILINEAR SINGULAR FORMS

LEMMA 10.26. Let € > 0. For ¢ € C!, supported in {y : |y| < 10}, ¢ €
B.(R% x R™), j >0, let

gi(w,y) = / <3 (e, 0)|¢(x — v — ) — ¢(x —1)| da dv.
Then
sup [ g,(z.9)dy+sup [ g,(2.9)do 2 sl ol
PROOF. We may assume ||¢||c1 = 1. For any z, we have
J[[ 1= @l — v - ) = 6o~ )l dadvdy
S [[[ @ ko= ) (@ o) min{L o Petie-omicio o - isiop dadody

< / / (14 [o)1® (e, v)| min{1, [of} da do
< / / 10[°16@) (@, v)] dax dv < 279 |5,

where the last inequality has already been used in the proof of Lemma [10.25] By
symmetry we also get the corresponding second inequality with the roles of = and
y reversed. ([l

LEMMA 10.27. For ¢ > 0 there is ¢ > 0 such that the following holds. Let
B1y -y Pny1 € C2 supported in {y : |y| < 10} and such that for all but at most two

I,y >0and [¢p=1. Fork € Z set Y} f = f*qbl(2k). For by,...,b, € L®(RY),
€ B(R™ x R?) with

(10.65) /g(a, v) dv =0,
and define a kernel K, = K, [b1,...,bs] by

/ g(z) / Kj (2, 9) f(y) dyde = Alg®)(Vibr, ..., Vb, Y g, f).

Then, for j >k,

n
IDily— K pllop., S 2779 nlicls, T 15illoo,
=1

n
IDily+ K kllop, < lisllzs [T 1billoc-
i=1

Here, the implicit constants may depend on

b 9iy 2l Pis o2 M| Pis o2 M| fr Nl 2

ProOF. The bound for the Op, norm is immediate so we focus only on the
bound for the Op_-norms. Note that by scaling (see Lemma [T6))

AP (Ybr, . Y0, Y g, f) = 27 RA[C D] (YobE, .. Yobt, Yog®, )
where b¥ = b;(27F.), f¥ = f(27%.), ¢* = g(27%.). This leads to
Kglbr, o 0n)(2,y) = 2M K o[0F, ... DE] (282, 2Fy).
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10.4. PROOF OF THE MAIN THEOREM: PART IV 119

Now [|b¥]|oc = ||billoo, @ = 1,...,n, and hence after replacing the functions b;
by b¥, i = 1,...,n, it suffices to check the case k = 0. That is, we need to prove,

19

for £ > 0,

(10.66) 1Keolbrs - balllop, S 27 “nllslls. [T 15illoo-

i=1

In what follows we may assume ||b;||p~ = 1,7 =1,...,n. We will prove, under
the assumption that all but at most three of the ¢; satisfy ¢; > 0, [ ¢; = 1 we have
(10.67)

sup / (1+]z =y [Keo(z,y)|dy+sup / (+]z—y) [Keo(z,y)|dz < 27 n|c||5,,
xT Yy

where the implicit constant is allowed to depend on the C'! norms of up to three of
¢; (instead of the C? norms).

First we see why (I0.67) yields the result. The explicit formula for the kernel
is

(10.68)  Kpo(z,y) = /¢n+1(y —v—2x) /q(2e)(a, v) H Yibi(y — o) dado.
i=1

It implies that 0, Ky o(z,y) is a term of the form covered by [I0.6T) (with ¢p41
replaced by —0y,, dnt1). Moreover, 0y, K;o(x,y) is a sum of n + 1 terms of the
form covered by (I0.G7), indeed differentiating (I0.6])) yields (setting b,41 := g)

/ b1 () / By, Kuo(2,y) f(y) dy dz

n+1
= Z A[<(2€)](Y()lb17 ceey }/Oiilbiflu azmyz)lbiy }/g+1bi+17 ceey }/On+1bn+17 f)
=1

