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Abstract

We introduce a class of multilinear singular integral forms

Λ : Lp1(Rd)× · · · × Lpn+2(Rd) → C

which generalize the Christ-Journé multilinear forms; here
∑n+2

j=1 p−1
j = 1, pj ∈

(1,∞]. The research is partially motivated by an approach to Bressan’s problem
on incompressible mixing flows. A key aspect of the theory is that the class of
operators is closed under adjoints (i.e. the class of multilinear forms is closed
under permutations of the entries). This, together with an interpolation, allows

us to reduce the Lp1 × · · · × Lpn+2 boundedness to L∞ × · · · × L∞ × Lp × Lp′

boundedness. We obtain estimates of the form

|Λ(f1, . . . , fn+2)| ≤ Cn2 log3(2 + n)

n+2∏
j=1

‖fj‖Lpj ,

where the constant C does not depend on n.
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CHAPTER 1

Introduction

1.1. The d-commutators

Let 0 < ε < 1 and let κ ∈ S ′(Rd)∩L1
loc(R

d\{0}) be a regular Calderón-Zygmund
convolution kernel on Rd, satisfying the standard size and regularity assumptions,

|κ(x)| ≤ C|x|−d, x 	= 0,(1.1a)

|κ(x+ h)− κ(x)| ≤ C
|h|ε

|x|d+ε
, x 	= 0, |h| ≤ |x|

2
,(1.1b)

and the L2 boundedness condition

(1.1c) ‖κ̂‖∞ ≤ C < ∞.

Let ‖κ‖CZ(ε) be the smallest constant C for which the three inequalities (1.1) hold
simultaneously. For convenience, in order to a priori make sense of some of the
expressions in this introduction the reader may initially assume that κ is compactly
supported in Rd \ {0}.

For a ∈ L1
loc(R

d) let mx,ya be the mean of a over the interval connecting x and
y,

mx,ya =

∫ 1

0

a(sx+ (1− s)y)ds.

For every y ∈ Rd this is well defined for almost all x ∈ Rd. Given L∞-functions
a1, . . . , an on Rd the nth order d-commutator associated to a1, . . . , an, is defined by

C[a1, . . . , an]f(x) =

∫
κ(x− y)

( n∏
i=1

mx,yai
)
f(y)dy.

One may consider C as an (n + 1)-linear operator acting on a1, . . . , an, f . Pairing
with another function and renaming ai = fi, i ≤ n, f = fn+1 one obtains the
Christ-Journé multilinear form defined by

(1.2) ΛCJ(f1, . . . , fn+2) =

∫∫
κ(x− y)

( n∏
i=1

mx,yfi
)
fn+1(y)fn+2(x) dx dy .

In dimension d = 1 this operator reduces to the Calderón commutator. However
the emphasis in this paper is on the behavior in dimension d ≥ 2 where the Schwartz
kernels are considerably less regular. Christ and Journé [7] showed that for ai with
‖ai‖∞ ≤ 1 the operator C[a1, . . . , an] is bounded on Lp, 1 < p < ∞, with operator
norm O(nα), for α > 2. More precisely,
(1.3)∣∣ΛCJ(f1, . . . , fn+2)

∣∣ ≤ Cp,ε,α‖K‖CZ(ε) n
α
( n∏
i=1

‖fi‖∞
)
‖fn+1‖p‖fn+2‖p′ , α > 2.

1
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For related results on Calderón commutators for d = 1 see the discussion of previous
results in §1.2 below.

The form ΛCJ is not symmetric in fi, i = 1, . . . , n+2, (see the discussion in §1.3
below) and it is natural to ask whether the analogous estimates hold for fi ∈ Lpi ,
for other choices of pi. The problem has been proposed for example in [14] and [18],
see also §1.2 for our motivation. Homogeneity considerations yield the necessary

condition
∑n+2

i=1 p−1
i = 1. In this paper we shall establish the following estimate, as

a corollary of a more general result stated as Theorem 2.8 below.

Theorem 1.1. Suppose that d ≥ 1, 1 < pi ≤ ∞, i = 1, . . . , n + 2, and∑n+2
i=1 p−1

i = 1. Let ε > 0 and min{p1, . . . , pn+2} ≥ 1 + δ. Then for Λ as in
(1.2)

(1.4)
∣∣ΛCJ(f1, . . . , fn+2)

∣∣ ≤ C(δ)‖κ‖CZ(ε)n
2 log3(2 + n)

n+2∏
i=1

‖fi‖pi
.

Our main interest lies in the higher dimensional cases with d ≥ 2. Polynomial
bounds are known for d = 1, although the precise form of Theorem 1.1 may not
have been observed before; see the discussion about previous results in §1.2.

1.2. Background and historical remarks

Motivation. Our original motivation for considering estimates (1.4) for pi 	=
∞ for i ≤ n came from Bressan’s problem ([4]) on incompressible mixing flows. A
version of the approach chosen by Bianchini [2] leads in higher dimensions to the
problem of bounding a trilinear singular integral form with even homogeneous ker-

nels κ. One considers a smooth, time-dependent vector field (x, t) �→ �b(x, t) which is

periodic, i.e. �b(x+k, t) = �b(x, t) for all (x, t) ∈ Rd×R, k ∈ Zd , and divergence-free,∑d
i=1

∂bi
∂xi

= 0. Let φ be the flow generated by v, i.e. we have ∂
∂tφt(x) = v(φt(x), t),

φ0(x) = x, so that for every t the map φt is a diffeomorphism on Rd satisfying
φ(x+ k, t) = k + φ(x, t), for all x ∈ Rd, k ∈ Zd.

For small ε consider the truncated Bianchini semi-norm ([2]) defined by

Bε[f ] =

∫ 1/4

ε

∫
Q

∣∣∣f(x)− \
∫
Br(x)

f(y)dy
∣∣∣ dx dr

r
.

LetA be a measurable subset of Rd which is invariant under translation by vectors in
Zd (thus A+Zd can be identified with a measurable subset of Td). Let A� = Rd\A.

A calculation ([22]) shows that

(1.5) Bε[�φT (A)]−Bε[�A] =

V −1
d

∫ T

0

∫
Q

f(x, t)

∫
ε≤|x−y|≤1/4

〈x− y,�b(x, t)−�b(y, t)〉
|x− y|d+2

f(y, t) dy dx dt

where Q = [0, 1)d, f(y, t) = 1
2 (�φt(A) − �φt(A)�) and Vd is the volume of the unit

ball in Rd.
This calculation leads to an alternative approach to a result by Crippa and

DeLellis [12]. One has the following estimate involving general (a priori) smooth
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vector fields x �→ v(x) on Rd satisfying div(v) = 0. Let Dv denote its total deriva-

tive. Then for 1 < p1, p2, p3 ≤ ∞,
∑3

i=1 p
−1
i = 1,

(1.6)
∣∣∣ ∫∫

ε<|x−y|<N

〈v(x)− v(y), x− y〉
|x− y|d+2

f(y)g(x) dy dx
∣∣∣ � ‖Dv‖p1

‖f‖p2
‖g‖p3

.

Here the implicit constant is independent of ε and N . One can think of (1.6) as a
trilinear form acting on f , g and Dv; due to the assumption of zero divergence, the
entries are not independent and one can reduce to the estimation of d2− 1 trilinear
forms. In fact, (1.6) can be derived from the case n = 1 of Theorem 1.1, using the
choices of

(1.7)

κij(x) =
xixj

|x|d+2
, i 	= j,

κi(x) =
x2
i − x2

d

|x|d+2
, 1 ≤ i < d.

The case with f , g being characteristic functions of sets with finite measure and
Dv ∈ Lp1 with p1 near 1 is of particular interest. Steve Hofmann (personal com-
munication) has suggested that estimates such as (1.6) can also be obtained from
the isotropic version of his off-diagonal T1 theorem [26].

Previous results. We list some previous results on the n + 2-linear form
ΛCJ in (1.3), including many in dimension d = 1, covering the classical Calderón
commutators.