Thus, 0,,, Kro(x,y) is a sum of n + 1 terms of the form covered by ([0.67). From
these remarks, it follows, given (I0.G7)), that the expressions

sup |h|_1/|Kg’0($,y+h)—Kz,o(l',y”dl',
0<\}yL|§1

sup (W™ [ [Keola,y+ ) = Keolz,o)] do
0<|h|<1

Sl;p |h|71/|K€,0(l‘+hay)_KZ,O(xayﬂdxa
0<|h|<1

sup [h [ Keo(o + by) = Kol dy
0<|h|<1

are all bounded by a constant times 2_€5/n\|§\|36.
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120 10. BOUNDEDNESS OF MULTILINEAR SINGULAR FORMS
It remains to prove ([[0.67). We first compute, with {(o,v) =¢(1 —ay,...,1—
Qnp, /U)u

4 Y4
A (YGbr, .. Y Yo g, f) = MA@ (Y by, .. Y £, Y g)

_ / / / & (a,w — ) f(y) /@m(w — 2)g(a)da HYO w(l — o) + agy) dovdw dy
://g( // av¢n+1(y+’u—xHY{) (y + (1 — a;)v) dvda da dy

=1

and changing variable in « again we get

Kyo(z,y) = // ), 0) i1 (y + v — ) HYO (y + oyv) dv da

=1

~ ([0 [preaty-t v = TT ¥ty + ) — bty — ) [T ¥l v
i=1

i=1

here we have used the cancellation condition (I0.65]). Now
n
|Kf,0(x7 y)‘ < I(‘Ia y) + Z II?/(I7 y)
i=1

where

I(z,y) = /|§(2 (a0, V)||pns1(y +v —2) = pny1(y — x)| dvda,

Hi<x,y>://|<<2 <a,v>||¢>n+1<y—x>|/\¢i<y+aw—w>—aﬁz«(y—w)uwdvda.

Now apply Lemma [[0:25] to the expessions I1; and Lemma [[0.26] to I, and (I0.G7)
follows. This completes the proof. O

PrROOF OF PrROPOSITION [[0.22], CONCLUSION. We focus on the estimates for
S ™2 [by41] as the estimates for T;""*[b;] are analogous (switch the roles of by
and by,11). We may assume [|by41|[cc = 1.

In what follows we identify operators with their Schwartz kernels. For an
operator & we denote by 0., R the operator with Schwartz kernel 0, , R(z, ).

We use Lemma to write

Qj+m2 22 (j+m2)a R]-‘,-mza
p=1

where R}, = fx* q~5£2j+m2), and ¢; € C§° supported in {z : |z| < 2}. Now

Alg; (2 )](Qj+mlp'b17X]2+m Piby, ..., X Pibnyt, Qjpm, f)

e (a+m2)z// ) (4,0 /8 SR F@) XL Pib (2 — ) x

Qj+m, Pjbi(x — oqv) H Qj+m, Pjbi(x — a;v) dz dvda .
i=2

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Integrating by parts we see that this expression equals

(10.69)
-2~ (j+m2) Z( 8 QJ+m1P bla ]+m1P'b2’ ce XJnJ:_T}LlP bn+1’ J+m2f)
n+1
+ZA QH-mlel’ J+m1P'b2""7
Oy X5 41y Piby - X;j}nlp b1, RHme)).

We distinguish the cases m; < 0 and mq > 0.
For m; < 0 we write (I0.69) as

27 n
A )@y Pib1, X2 Piba, oo, XL Pibait, Qs f)
d n+1 )
_ 27) v n+1,u,v
= —27matm SN A VY by Y b R F)

p=1rv=1

where, for m; < 0, the operators Y**” . are given by

Jj+ma,j
b (20, @ ) Y= 1,
T Qjt+m P ifvre{2,....,n+1}
if 1 =1, and by
yhry - 27970y, (Pjym  Py) i v =14,
TEmd | Py, Py ifrefl,. .. nt+1}\{i)

if2<i<n+1.
Hence for m; <0

J n
A[ (2 )](Qﬂmlp‘thngrmlP’b?"' ijr}L Pjbnt1, Qjm, f)

= g-matm ZZ/ nt1 (O K, (@ y) Ry, £ (y)dy

p=1v=1

and by Lemma

||Di127j7m1 K'u‘ it

Jj+ma,j

lop., < lIsilis.

for some & < e. This, together with Lemma B25] implies the asserted bound

([I0B0), for my < 0.

We now consider the case m; > 0. Now use the cancellation and support
properties of Qj1m, to write

Qjtm P = 27" Zj m,
where Z; ,, = [ * U (2 ) and {vjm, : j € Z,my € N} is a bounded family of C¢°
functions supported i in {y ly| < 2}.
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122 10. BOUNDEDNESS OF MULTILINEAR SINGULAR FORMS

We now write (I0.69)) as

27 n
AN Q) Pibi, X2y Pibay o XIEL Pibugt, Qjams f)
d n+1 )
—Mo— 27 v n+1,u,v
= =27 N S AT Y b Y b, R )

p=1v=1

where (now for my > 0)
v [27900, i, v =1,
Jrmg Zjm, if ve{2,....,n+1},
and for2<i<n-+1

yiww _ 27000, (Piym, Py)  ifv =1,

Jtma.g Pjym, P; ifve{l,...,n+1}\ {i}.

We see, using Lemma [[0.27] that for m; > 0

2j
A[CJ( (Qjmi Pibr, X7 Pibay o X Pibnit, Qjgm, f)

d n
gm0 % / b (@) K10 (@, ) R f(y) dy

p=1v=1
with
|[Dily—s K3 [ < lsils, -

Using also Lemma [825] we obtain the asserted bound (I0.60), for m; > 0. O

10.4.3. Proof of the bound (I0.50), concluded. The following proposition
will conclude the proof of part [V]in Theorem [E.11

PRrROPOSITION 10.28. Let 1 < Iy # ly < n+ 2. Then, for p € (1,2] and
P =p/lp—1)

ST AGEN(Pbrs - Pibag, (I = Py)boso)]

JEL
< Cagpen(sup il ) log® (L +nTo) (T 0illoo) 1o llpl1brs 1
J 1£11,lo
PROOF. By symmetry of the roles of by, ..., b, 1, via Theorem 29| it suffices

to prove the result for three cases: (I1,l2) = (n+1,n+2), (I1,l5) = (n+2,n+1),
and (I1,00) = (1,n+ 1).

We begin with the case (I1,l2) = (n+ 1,7+ 2). For this we define an operator
517]‘ = Sl’j [bl, ceey bn] by

/ 9(@)(S1 401, - bal (@) d == ALY (Pibr, .. Pibua, (I = P)base).

It is straightforward to verify the inequalities

n
[Dily-551,5]lop, < n(SUIZ) lIsslls. TT 11i oo
Je i=1

n
[Dily-; 51 jllop, < (S{UIZ i lz) TT 10 lloos
JjE

i=1

here e < 1 and the Op,, Op, norms are as in ([836), (837).
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Theorem shows
H S Siglbrball| S ntsup lig ) log® (14 ale) T il
iz L2—L j i

with convergence in the strong operator topology. By Proposition B9 we get, for
I<p<2

HZSLj[bl,...,bn]

JEZ

< Cap.en(supls; ]| 1) log™ (1 + nle) [ ] 1bille
J i=1

Lp—LP

and

H > 1Sy (b, b

JEL

< Capen(sup gl z1) log? (1 +nle) [T 1biloo,
J

Lp—Lr
i=1

which are equivalent to the statement of the proposition in the cases (I1,l3) =
(n+1,n+2) and (I1,l2) = (n + 2,n + 1), respectively. The convergence is in the
sense of the strong operator topology (as operators bounded on LP).

We now turn to the case (I1,l3) = (1,n + 1). If we apply Theorem to
> 1Sy ; we also get an H' — L' bound

Hztsl,j[bh...,bn]

JEZ

This means that for by, ..., b, € L®(R?), b, 12 € L¥(R?), b, 41 € H'(RY), we have

S n(sup || p1) log® (1 + nle) [T 1bill -
J i=1

H'—L1

(10.70) | ST AL NPbrs o Pibuia, (= P)busa)
JEZL

< n(sup ||l £1) log® (1 + nle) (T 16:lle) 1Bnst Lz [Bn1lloc-
J i=1

For j € Z, define an operator S ;[ba, ..., by, bni2] by

/ (@) (Sa3ba, - by buro) ) (@) da = Al (g, Pbas .., Pibu, £, (I = Py)buys).