(i) The first estimates of the form (1.4), for the case d = 1 and n = 1 were
proved in the seminal paper by A.P. Calderón [5].

(ii) More generally, still in dimension d = 1, Coifman, McIntosh and Meyer [10]
proved estimates of the form (1.4) for arbitrary n, with p1 = · · · = pn = ∞ and
polynomial bounds C(n) = O(n4) as n → ∞. This allowed them to establish the
L2 boundedness of the Cauchy integral operator on general Lipschitz curves. See
also [8] for other applications to related problems of Calderón. Christ and Journé
[7] were able to improve the Coifman-McIntosh-Meyer bounds to C(n) = O(n2+ε)
(and to O(n1+ε) for odd kernels κ).

(iii) Duong, Grafakos and Yan [14] developed a rough version of the multisin-
gular integral theory in [21] to cover the estimates (1.4) with general exponents
for d = 1, however their arguments yield constants C(n) which are of exponential
growth in n.

One should note that the paper [14] also treats the higher Calderón commu-
tators C[f1, . . . , fn], with target space Lp where p > 1/2. For the bilinear version
this had been first done by C.P. Calderón [6]. It would be interesting to obtain
appropriate similar results for the d-commutators.

(iv) Muscalu [31] recently developed a new approach for proving (1.4) in di-
mension d = 1, see also [32, Theorem 4.11]. An explicit bound for the constant
as A(n, 
) where 
 is the number of indices j such that pj 	= ∞ and, for fixed 
,
n �→ A(n, 
) is of polynomial growth. However, by using complex interpolation (as
in §15) to the case when pj = ∞ for all but two j, one may remove the dependance
of A on 
. This yields polynomial bounds for all admissible sets of exponents, as in
our results.
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(v) As mentioned above, crucial results for d ≥ 2 were obtained by Christ and
Journé [7] who established (1.4) for p1 = · · · = pn = ∞ and C(n) = O(n2+ε).
Several ideas in our proof can be traced back to their work.

(vi) Hofmann [25] obtained estimates (1.4) for operators with rougher kernels
κ, and an extension to weighted norm inequalities; however the induction argument
in [25] only gives exponential bounds as n → ∞.

(vii) For the special case that κ is an odd and homogeneous singular convolution
kernel, estimates of the form (1.4) for d ≥ 2 and n = 1 have been obtained by using
the method of rotation. In [14], Duong, Grafakos and Yan use uniform results
on the bilinear Hilbert transforms ([20], [37]) to obtain such estimates under the
additional restriction min(p1, p2, p3) > 3/2, see also the survey [18].

We note that one can modify the argument in [14] to remove this restriction,
and also to obtain a version for n ≥ 2. Indeed let κΩ(x) = |x|−dΩ(x/|x|) with
Ω ∈ L1(Sd−1) and Ω(θ) = −Ω(−θ). Let

CΩ[f1, . . . , fn]fn+1(x) =

∫
κΩ(x− y)fn+1(y)

n∏
i=1

∫ 1

0

fi((1− si)x+ siy)dsi dy;

then

(1.8) CΩ[f1, . . . , fn]fn+1(x) =
1

2

∫
Sd−1

Ω(θ) Cθ[f1, . . . , fn, fn+1](x) dθ

where

Cθ[f1, . . . , fn+1](x) = p.v.

∫ ∞

−∞
fn+1(x− sθ)

( n∏
i=1

∫ 1

0

fi(x− usθ)du
)ds
s

Now if e1 = (1, 0, . . . , 0) and Rθ is a rotation with Rθe1 = θ we have

Cθ[f1, . . . , fn+1](x) = Ce1 [f1◦Rθ, . . . , fn+1◦Rθ](R
−1
θ x)

and thus the operator norms of Cθ are independent of θ. One notices that

Ce1 [f1, . . . , fn+1](x1, x
′)

= p.v.

∫ ∞

−∞

1

x1 − y1
fn+1(y1, x

′)
n∏

i=1

(∫ 1

0

fi((1− u)x1 + uy1, x
′)du
)
dy1 ,

the Calderón commutator acting in the first variable. The one-dimensional results
for the commutators in [5], [14] can now be applied to show that for

∑n+2
i=1 pi

−1 = 1,
pi > 1,∣∣∣ ∫ CΩ[f1, . . . , fn]fn+1(x)fn+2(x)dx

∣∣∣ � C(p1, . . . , pn+2)‖Ω‖L1(Sd−1)

n+2∏
i=1

‖fi‖Lpi .

Note that the assumption κ odd is crucial in formula (1.8) and thus the argument
does not seem to be applicable to the d-commutators associated with the convolu-
tion kernels in (1.7).

(viii) When n = 1 it is known that the Christ-Journé commutator C[a] (with
a ∈ L∞) is of weak type (1, 1). This has been shown by Grafakos and Honźık [19]
in two dimensions and by one of the authors [34] in all dimensions. It is an open
problem whether the higher degree d-commutators (n ≥ 2) are of weak type (1, 1)
in dimension d ≥ 2.
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1.3. Towards a more general result

In order to prove Theorem 1.1 it suffices to prove estimate (1.4) for the cases
where two of the exponents, say pi, pj , 1 ≤ i < j ≤ n + 2 belong to (1,∞) and
the other n exponents are equal to ∞. Equivalently, if � is a permutation of
{1, . . . , n+ 2} and

Λ�
CJ(f1, . . . , fn+2) = ΛCJ(f�(1), . . . , f�(n+2))

one has to show, for 1 < p < ∞, the inequalities

(1.9) Λ�
CJ[f1, . . . , fn+2]

∣∣ ≤ Cδ,pn
2(logn)3‖κ‖CZ(δ)(

n∏
i=1

‖fi‖∞)‖fn+1‖p‖fn+2‖p′ ,

uniformly in �.
Formally the operator Λ�

CJ takes the form

(1.10) Λ�
CJ(f1, . . . , fn+2) =∫∫∫

K�(α, x− y)fn+2(x)fn+1(y)
n∏

i=1

fi(x− αi(x− y)) dα dx dy.

The case � = id in (1.9) is covered already by the original result of Christ and
Journé. Thus by the symmetry in {1, . . . , n} and essential symmetry in {n+1, n+2}
(with a change of variable αj �→ (1− αj)) two cases remain of particular interest:

• If �i is the permutation that interchanges i and n + 1 and leaves all

k /∈ {i, n+ 1} fixed then the kernel K�i

is given by

K�i

(α, v) =

{
|αi|d−n−1κ(αiv) if αi ≥ 1, 0 ≤ αj ≤ αi, j 	= i,

0 otherwise.

• If 1 ≤ i, j ≤ n, i 	= j and �ij is the permutation with �ij(i) = n + 1,
�ij(j) = n+ 2 and �ij(k) = k for k /∈ {i, j, n+ 1, n+ 2} then the kernel

K�ij

is given by

K�ij

(α, v) = |αi − αj |d−n−1κ((αi − αj)(x− y))

either if αi ≤ 0, αj ≥ 1, αi ≤ αk ≤ αj for k 	= i, j;

or if αj ≤ 0, αi ≥ 1, αj ≤ αk ≤ αi for k 	= i, j;

K�ij

(α, v) = 0 otherwise.

Once (1.9) is proved for � = id, � = �i, � = �ij , the general result follows by
complex interpolation for multilinear operators, see [1, Theorem 4.4.1].

Thus we want to study multilinear forms of the type

(1.11) Λ[K](b1, . . . , bn+2)

=

∫∫∫
K(α, x− y)bn+2(x)bn+1(y)

n∏
i=1

bi(x− αi(x− y)) dα dx dy,

where x ∈ Rd, α ∈ Rn, and K(α, x) is a Calderón-Zygmund kernel in the x variable
which depends on a parameter α ∈ Rn. We will impose some regularity condi-
tions on the α variable. The basic example, corresponding to the Christ-Journé



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6 1. INTRODUCTION

multilinear forms, is

K(α, x) = �
[0,1]n

(α)κ(x)

where κ is a regular Calderón convolution kernel satisfying the conditions (1.1).
Our goal is to

• To introduce a reasonably general class Kε of kernels K(α, x), for which
linear forms of type (1.11) are closed under adjoints. If � is a permutation
of {1, . . . , n+2}, then the multilinear form Λ[K](b�(1), . . . , b�(n+2)) should
be written as Λ[K�](b1, . . . , bn+2) for a suitable K�, with appropriate
bounds on K� in the class Kε.