Since ‘P; = P; the case (I1,l2) = (1,n + 1) is equivalent to the inequality

(10.71) Hijsz,j[bz,...,bn,bnﬁ}Pj‘
JEZ

LP—LP

Snsuwplldlp@+nls) [ bl
J le{2,...,n,n+2}

To show (I0.7T]) we first observe that by Theorem 2.9} there is a ¢ > 0 (independent
of n) such that for &’ < ce there are ¢; € B/ (R™ x R?) with [|j]|5., < nlls||ls. and
IS;1lr = |Is;]l Lt such that

/b1 (I)(SQ,]‘ [bg, ceey bn; bn+2]bn+1)(I) dx

= AC1(Pybay . Piby, (I = Py)bpsz, br, busr)-
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If we apply (I0.70) with the family {¢;} in place of {¢;} and & in place of ¢) we get
| S ARE B P, (T = PyJousa)]|
JEZ

sup; 1S 5.

< nsup g1 1) og?® (1 + n RS
Pl A e, ol

) (H 1103100 ) 11 [ 12 [[Brt1 [l oo
i=1

< n(sup [lg;llz) log® (1 4+ nle) (T 19 lloo) 1bna Lm0 1Brns1 1o
J i=1

which (in view of ‘P; = P;) can be rephrased as

| > PiSalba - b, bualPi|
J

Snlsupllglp)log(t+ale) [T llbellee
J le{2,...,n,n+2}

We wish to apply Lemma [8.24] to the kernels o; = Dily—; S5 ;. Observe that the
Schur integrability norms for these kernels satisfy the uniform estimates

Int; [o] + It (o] S 1511, I e~ Snswllgls, [T ol
le{2,...,n,n+2} J le{2,....,n,n+2}

and

tgfoj] + tPlo] S G0 [T Mol <swpligle I ol

1€{2,...,n,n+2} J 1€{2,...,n,n+2}
Now Theorem [8.22] in conjunction with Lemma [8.24] applies to show

H > PSSy, bn,bnial Py
j

L2—L?

Sn(sup gl log®(1+nle) [ oillses
J 1e{2,...,n,n+2}

with convergence in the strong operator topology. Finally (I0.T) follows by inter-
polation (see Corollary RI0). This completes the proof. O

10.5. Proof of the main theorem: Part V

In this section, we consider the multilinear form

Ag(bl, ey bn+2) = ZA[gj('Q])](ijh e 7ijn+2)7
J

where the summation is a priori extended over a finite subset of Z, and where, for
some fixed € > 0, {; : j € Z} C B(R™ xR?) is a bounded set with [ ¢;(c, v)dv = 0,
for all j and almost every a. To prove part [V] of Theorem [5.1] we need to establish
for 1 < p < 2 the inequality

(10.72)

n
A% (b1, -, buy2)| < Capen®(sup [l 1) 1og™ (L+nTe) (T T 10illoo) Bty [bn-s2lp-
J i=1
As in the previous section the heart of the proof lies in the case p = 2 which
we state as a theorem.
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THEOREM 10.29. Let by, b, € L2(RY) and b, y1,bny2 € L?(R?). Then

N
. 27
A E A[gj(' N(Pjby, ..., Pibyyz)

=A(by,...,bpt2)
j=—N

and A3 satisfies
N1, )] < Cien sup I s log?(1-+ ) Hnb oo 41 12

The sum defining the operator T3[ny,

,bn] associated to A3 converges in the
strong operator topology as bounded operators L? — L?

Proor oF (I072) civEN THEOREM [I0.291 We may assume ||bj||p~ = 1, 1 =
1,...,n. For j € Z define the operator T by

[ 9@ T8 @) dos= APt P, Prg. )
Theorem is equivalent to

, S Sup||<;||L1 log?(1 +nl:) HHb [

i=1

Corollary B0 applies since sup; Int![Dily—T;] < sup; [|; 1| 5., sup; Intg[Dily—; T5]
sup; [[s;l[z1- This completes the proof.

O

We now turn to the proof of Theorem [[0.29 The argument is analogous to the
arguments in the previous section and therefore we shall be brief

10.5.1. Basic decompositions. We argue as in §10.4.1] and decompose
A[§§2J)](ij1, ey ijn+2)
= A}linoo (A[§§2J)](Pj+MP’bla coos Piyamr Pibrya, Py Pibp o)

_A[ K j—mPjbr, .. PjpPibpy, P Man+2))
S (27)
; 2
A/}llfloo Z (Akj ](Pjerijh ~7Pj+ijbn+2)
m=—M+1

- A[CJ(QJ)](Pj+m_1ij1, ..., P

» Pjm—1Pjbny, Pj+m—1ijn+2))
and thus
A[cj@])}(ijl,---’ijn+2) =
n+1 [ee) ;
Z Z A[gj(2 )](Pj+m—1ij1, vy Piym1 Pyl
=1 m=—00

Qj+mPibi, PiymPibiia, -, Pipm Pibyi).
We repeat the same procedure to each term and write, for fixed m € Z
A[CJ(»2 N(Pjsm—1Pib, ., Piom—1Pibi_1, QjsmPibi, Pism Pibists - - Py Pibys2)
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as the limit (as M — o0) of the differences
AN (Piar Pism—1Pibi, -, Piar Pism—1Pibi—1,
PjmQj+mPibi, Pyt PirmPibisa, -« s Piyar Pysm Pibn2)
J
—A[cj(z2 )](Pj—MPjerflebly s Pjop Piym 1P q,
P _0Qj4mPiby, Py Pijim Pibiga, - - o, Pj— i Pjpm Pibry2) .

We continue as above, writing each difference as a collapsing sum, and than ex-
panding each summand using the multilinearity of the functionals. The limit of the
expressions in the last display becomes

2 mi,m
A[CJ( N(Bibr, - Pibns2) = > > AR, bayo)
(l1,l2) (m1,m2)€Z?
1<l1#la<n+2

where, for I; < [s,
)\-?:Llll”rlZQ (bl, ey bn+2) =
2J
A[g]( )] (Pj+m2*1Pj+m1*1ij17 SRR Pj+m2 1Pj+m1 1P’b11*17
Pjyim,—1Qi4mi Pibiy s Pivmy—1Pjrm, Pibiy+1,5 -+ s Pivmy—1Pj1m, Pibiy—1,
Qj+m2p +m B bi,, P, +m2P'+m1ijl2+17 ) Pj+m2Pj+m1ijn+2)'

For [y > Iy there is an obvious modification.
There are (n+2)(n+1) = O(n?) terms in the sum D 1<l #lp<nio- 1t is therefore
our task to show that - -

(10.73) | D0 DA bre - buga)|

my,m2 ]

S sup [l Jog (1 4+ nTe) (T T 10sll o) bu+2 ll2llbn-2l2;
J i=1

then summing the O(nz) terms will complete the proof.
10.5.2. Proof of the bound [I0.73)). For k € Z, 1 <1 <n—+2, let
Xyt X € {Pe, Peca ).
For 1 <ly,lo <n+2, j, ki, ko € Z, define the operator T by

Jila,l2
[T a

1,1 2,1
= A X XL Pib
X;J,_nle +m2Pb le+n7:1Q]+m2P bn+17Qj+m1P bn+2)

where we have suppressed the dependance of T]"}l’f” on by, I #1y,ls.

LEMMA 10.30. Let pjmy m, = min{27, 20T 25%m2} - There is a ¢ > 0 (inde-
pendent of n so that for & > ce

(10.74) HDﬂpfl Tﬁi:}?“opa/5min{2_5/|m1‘,2_5/‘m2‘}n2||§j||36 1T 1oz,
l#l1,l2
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and

IDiL, T op, S sl [T Mol
Y 1£l1,lo

ProOOF. The bound for |Dil -+ T77/*[lop, is immediate, and, equiva-
my,mg,j vl

lently, so is the bound for || T}7"/"*|lop,. Thus we focus only on the bound for
|IDil -1 T lop,, - Fix li,lo. We may assume ||by|pe = 1, 1 # l1,l5. We

Pmy.mo.j Jila,l2
distinguish the cases (i) m1,ma > 0, (ii) m; < min{0, ma}, (iii) me < min{0,m; }.