• To prove estimates for this same class of kernels that cover the estimates
for the d-commutators in Theorem 1.1.

Roughly the class of admissible kernels consists of those K for which the norm
‖ · ‖Kε

defined in (2.3), (2.4) below is finite; see Chapter 2 for further discusion of
the spaces of distributions on which this definition is made. The extension to the
class Kε allows us to substantially extend the class of allowable convolution kernels
κ in the definition of the d-commutators, see Example 2.2 below.

Let p1, . . . , pn+2 ∈ (1,∞] with
∑n+2

j=1 p−1
j = 1, and let p0 = min1≤j≤n+2 pj . For

bj ∈ Lpj (Rd) we shall prove the inequality

(1.12) |Λ[K](b1, . . . , bn+2)| ≤ Cp0,d,ε‖K‖Kε
n2 log3(2 + n)

n+2∏
i=1

‖bi‖pi
.

The expression on the left hand side makes a priori sense at least for K supported
in a compact subset of RN × (Rd \ {0}) (and this restriction does not enter in the
estimate). The kernels in Kε can be thought of sums of dilates of functions in a
weighted Besov space; this will be made precise in Chapter 3. These weighted Besov
spaces are closely related to Besov spaces of forms on RPn+d. This motivated some
of the considerations in Chapter 3 and Chapter 4.

A key point of the Kε norms is that they depend on n in a natural way so that
the term n2 log3(2+n) in (1.12) does not become trivial. We shall derive a stronger
version in the next section in Theorem 2.10 below in which dependence on the Kε

occurs in a very weak (logarithmic) way. In fact one can define an endpoint space
K0 which contains the union of the spaces Kε, so that the inequality

(1.13) |Λ[K](b1, . . . , bn+2)| ≤ Cp0,d,ε‖K‖K0
n2 log3

(
2 + n

‖K‖Kε

‖K‖K0

) n+2∏
i=1

‖bi‖pi
.

holds. A crucial point about the classes Kε is that if K belongs to Kε then all
K� in (1.10) belong to some Kε′ class with polynomial bound in n. One can then
see that if inequality (1.13) holds for (p1, . . . , pn+2) = (∞, . . . ,∞, p0, p

′
0) then the

same is true for the kernels K�. This invariance under adjoints will be discussed
in Chapter 4.

The strategy of proving (1.13) for p1 = · · · = pn = ∞ then follows Christ
and Journé [7], with the main inequalities outlined in Chapter 5. The subsequent
sections contain the details of the proofs.
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Selected Notation

• We use the notation A � B to denote A ≤ CB, where C is a constant
independent of any relevant parameters. C is allowed to depend on d and
ε, but not on n.

• For two nonnegative numbers a, b we occasionally write a∧ b = min{a, b}
and a ∨ b = max{a, b}

• The Euclidean ball in Rd of radius r and with center x is denoted by
Bd(x, r).

• For a function g on Rd we define dilation operators which leave the L1(Rd)
norm invariant by

g(t)(x) := tdg(tx).

• For a function ς on Rn×Rd we define dilation operators in the x-variable
by

ς(t)(α, x) := tdς(α, tx).

• For a kernel K on Rd × Rd we define dilated versions by

DiltK(x, y) := tdK(tx, ty) .

• Given Banach spaces E1, E2 we denote by L(E1, E2) the Banach space of
bounded linear operators from E1 to E2.

• We denote by C∞
0 (Rd) the space of compactly supported C∞ functions.

The subspace C∞
0,0(R

d) consists of all f ∈ C∞
0 (Rd) with

∫
f(x)dx = 0.

• Let V be an index set, and for each ν ∈ Z, let {Σν
N} be a sequence of

operators in L(E1, E2). We say that Σν
N converges in the strong operator

topology to Σν ∈ L(E1, E2), with equiconvergence with respect to V , if for
every f ∈ E1 and every ε > 0 there exists a positive integer N(ε, f) such
that ‖Σν

Nf −Σνf‖E2
< ε for all N > N(ε, f), ν ∈ V .

Given bounded operators T ν
j ∈ L(E1, E2), j ∈ Z, we say that

∑
j T

ν
j

converges in the strong operator topology, with equiconvergence with re-

spect to V , if the sequence of partial sums ΣN =
∑N

j=−N T ν
j converges in

the strong operator topology with equiconvergence with respect to V .
• Given bounded k-linear operators L, LN , defined on a k-tuple (A1, . . . , Ak)
of normed spaces with values in a normed space B, we say that LN con-
verges to L in the strong operator topology (as N → ∞) if

‖LN (a1, . . . , ak)− L(a1, . . . , ak)‖B → 0

for all

(a1, . . . , ak) ∈ A1 × · · · ×Ak.

When B = C or R then there is no difference between strong and weak
operator topologies, and we omit the word strong.

• The spaces LS(Rn × Rd) are defined in §2.1.
• The operators Pk, Qk, Qk and Qk[u] are introduced in Chapter 6 (al-
though Qk is already used in earlier sections). The class U is defined in
Definition 6.2.

• The semi-norms ‖ · ‖Kε,i
, i = 1, 2, 3, 4, 5 and the spaces Kε are defined in

§2.1. The related spaces Kε are defined in §2.2.
• The semi-norms ‖ · ‖Bε,i

, i = 1, 2, 3, 4, and the spaces Bε are defined in
§2.2.
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• The Schur classes Int1, Int∞, Int1ε, Int
∞
ε and the regularity classes Reg1ε,lt,

Reg∞ε,lt, Reg
1
ε,rt, Reg

∞
ε,rt are defined in §8.1.1.

• The singular integral classes SI, SI1ε, SI
∞
ε and annular integrability classes

Ann1, Ann∞, Annav are defined in §8.1.2.
• The Carleson condition for operators and norm ‖ · ‖Carl is given in Defini-
tion 8.14. The atomic boundedness condition, with norm ‖ · ‖At is given
in Definition 8.15.

• The Opε, Op0 norms are defined in §8.3.
• The notion of a Carleson function and the norm ‖ · ‖carl is given in defi-
nition 10.3.
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CHAPTER 2

Statements of the main results

2.1. The classes Kε

We first introduce certain classes of tempered distributions on Rn × Rd which
satisfy integrability properties in the first (α-)variable and contain all kernels al-
lowable in (1.11). For each N ∈ N0 consider the space MS ′

N (Rn × Rd) defined as
normed spaces of tempered distributions K on Rn × Rd for which there is C > 0
so that for all f ∈ S(Rn × Rd)

(2.1) |〈K, f〉| ≤ C sup
α∈Rn,x∈Rd

∑
|γ|≤N

(1 + |x|)N |∂γ
xf(α, x)|.

Here 〈K, f〉 denotes the pairing between distributions and test functions and the
minimal C in (2.1) is the norm in MS ′

N (Rn×Rd). The space MS′(Rn×Rd) is the
space of tempered distributions K on Rn×Rd for which (2.1) holds for some N ∈ N.
Note that MS ′(Rn × Rd) can be seen as an inductive limit of the normed spaces
MS ′

N (Rn × Rd), and this gives MS ′(Rn × Rd) the structure of a locally convex
topological vector space. A net {fı}i∈I is Cauchy in this topology if there exists
an N so that all fı belong to MS ′

N (Rn × Rd) for some fixed N and so that fı is
Cauchy in the norm topology of MS ′

N (Rn×Rd). It is easy to see the normed spaces
MS ′

N (Rn × Rd) are complete and thus MS ′(Rn × Rd) is complete. Let M(Rn) be
the space of bounded Borel measures on Rn. K ∈ MS ′(Rn × Rd) gives rise to a
continuous linear operator βK : S(Rd) → M(Rn) defined by

〈βK(φ2), φ1〉 := 〈K,φ1 ⊗ φ2〉 for φ1 ∈ S(Rn), φ2 ∈ S(Rd).