(i) The case my,my > 0. NOW pjm,m, = 27. One uses that, for m > 0,
QjrmP; = 27" X, 5, where X, ;f = f qi)g]) and {¢p, ; : m > 0} is a bounded
subset of C'* functions supported in {|y| < 2}. Then the bound

IPils 777 o, 2725518,

follows quickly. (I074) follows in this case.
(ii) The case mi < min{0,mo}, that is, pjm, m, = 297" Lemma [0.27]
(combined with Theorem [2.9]) shows that we have

]]Dilrjfmlz“j?jﬁjgzuopﬂ S 272 g,

. 1 1 _ _ 9i+my
Usmg that ijrnnz Qj-i-mz =27 (m2 ml)Xij,mzfv where Xj,mhm’zf = f * ¢§’m1,mi

and {¢;.m,.m, : M2 > m1} C C§°(B%(2)) is a bounded set, the bound

"D1127j7m1%713g2"op53 < 27 (me=m) |65

follows easily. Combining these two estimates, (I0.74) follows.
(iii) The case ma < min{0,m;}, that is pjm, m, = 277™2. Now we use an
integration by parts argument as in the proof of Proposition [10.22] to obtain

]|D112_j-m2Tj’.j;i:;Z2Hop€4 < 27 m=ma)|| ..

Using Lemma [[0.27] (combined with Theorem [2.9), as above, we have

. _ ’
1D T35 o, S 27 0%l

Combining these two estimates yields (I0.74) in this last case and the proof is
complete. O

m1,mo

ProrosITION 10.31. For each my, mo, Zjez S

operator topology as operators L? — L? (with equiconvergence with respect to the
{(b1,---,bn) : [IIbillcc < C}) and the estimates

o converges in the strong

(10.75)
n
| S| S min g2 Om i maDn s o, sup s} ] sl
JEZ J J i=1
for suitable M <1, and
(10.76)
(o] o0 n
S X T, |, Sswlllilog? (1 + ) [T bl
Mm1=—00 Ma=—00 jEZL - J =1
hold.
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Proor. With Lemma [[0.30 in hand, [I0.73]) is based on almost orthogonality
(Lemma [07]) and follows just as in the proof of Proposition [0.231 ([I0.76) follows
after summing in mq, mo. O

We combine the above results with several applications of Theorem [B.22 to
prove our last proposition.

PROPOSITION 10.32. For 1 <li,ls <n+2,

my,Mm2
H Z j}yll>l2

Jymai,ma

< sup [l [ 22 Tog™ (1 +nT'e) T I1billoe-
J i=1

L2—L?

The sum converges in the strong operator topology, with equiconvergence with respect
to {(b1,...,bn) : ||billec < C}.

PROOF. For r € Z define

S’l‘,l17l2 = Z 17313?212
J,mi,ma:
min{j,j+m1,j+ma}t=r
Note that >, . Sri,0, = Zj,ml,m2€Z T;Zi’gz, and Lemma [10.30] shows
(10.77) Dile—rSriy 2 [l o S 0™ supliils, TT I0illec,
J 11,12
and
(10.78) |[Dilo=rSrty [l o, < log”(1+nTe)supliglize JT 10illoc-
j

11yl
By Proposition [0.31]

H E Sr,n+1,n+2 ’

reZ

and using (I0.77), (IQ.7]), Theorem [R22] shows

< . 3 ,
| Semsinal|,, . S Guplsillz)og*n4+nro) T o1]e.