Let LS ′(Rn × Rd) be the subspace of MS ′(Rn × Rd) consisting of those K for
which βK(φ2) ∈ L1(Rn), for all φ2 ∈ S(Rd). LS ′(Rn × Rd) is a closed subspace of
MS ′(Rn × Rd) and inherits its complete locally convex topology.

We now define the Banach space Kε used in (1.12). For K ∈ LS ′(Rn×Rd) and
η ∈ S(Rd) it makes sense to write K(α, ·) ∗ η for the convolution of K and η in the
x-variable. This yields an L1 function in the α variable, which depends smoothly
on x. For K ∈ L1

loc(R
n × Rd), let

K(t)(α, x) := tdK(α, tx)

and we extend this to LS ′(Rn ×Rd) by continuity in the usual way. Fix η ∈ S(Rd)
satisfying

(2.2) inf
θ∈Sd−1

sup
τ>0

|η̂(τθ)| > 0,

where η̂ denotes the Fourier transform of η.

Definition 2.1. Let η be as in (2.2), and 0 < ε ≤ 1.

9
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(i) Define five semi-norms by

‖K‖Kη
ε,1

:= sup
1≤i≤n
t>0

∫
(1 + |αi|)ε‖η ∗K(t)(α, ·)‖L2(Rd) dα,(2.3a)

‖K‖Kη
ε,2

:= sup
1≤i≤n
t>0

0<h≤1

h−ε

∫
‖η ∗ [K(t)(α+ hei, ·)−K(t)(α, ·)]‖L2(Rd) dα,(2.3b)

‖K‖Kε,3
:= sup

1≤i≤n
R>0

∫∫
R≤|x|≤2R

(1 + |αi|)ε|K(α, x)| dx dα,(2.3c)

‖K‖Kε,4
:= sup

1≤i≤n
R>0

0<h≤1

h−ε

∫∫
R≤|x|≤2R

|K(α+ hei, x)−K(α, x)| dx dα,(2.3d)

‖K‖Kε,5
:= sup

R>2
y∈R

d

Rε

∫∫
|x|≥R|y|

|K(α, x− y)−K(α, x)| dx dα .(2.3e)

(ii) The space Kε is the subspace of LS ′(Rn × Rd) consisting of those K for
which the norm

(2.4) ‖K‖Kε
:= ‖K‖Kη

ε,1
+ ‖K‖Kη

ε,2
+ ‖K‖Kε,3

+ ‖K‖Kε,4
+ ‖K‖Kε,5

is finite.

The definition of ‖ · ‖Kε
depends on a choice of η ∈ S(Rd) satisfying (2.2).

However, the equivalence class of the norm does not depend on the choice, and the
constants in the equivalences of different choices of η will not depend on n. This is
made explicit in Lemma 3.1 below.

Example 2.2. Let ε ∈ (0, 1) and let κ ∈ S ′(Rd)∩L1
loc(R

d\{0}) be a convolution
kernel in Rd satisfying

(2.5) ‖κ̂‖∞ ≤ C

and

(2.6) sup
R≥2

Rε sup
y∈Rd

∫
|x|≥R|y|

|κ(x− y)− κ(x)|dx ≤ C.

Let

K(x, α) = χ[0,1]n(α)κ(x) .

Then K ∈ Kδ(R
n × Rd) for δ < ε and

(2.7) ‖K‖Kδ
�δ,ε C.

The details of (2.7) are left to the reader.

We state a preliminary version of our boundedness result (see Theorem 2.8
below for a more definitive version).

Theorem 2.3. Let ε > 0, δ > 0 and η as in (2.2).
(i) There is a constant C = C(d, δ, ε, η) such that the following statement holds

a priori for all kernels in Kε which also belong to L1(Rn × Rd). The multilinear
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form

Λ[K](b1, . . . , bn+2) =

∫∫∫
K(α, x−y)bn+2(x)bn+1(y)

n∏
i=1

bi(x−αi(x−y))dαdxdy,

satisfies

(2.8) |Λ[K](b1, . . . , bn+2)| ≤ Cn2 log3(1 + n)‖K‖Kε

n+2∏
i=1

‖bi‖pi
,

for all bi ∈ Lpi(Rd), 1 + δ < pi < ∞,
∑n+2

i=1 p−1
i = 1.

(ii) The multilinear form (K, b1, . . . , bn+2) �→ Λ[K](b1, . . . , bn+2) extends to a
bounded multilinear form on Kε×Lp1 ×· · ·×Lpn+2 satisfying (2.8) for all K ∈ Kε.

The proof of Theorem 2.3 we will heavily rely on a decomposition theorem for
the class Kε, to which we now turn. This decomposition will specify further part
(ii) of the theorem, i.e. describe how to extend the result from part (i) to all kernels
in Kε.

2.2. Decomposition of kernels in Kε

In the following definition e1, . . . , en will denote the standard basis of Rn.

Definition 2.4. For n, d ∈ N and 0 ≤ ε ≤ 1 we define four (semi-)norms

‖ς‖Bε,1
:= max

1≤i≤n

∫∫
(1 + |αi|)ε|ς(α, v)| dα dv,(2.9a)

‖ς‖Bε,2
:= sup

0<h≤1
1≤i≤n

h−ε

∫∫
|ς(α+ hei, v)− ς(α, v)| dα dv,(2.9b)

‖ς‖Bε,3
:= sup

0<|h|≤1

|h|−ε

∫∫
|ς(α, v + h)− ς(α, v)| dα dv,(2.9c)

‖ς‖Bε,4
:=

∫∫
(1 + |v|)ε|ς(α, v)| dα dv.(2.9d)

Let Bε(R
n × Rd) be the space of those ς ∈ L1(Rn × Rd) such that the norm

(2.10) ‖ς‖Bε
:= ‖ς‖Bε,1

+ ‖ς‖Bε,2
+ ‖ς‖Bε,3

+ ‖ς‖Bε,4

is finite.

For 0 < ε < 1 the space Bε is a type of Besov space, hence the notation. See
also §4.5 below. Recall the notation ς(t)(α, x) := tdς(α, tx).

Definition 2.5. (i) Let φ ∈ C∞
0 (Rd) such that

∫
φ(x)dx = 1, let Qj

denote the operator of convolution with 2jdφ(2j ·)−2(j−1)dφ(2j−1·). When
acting on K ∈ LS′(Rn × Rd), we define QjK by taking the convolution
in Rd.

(ii) Set

(2.11) ςj [K] := (QjK)(2
−j).

(iii) For K ∈ LS′(Rn × Rd) let

(2.12) ‖K‖K0
= sup

j∈Z

‖ςj [K]‖L1(Rn×Rd) .
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(iv) Let Kε be the space of all K ∈ LS′(Rn × Rn) such that

‖K‖Kε
:= sup

j∈Z

‖ςj [K]‖Bε(Rn×Rd)

is finite.

The relation between the spaces Kε and Kε is given in the following theorem.

Theorem 2.6. (i) A distribution K ∈ LS ′(Rn × Rd) belongs to
⋃

0<ε<1 Kε if

and only if there exists an ε > 0 and a bounded set {ςj : j ∈ Z} ⊂ Bε(R
n × Rd)

satisfying ∫
ςj(α, v) dv = 0

for all j, α and

K =
∑
j∈Z

ς
(2j)
j ,

holds with convergence in the topology on LS ′(Rn×Rd) (and thus also in the sense
of distributions).

(ii) Let K ∈ Kε. Then for δ < ε,

‖K‖Kδ
≤ Cδ,ε,d‖K‖Kε

.

(iii) Let K ∈ Kε. Then for δ < ε/2

‖K‖Kδ
≤ Cδ,ε,d‖K‖Kε

.

2.3. Boundedness of multilinear forms

For any ς ∈ Bε(R
n × Rd) and for bi ∈ Lpi(Rd) with

∑n+2
i=1 p−1

i = 1 the multi-
linear form

Λ[ς](b1, . . . , bn+2) =

∫∫∫
ς(α, x− y)bn+2(x)bn+1(y)

n∏
i=1

bi(x− α1(x− y)) dx dy dα

is well defined; more precisely we have

Lemma 2.7. Let ς ∈ L1(Rn × Rd). Suppose for 1 ≤ l ≤ n + 2, bi ∈ Lpi(Rd)

with
∑n+2

i=1 p−1
i = 1. Then, for all j ∈ Z,

∣∣Λ[ς(2j)](b1, . . . , bn+2)
∣∣ ≤ ‖ς‖L1(Rn×Rd)

n+2∏
i=1

‖bi‖pi
.

Proof. This follows easily by Hölder’s inequality. �

Theorem 2.6 suggests to define the form Λ[K], for K ∈ Kε, as the limit of
partial sums

(2.13)

N∑
j=−N

Λ[ς
(2j)
j ](b1, . . . , bn+2)

as N → ∞.
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Our main boundedness result (a sharper version of Theorem 2.3) is

Theorem 2.8. Let 0 < δ < 1, let p1, . . . , pn+2 ∈ [1+ δ,∞] with
∑n+2

l=1 p−1
l = 1.

(i) Let I be a finite subset of Z and let {ςj : j ∈ I} be a subset of Bε(R
n ×Rd)

so that for every j ∈ I,
∫
ςj(α, x) dx = 0 for almost all α ∈ Rn. Let

KI =
∑
j∈I

ς
(2j)
j .

Then for bl ∈ Lpl(Rd) we have

|Λ[KI](b1, . . . , bn+2)|

≤ Cε,d,δn
2
(
sup
j∈Z

‖ςj‖L1(Rn+d)

)
log3
(
2 + n

supj∈Z
‖ςj‖Bε

supj∈Z
‖ςj‖L1

) n+2∏
l=1

‖bl‖pl

where the constant Cε,d,δ is independent of n and I.

(ii) Let K ∈ Kε so that K =
∑

j∈Z
ς
(2j)
j in LS ′(Rn×Rn) with

∫
ςj(α, x)dx = 0

for almost all α ∈ Rn. Let supj ‖ςj‖Bε
< ∞, b1 ∈ Lp1 , ..., bn+2 ∈ Lpn+2 . Then∑∞

j=−∞ Λ[ς
(2j)
j ] converges in the operator topology of (n + 2)-linear functionals to

a limit Λ[K] satisfying

|Λ[K](b1, . . . , bn+2)| ≤ Cp0,ε,dn
2‖K‖K0

log3
(
2 + n

‖K‖Kε

‖K‖K0

) n+2∏
l=1

‖bl‖pl
.

We now turn to the multilinear forms defined by adjoint operators. More
generally, given a permutation � on {1, . . . , n+ 2} we define the multilinear form
Λ�[ς] by

(2.14) Λ�[ς](b1, . . . , bn+2) = Λ[ς](b�(1), . . . , b�(n+2)) .

We have the following crucial result which will be proved in Chapter 4. It
shows that operators of the form (2.13), and their limits as N → ∞, are closed
under adjoints.

Theorem 2.9. Let ε > 0. There exists ε′ ≥ c(ε) (independent of n) such that
for any permutation � of {1, . . . , n+2} there exists a bounded linear transformation

� : Bε(R

n × Rd) → Bε′(R
n × Rd) with

(
�ς)(t) = 
�(ς(t)), t > 0,

and

Λ�[ς] = Λ[
�ς] ,

such that

‖
�ς‖Bε′ � n2‖ς‖Bε

and

‖
�ς‖L1 = ‖ς‖L1 .

Furthermore, if
∫
ς(α, v) dv = 0 a.e. then also

∫

�ς(α, v) dv = 0 a.e.

In light of Theorem 2.9, the result in Theorem 2.8 is closed under taking ad-
joints, and therefore follows from the following result and complex interpolation
(see Chapter 11).
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Theorem 2.10. Let δ > 0, b1, . . . , bn ∈ L∞(Rd), p ∈ [1 + δ, 2], and let p′ =

p/(p− 1). For bn+1 ∈ Lp(Rd), bn+2 ∈ Lp′
(Rd) we have

|Λ[K](b1, . . . , bn+2)| ≤

Cε,d,δn
2 sup
j∈Z

‖ςj‖L1 log3
(
2 + n

supj∈Z
‖ςj‖Bε

supj∈Z ‖ςj‖L1

)( n∏
l=1

‖bl‖∞
)
‖bn+1‖p‖bn+2‖p′ .

The structure of the proof of Theorem 2.10 will be discussed in Chapter 5, and
the details of the proof will be given in subsequent sections.

2.4. Remarks on Besov spaces

2.4.1. Equivalent norms. In Definition 2.4 we chose a particular form of the
norm ‖ · ‖Bε

which is well suited for our goal to prove estimates with polynomial
growth in n. There are other equivalent norms which could be used, for instance,
one might replace the expression

sup
0<h≤1
1≤i≤n

h−ε

∫∫
|ς(α+ hei, v)− ς(α, v)| dα dv

with

sup
0<|h|≤1

|h|−ε

∫∫
|ς(α+ h, v)− ς(α, v)| dα dv

and one ends up with a comparable norm. These two choices differ by a factor
which is polynomial in n. Fortunately, the result in Theorem 2.8 only involves
‖ςj‖Bε

through the expression

log3(2 + n
supj∈Z ‖ςj‖Bε

supj∈Z ‖ςj‖L1

).

Thus, if one changes supj∈Z
‖ςj‖Bε

by a factor which is polynomial in n, this only
changes the bound in Theorem 2.8 by a constant factor, and therefore does not
change the result in Theorem 2.8. In this way, one can use any one of a variety of
equivalent norms when defining ‖ · ‖Bε

(as long as one only changes the norm by a
factor which is bounded by a polynomial in n) – we picked out the choice which is
most natural for our purposes.

2.4.2. The role of projective space. Though it may not be apparent from
the above definitions, the space RPn plays a key role in the intuition behind our
main results. In this section, we exhibit a special case where the role of RPn is
apparent, and we return to a more general version of these ideas in §4.5.

Recall that RPn is defined as Rn+1 \{0} modulo the equivalence relation where
we identify α, β ∈ Rn+1 \{0} if there exists c ∈ R\{0} with α = cβ. This sees RPn

has an n-dimensional manifold. Traditionally, there are n+ 1 standard coordinate
charts on RPn. For these, we consider those points in α = (α1, . . . , αn+1) ∈ Rn+1 \
{0} with αj 	= 0. Under the equivalence relation, α is equivalent to α−1

j α =

(α−1
j α1, . . . , α

−1
j αj−1, 1, α

−1
j αj+1, . . . , α

−1
j αn+1). This identifies such points with a

copy of Rn and yields a coordinate chart on RPn–every point in RPn lies in the
image of at least one of these charts. This sees a copy of Rn inside of RPn given
by (α1, . . . , αn) �→ (α1, . . . , αj−1, 1, αj+1, . . . , αn).
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Functions on RPn can be identified with functions f : Rn+1 \ {0} → C such
that f(cα) = f(α)–i.e., functions which are homogeneous of degree 0 and are even.
Suppose we are given f : RPn → C. We obtain a function f0 : Rn → C by
viewing Rn ↪→ RPn via the map (α1, . . . , αn) �→ (α1, . . . , αn, 1). Thus, given an
even function f : Rn+1 \ {0} → C which is homogeneous of degree 0, we obtain
a function f : RPn → C, and therefore a function f0 : Rn → C (and f0 uniquely
determines f off of a set of lower dimension in RPn).

We consider here the special case when

K(α, v) = γ(α)κ(v)

and κ is a classical Calderón-Zygmund kernel which is homogeneous of degree −d
and smooth away from v = 0. For α ∈ Rn and functions b1, . . . , bn+2, consider

F0(α) =

∫∫
κ(x− y)bn+2(x)bn+1(y)

n∏
i=1

bi(x− αi(x− y)) dx dy

=

∫∫
κ(v)bn+2(x)bn+1(x− v)

n∏
i=1

bi(x− αiv) dx dv.