rEL i=1

< sup [|; [ 1 log? (1 + nI'e) [ ] 11bill
J i=1

L2— L2

Here we have convergence in the strong operator topology (as operators H' — L1),
with equicontinuity with respect to by, ..., b, in bounded subsets of L>(R?). Using
the definition of S, , i,, this is equivalent to

| Y Seiamse| Sswlgllitog® @ +ar) T bl
H'—L?! j
rel l#l2,n+2

with convergence in the strong operator topology (as operators H' — L') with
equicontinuity with respect to by, [ ¢ {ly,n + 2}, in bounded subsets of L>(R?).
This argument will now be used repeatedly. Using this L' — L' result together

with (I077) and (I078), Theorem shows

IS Sesamse|| |, Ssw il tog® @ +nr) TT e
reZ J 1#l,n+2

L2— L2

Taking transposes, this shows

H § Sr,n+2,l2

rEL

2SJSb}PH%‘HLl10g3(1+7”bre) IT ol

21
- 115 n42
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Using this, (I0.77) and (I0.78), Theorem B.22] shows
IS Semizas Sswlslinlog* @ +nr) T ioillc:
J

rezZ I#l2,n+2
Using the definition of S;.;, ;,, this is equivalent to

|3 v < suplllrlog* (14 n0) T e
re’ J 1£1y 1o

Finally, using this again with (I0.77)) and (I078)), one last application of Theorem
8.22] completes the proof of the proposition. O

H'—>L

H'—L?!
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CHAPTER 11

Interpolation

We use complex interpolation to show that the LP! x ... x LPn+2 estimates in
Theorem follow from the special case in Theorem [2.10], together with Theorem
PRY) )

Let K =3, cj(-QJ) be as in the assumption of Theorem 2§ with sup ||g;||5. < oco.
Define for a permutation w of {1,...,n + 2}

AZ[K](b1, ..., bng2) = A[K](bo(1)s - - -+ beo(nt2))
so that A®[K] = A[K®] with
K= =3 (tas)®
J
where £, is as in Theorem There is ¢’ > ¢(e), B > 1, both independent of n,

such that for all permutations ||(o||s., < Bn?|<||s. and |[{o| 2 = [[s]|z:. As a
consequence we get for any pair ly,ly € {1,...,n+ 2}, 1 # I the estimate

|A[K] (b1, .., bng2)]

Bn®sup;eg |55, )
Sup;ez ||§j||L1

TT lerll ) o e 1

< Corgon?sup il og*(2 4+
JEZ I¢{l1,l2}

(11.1)

<A TT Wenlloe )l ol
1¢{l1,02}

where 1+ 6 <p <2 and

Supjez ||§J‘||B6

A :=33BCu 45n*sup|s;|| 1 log® (2 +n—==—<).
JEL supez, [l L1

Let R be the set of points (p; ',...,p, 1) € [0,1]"*2 for which the inequality

n+2
(11.2) IA[K] (b1, ., bag2)| < AT] It
i=1
holds for all (by,...,by1o) € LP*(RY) x - - x LPn+2(RY).
We note that if Py = (pié, . 7p7:-]'1;2,0) and P, = (pf&, . ,p;}%l) both belong
to R then, by complex interpolation for multilinear functionals, we also have for
0<v¥<1

Pi

n+2
IA[K](by, .. bng2)| < AT I0illipeio,prin,

i=1

131

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



132 11. INTERPOLATION

where [, -]p denotes Calderén’s complex interpolation method, see Theorem 4.4.1
in [I]. By Theorem 5.1.1 in [I] (a version of the Riesz-Thorin theorem) we have
the identification of the complex interpolation norm with the standard LP norm:

I fllizeeo priay, = 1z, 7= (1= 0)pi + Op; 4 -
We conclude that the set R is convex. Denote by e;, 7 =1,...,n+ 2, the standard
basis in R"*2. By ([[LI]), R contains all points in R"*2 of the form
1) 1 S,
P; () = T8 T 1% #J.

Let

n+2

Ps — {xeR"“:in:L 0<u; < (5+1)*1,j:1,...,n+2}.

i=1
Ps is a compact convex subset of R"*2, of dimension n + 1. It is easy to see that
{P; ;(0) : i # j} is the set of the extreme points of ;. By Minkowski’s theorem
(see e.g. Theorem 2.1.9 in [24]) every point in Ps is a convex combination of (at
most n + 2 of) the extreme points P; ;(4). Thus we can conclude

Ps CR,
and we have verified (IT.2)) for all (n+2)-tuples of exponents p;, with ZZ’:IQ p;t=1
and 14+ 0 < p; < co. This completes the proof. O
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