(2.15)

The multilinear form we wish to study (in this special case) is given by∫
γ(α)F0(α) dα.

One main aspect of our assumptions is that this operator should be of the same
form when we permute the roles of b1, . . . , bn+2. Many of these permutations are
easy to understand: permuting the roles of b1, . . . , bn merely permutes the variables
α1, . . . , αn. Switching the roles of bn+1 and bn+2 changes α to (1−α1, . . . , 1−αn).
Thus, the major difficulty in understanding adjoints can be reduced to understand-
ing the question of switching the roles of bj (1 ≤ j ≤ n) and bn+1 (as every
permutation of {1, . . . , n+ 2} can be generated by the these three types of permu-
tations).

Define a new function F : Rn+1 \ {0} → C by

F (α1, . . . , αn+1) =

∫∫
κ(v)b1(x−α1v) · · · bn(x−αnv)bn+1(x−αn+1v)bn+2(x)dxdv .

Because of the homogeneity of κ, we see (for c ∈ R \ {0}), F (cα) = F (α). By the
above discussion, F defines a function on RPn, and therefore induces a function
F0 : Rn → C as above. This induced function F0 is exactly the function of the
same name from (2.15). Thus, we have defined F0 in a way which is symmetric in
b1, . . . , bn+1.

F (α) defines a function on RPn, and therefore if γ(α)dα were a measure on
RPn, it would make sense to write∫

γ(α)F (α) dα.

Indeed, our main assumptions in this special case are equivalent to assuming that
γ(α)dα is a density which lies in the space

⋃
0<ε<1B

ε
1,∞(RPn) (where Bε

1,∞(RPn)
denotes a Besov space of densities on RPn, see §4.5 for a proof of this remark).
When we write the expression as∫

γ(α)F0(α) dα,
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we are merely choosing the coordinate chart Rn ↪→ RPn denoted above. With this
formulation, the operator ∫

γ(α)F (α) dα

clearly remains of the same form when b1, . . . , bn+1 are permuted, and from here it
is easy to see that the class of operators is “closed under adjoints.”

Remark. In our more general setting, K(α, v) is not homogeneous in the v
variable, and therefore we cannot define a function F on RPn as was done above.
Nevertheless, these ideas play an important role in our proofs, see §4.5 below.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAPTER 3

Kernels

In this chapter, we prove various results announced in Chapter 2. We first show
the independence of the space Kε of the particular choice of η satisfying (2.2) and
then give the proof of Propositions 3.2 and 3.3.

3.1. Independence of η

The following lemma shows that Kε does not depend on the choice of η ∈ S(Rd)
satisfying (2.2).

Lemma 3.1. Let η, η′ ∈ S(Rd) and η be as in (2.2). Let 0 < ε ≤ 1. There
exists C = C(η, η′) such that for all K ∈ Kε

‖K‖
K

η′
ε

≤ C‖K‖Kη
ε

The constant C is independent of n.

Proof. Let K ∈ Kε. Only two of the terms of the definition of ‖K‖Kε
depend

on the choice of η. Thus, the result will follow once we prove the following two
estimates.

(3.1) sup
1≤i≤n
t>0

∫
(1 + |αi|)ε‖η′ ∗K(t)(α, ·)‖L2(Rd) dα

≤ C sup
1≤i≤n
t>0

∫
(1 + |αi|)ε‖η ∗K(t)(α, ·)‖L2(Rd) dα,

and

(3.2) sup
1≤i≤n
t>0

0<h≤1

h−ε

∫
‖η′ ∗ [K(t)(α+ hei, ·)−K(t)(α, ·)]‖L2(Rd) dα

≤ C sup
1≤i≤n
t>0

0<h≤1

h−ε

∫
‖η ∗ [K(t)(α+ hei, ·)−K(t)(α, ·)]‖L2(Rd) dα.

The proofs of these two equations are nearly identical, so we prove only (3.1).
Let χ ∈ C∞

0 (Rd) be supported in {ξ : 1
2 < |ξ| < 2} with the property that∑

k∈Z
[χ(2−kξ)]2=1, for ξ ∈ Rd\{0}. Since η′ ∈ S(Rd), we have ‖χ(2−k·)η̂′(·)‖L∞ ≤

CN min{2−kN , 1}. By (2.2) and the compactness of {ξ : 1
2 ≤ |ξ| ≤ 2} there is a

finite index set Θ and real numbers τν > 0 such that∑
ν∈Θ

|η̂(τνξ)|2 ≥ c > 0 for
1

2
≤ |ξ| ≤ 2.

17
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Let

mν(ξ) =
η̂(τνξ)χ(ξ)∑
ν̃∈Θ |η̂(τν̃ξ)|2

;

then ‖mν‖L∞ ≤ Cν and we have

η̂′(ξ) =
∑
k∈Z

χ(2−kξ)η̂(ξ)
∑
ν∈Θ

mν(2
−kξ)η̂(2−kτνξ).

Hence,

‖η′ ∗K(t)(α, ·)‖L2(Rd) �
∑
k∈Z

min{2−kN , 1}
∑
ν∈Θ

‖mν‖∞‖η̂(2−kτν ·)K̂(t)(α, ·)‖L2(Rd),

where the implicit constant depends on N . Note

‖η̂(2−kτν ·)K̂(t)(α, ·)‖L2(Rd) = (2k/τν)
d/2‖η ∗K(2−kτνt)(α, ·)‖L2(Rd),

and so taking N > d/2 we obtain∫
(1 + |αi|)ε‖η′ ∗K(t)(α, ·)‖L2(Rd) dα

�
∑
k∈Z

min{2−k(N−d/2), 2kd/2}
∑
ν∈Θ

Cν

∫
(1 + |αi|)ε‖η ∗K(2−kτνt)(α, ·)‖L2(Rd) dα

� sup
r>0

∫
(1 + |αi|)ε‖η ∗K(r)(α, ·)‖L2(Rd) dα,

which completes the proof of (3.1). �

3.2. Proof of Theorem 2.6

The theorem follows from two propositions. In the first we prove an estimate

for the ςj as in (2.11), which arise in the decomposition of K =
∑

j ς
(2j)
j .

Proposition 3.2. Suppose ε ∈ (0, 1], 0 < δ < ε. For every K ∈ Kε, let

ςj = (QjK)(2
−j).

Then {ςj : j ∈ Z} is a bounded subset of Bδ(R
n × Rd) satisfying∫

ςj(α, v) dv = 0,

for all j and almost every α ∈ Rn and

sup
j∈Z

‖ςj‖Bδ
≤ Cδ,ε,d‖K‖Kε

,

and such that

K =
∑
j∈Z

ς
(2j)
j ,

with the sum converging in the sense of the topology on LS ′(Rn × Rd).

The second proposition providesKδ-estimates for kernels that are given as sums∑
j ς

(2j)
j , with uniform Bε-estimates for the ςj .
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Proposition 3.3. Let ε ∈ (0, 1], and 0 < δ < ε/2. Suppose {ςj : j ∈ Z} ⊂
Bε(R

n × Rd) is a bounded set satisfying
∫
ςj(α, v) dv = 0, for all j. Then the sum

K(α, v) :=
∑
j∈Z

ς
(2j)
j (α, v)

converges in the sense of the topology on LS ′(Rn×Rd), and K ∈ Kδ. Furthermore,

‖K‖Kδ
≤ Cδ,ε,d sup

j∈Z

‖ςj‖Bε
.

The proofs of these propositions will be given in §3.2.1 and §3.2.2

3.2.1. Proof of Proposition 3.2. We need several lemmata.

Lemma 3.4. Let ε > 0. Then, there exists δ = δ(ε, d) > 0 such that for
ς ∈ Bε(R

n × Rd), we have∫∫
|v|−δ|ς(α, v)| dα dv ≤ Cε,d‖ς‖Bε

.

Proof. Clearly
∫∫

|v|>1
|v|−δ|ς(α, v)| dα dv � ‖ς‖L1 ≤ ‖ς‖Bε

, so it suffices to
prove

(3.3)

∫∫
|v|≤1

|v|−δ|ς(α, v)| dα dv � ‖ς‖Bε
.

By a weak version of the Sobolev embedding theorem (see [35] or [39]), there exists
p = p(ε, d) > 1 such that∫ (∫

|ς(α, v)|p dv
) 1

p

dα � ‖ς‖Bε
.

Let p′ be dual to p and let δ < 1/p′. We have, by Hölder’s inequality, and then
Minkowski’s inequality,∫∫

|v|≤1

|v|−δ|ς(α, v)| dα dv ≤
(∫

|v|≤1

|v|−δp′
dv
) 1

p′
(∫ (∫

|ς(α, v)| dα
)p

dv
) 1

p

dα

�
(∫ (∫

|ς(α, v)| dα
)p

dv
) 1

p

dα � ‖ς‖Bε
.

This shows (3.3) and completes the proof of the lemma. �

Lemma 3.5. Let {ςj : j ∈ Z} ⊂ Bε(R
n×Rd) be a bounded set with

∫
ςj(α, v)dv =

0, for all j ∈ Z. The sum ∑
j∈Z

ς
(2j)
j (α, v)

converges in the sense of the topology on LS ′(Rn ×Rd) (and a fortiori in the sense
of tempered distributions).

Proof. Let f ∈ S(Rn × Rd). We will show, for some δ > 0,∣∣∣ ∫ ς
(2j)
j (α, v)f(α, v) dα dv

∣∣∣ � 2−|j|δ sup
α∈Rn,x∈Rd

∑
|γ|≤1

(1 + |x|)|∂γ
xf(α, x)|,

and the result will follow by the completeness of LS ′.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

20 3. KERNELS

First we consider the case j ≥ 0. In this case, we have∣∣∣ ∫∫ ς
(2j)
j (α, v)f(α, v) dα dv

∣∣∣ = ∣∣∣ ∫∫ ς
(2j)
j (α, v)[f(α, v)− f(α, 0)] dα dv

∣∣∣
�
(

sup
α∈Rn,x∈Rd

∑
|γ|≤1

|∂γ
xf(α, x)|

)∫∫
|ς(2

j)
j (α, v)||v|ε dv dα

� 2−jε
(

sup
α∈Rn,x∈Rd

∑
|γ|≤1

|∂γ
xf(α, x)|

)
‖ςj‖Bε

,

as desired.
We now turn to j < 0. Take δ > 0 as in Lemma 3.4. We have∣∣∣∫∫ ς

(2j)
j (α, v)f(α, v) dαdv

∣∣∣ ≤ ( sup
α∈Rn,x∈Rd

|x|δ|f(α, x)|
)∫∫

|ς(2
j)

j (α, v)| |v|−δ dα dv

=
(

sup
α∈Rn,x∈Rd

|x|δ|f(α, x)|
)
2jδ
∫∫

|ςj(α, v)| |v|−δ dα dv

�
(

sup
α∈Rn,x∈Rd

|x|δ|f(α, x)|
)
2jδ‖ςj‖Bε

,

where in the last line we have used our choice of δ and Lemma 3.4. �

Let φ ∈ C∞
0 (Bd(1/2)) be a radial, non-negative function with

∫
φ = 1. For

j ∈ Z let φ(2j)(v) = 2jdφ(2jv). Let ψ(x) = φ(x) − 1
2φ(x/2) ∈ C∞

0 (Bd(1)). Let

Qjf = f ∗ ψ(2j). Note that f =
∑

j∈Z
Qjf for f ∈ S(Rd) with convergence in the

sense of tempered distributions.
The heart of the proof of Proposition 3.2 is the following lemma.

Lemma 3.6. Suppose 0 < ε ≤ 1, 0 < δ < ε and let K ∈ Kε. Let

ς(α, v) = Q0K(α, v).

Then, ς ∈ Bδ(R
n × Rd) and

‖ς‖Bδ
≤ Cδ,ε,d‖K‖Kε

.

Proof of Proposition 3.2 given Lemma 3.6. Since K(2j) is of the same
form as K, the lemma also yields, with ςj := (QjK)(2

−j),

sup
j∈Z

∥∥ςj∥∥Kε
≤ Cδ,ε,d‖K‖Kε

.

As
∫
ςj(α, x)dx = 0 for all j it follows from standard estimates thatK =

∑
j∈Z

ς
(2j)
j ,

in the sense of tempered distributions. Since we know
∑

j∈Z
ς
(2j)
j converges in the

sense of the topology on LS ′(Rn×Rd) it follows that the sum can be taken in that
sense as well. The result now follows from Lemma 3.6. �

Proof of Lemma 3.6. Note that, in light of Lemma 3.1, we may replace the
test function η with ψ in the definition of ‖K‖Kε

.
We begin by bounding ‖ς‖Bδ,1

as in (2.9a) and split, for fixed 1 ≤ i ≤ n,∫∫
(1 + |αi|)δ|ς(α, x)| dx dα =

∫∫
|x|≤1

+

∫∫
1<|x|≤1+|αi|

+

∫∫
|x|>1+|αi|

=: (I) + (II) + (III).
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For (I), we apply the Cauchy-Schwarz inequality to see

(I) =

∫∫
|x|≤1

(1 + |αi|)δ|ς(α, x)| dx dα

�
∫
(1 + |αi|)δ

(∫
|ψ ∗K(α, x)|2 dx

) 1
2

dα ≤ ‖K‖
K

ψ
ε,1

.

For (II), we have

(II) =

∫∫
1<|x|≤1+|αi|

(1 + |αi|)δ|ς(α, x)| dx dα

�
∑
k≥0

∫∫
1+|αi|>2k

2k≤|x|≤2k+1

(1 + |αi|)δ|ψ ∗K(α, x)| dx dα

�
∑
k≥0

2k(δ−ε)

∫∫
2k−1≤|x|≤2k+3

(1 + |αi|)ε|K(α, x)| dx dα � ‖K‖Kε,3
.

For (III), we use that
∫
ψ = 0 and supp(ψ) ⊂ Bd(0, 1) to see

(III) =

∫∫
|x|>1+|αi|

(1 + |αi|)δ|ς(α, x)| dx dα

�
∫∫

|x|>1+|αi|
(1 + |αi|)δ

∣∣∣ ∫ ψ(y)[K(α, x− y)−K(α, x)]
∣∣∣ dx dα

�
∑
k≥0

2kδ
∫

|ψ(y)|
∫∫

2k≤|αi|≤2k+1

|x|>2k

|K(α, x− y)−K(α, x)| dx dα dy

�
∑
k≥0

2kδ
∫
|y|≤1

∫∫
|x|>2k

|K(α, x− y)−K(α, x)| dx dα dy

�
∑
k≥0

2k(δ−ε)‖K‖Kε,5
� ‖K‖Kε,5

,

as desired. Combining the estimates for (I), (II), (III) gives

‖ς‖Bδ,1
� ‖K‖

K
ψ
ε,1

+ ‖K‖Kε,3
+ ‖K‖Kε,5

� ‖K‖Kε
.

We turn to bounding ‖ς‖Bδ,2
. Let 1 ≤ i ≤ n and 0 < h ≤ 1 and split∫∫

|ς(α+hei, x)−ς(α, x)|dxdα =

∫∫
|x|≤2

+

∫∫
2≤|x|≤10h−1

+

∫∫
|x|<10h−1

=: (IV )+(V )+(V I).

Our goal is to show (IV ), (V ), (V I) � hδ‖K‖Kε
. We have, by the Cauchy-Schwarz

inequality,

(IV ) =

∫∫
|x|≤2

|ς(α+ hei, x)− ς(α, x)| dx dα

�
∫ (∫

|ψ ∗ [K(α+ hei, ·)−K(α, ·)](x)|2 dx
) 1

2

dα ≤ hε‖K‖
K

ψ
ε,2

.
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For (V ), we have

(V ) =

∫∫
2<|x|≤10h−1

|ς(α+ hei, x)− ς(α, x)| dx dα

�
∑

1≤2k≤10h−1

∫∫
2k−1≤|x|≤2k+2

|K(α+ hei, x)−K(α, x)| dx dα

�
∑

1≤2k≤10h−1

hε‖K‖Kε,4
� hε log(2 + h−1)‖K‖Kε,4

.

For (V I), we use that
∫
ψ = 0 and supp(ψ) ⊂ Bd(0, 1) and obtain

(V I) =

∫∫
|x|≥10h−1

|ς(α+ hei, x)− ς(α, x)| dx dα ≤ 2

∫∫
|x|>10h−1

|ψ ∗K(α, x)| dx dα

�
∫∫

|x|>10h−1

∣∣∣ ∫ ψ(y)[K(α, x− y)−K(α, x)] dy
∣∣∣ dx dα

�
∫

|ψ(y)|
∫∫

|x|≥10h−1

|K(α, x− y)−K(α, x)| dx dα dy

� hε‖K‖Kε,5
.

Combining the estimates for (IV ), (V ), (V I) we get

‖ς‖Bδ,2
� ‖K‖

K
ψ
ε,2

+ ‖K‖Kε,4
+ ‖K‖Kε,5

� ‖K‖Kε
.

We now turn to bounding ‖ς‖Bδ,3
. Fix h ∈ Rd with 0 < |h| ≤ 1. Using that∫

ψ = 0, we have

∫∫
|ς(α, x+ h)− ς(α, x)| dx dα

≤
∫∫

|x|≤10

∣∣∣ ∫ 1

0

〈h,∇xψ ∗K(α, x+ sh)〉ds
∣∣∣ dx dα

+
∑

8≤2k≤10|h|−1

∫∫
2k≤|x|≤2k+1

∣∣∣ ∫ 1

0

〈h,∇xψ ∗K(α, x+ sh)〉 ds
∣∣∣ dx dα

+ 2

∫∫
|x|≥9|h|−1

∣∣∣ ∫ ψ(y)[K(α, x− y)−K(α, x)] dy
∣∣∣ dx dα

=: (V II) + (V III) + 2(IX).

We need to show (V II), (V III), (IX) � |h|δ‖K‖Kε
.
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We begin with (V II) and use the Cauchy-Schwarz inequality to see

(V II) =

∫∫
|x|≤10

∣∣∣ ∫ 1

0

〈h,∇xψ ∗K(α, x+ sh)〉 ds
∣∣∣ dx dα

≤ |h|
∫∫

|x|≤11

|∇ψ ∗K(α, x)| dx dα

� |h|
∫ (∫

|∇ψ ∗K(α, x)|2 dx
) 1

2

dα

� |h|‖K‖
K

∇ψ
ε,1

.

For (V III) we have

(V III) =
∑

8≤2k≤10|h|−1

∫∫
2k≤|x|≤2k+1

∣∣∣ ∫ 1

0

〈h,∇xψ ∗K(α, x+ sh)〉 ds
∣∣∣ dx dα

≤ |h|
∑

8≤2k≤10|h|−1

∫∫
2k−1≤|x|≤2k+2

|∇ψ ∗K(α, x)| dx dα

� |h|
∑

8≤2k≤10|h|−1

∫∫
2k−2≤|x|≤2k+3

|K(α, x)| dx dα

� |h|
∑

8≤2k≤10|h|−1

‖K‖K0,3
� |h| log(2 + |h|−1)‖K‖K0,3

.

For (IX) we use supp(ψ) ⊂ Bd(0, 1) and estimate

(IX) =

∫∫
|x|≥9|h|−1

∣∣∣ ∫ ψ(y)[K(α, x− y)−K(α, x)] dy
∣∣∣ dx dα

≤
∫

|ψ(y)|
∫∫

|x|≥9|h|−1

|K(α, x− y)−K(α, x)| dx dα dy

� hε‖K‖Kε,5
,

as desired. Summarizing,

‖ς‖Bδ,3
� ‖K‖

K
∇ψ
ε,1

+ ‖K‖K0,3
+ ‖K‖Kε,5

� ‖K‖Kε

where in the last inequality we have used Lemma 3.1.
Finally we estimate ‖ς‖Bε,4

and split∫∫
(1 + |x|)δ|ς(α, x)| dα dx =

∫∫
|x|≤10

+

∫∫
|x|>10

=: (X) + (XI).

We have, by the Cauchy-Schwarz inequality,

(X) =

∫∫
|x|≤10

(1+ |x|)δ|ς(α, x)| dx dα �
∫ (∫

|ψ ∗K(α, x)|2 dx
) 1

2

dα � ‖K‖
K

ψ
ε,1

.
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Using that
∫
ψ = 0 and supp(ψ) ⊂ Bd(0, 1), we have

(XI) =

∫∫
|x|>10

(1 + |x|)δ|ς(α, x)| dx dα

�
∑
k≥3

2kδ
∫∫

2k≤|x|≤2k+1

∣∣∣ ∫ ψ(y)[K(α, x− y)−K(α, x)] dy
∣∣∣ dx dα

�
∑
k≥3

2kδ
∫

|ψ(y)|
∫∫

|x|≥2k
|K(α, x− y)−K(α, x)| dx dα dy

�
∑
k≥3

2k(δ−ε)‖K‖Kε,5
� ‖K‖Kε,5

.

Hence

‖ς‖Bε,4
� ‖K‖

K
ψ
ε,1

+ ‖K‖Kε,5
� ‖K‖Kε

.

This completes the proof. �

3.2.2. Proof of Proposition 3.3. We begin with a preparatory lemma. Let
Φ ∈ S(Rd) satisfy

∫
Φ(x)dx = 1, and let Ψ(x) = Φ(x) − 1

2Φ(
x
2 ). Define Qjf =

f ∗Ψ(2j).

Lemma 3.7. Let ε > 0 and ς ∈ Bε(R
n × Rd). Then, for l > 0,

(3.4)

∫∫
|Qlς(α, x)| dx dα+ 2−l

∫∫
|∇xQlς(α, x)| dx dα � 2−lε‖ς‖Bε

,

(3.5)

∫∫
|x|≥R

|Qlς(α, x)| dx dα + 2−l

∫∫
|x|≥R

|∇xQlς(α, x)| dx dα � R−ε‖ς‖Bε
,

and for |h| ≤ 1,

(3.6)

∫∫
|x|≥R

∣∣Qlς(α, x+ h)−Qlς(α, x)
∣∣ dx dα � min{2l|h|, 1}min{2−lε, R−ε}‖ς‖Bε

.

Let 0 < δ < ε. Then for R ≥ 0, i = 1, . . . n,

(3.7)

∫∫
|x|≥R

(1 + |αi|)δ|Qlς(α, x)| dx dα � min{2−l(ε−δ), R−(ε−δ)}‖ς‖Bε
,

and for all 0 < |τ | ≤ 1, j = 1, . . . , n,
(3.8)

|τ |−δ

∫∫
|x|≥R

∣∣Qlς(α+ τej , x)−Qlς(α, x)
∣∣ dx dα � min{2−l(ε−δ), R−(ε−δ)}‖ς‖Bε

.
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Proof. First observe that (3.4) is an immediate consequence of the definitions.
Next, for the proof of (3.5) we may assume R ≥ 1. Also, observe, for every N ∈ N,∫∫

|x|≥R

|Qlς(α, x)| dx dα+ 2−l

∫∫
|x|≥R

|∇xQlς(α, x)| dx dα

≤ CN

∫∫∫
|x|≥R

2ld

(1 + 2l|y|)N |ς(α, x− y)| dx dα dy

= CN

∫∫∫
|x|≥R

|y|≤R/2

+CN

∫∫∫
|x|≥R

|y|>R/2

=: CN

(
(I) + (II)

)
.

For (I) we have

(I) � R−ε

∫∫∫
|x|≥R

|y|≤R/2

2ld

(1 + 2l|y|)N (1 + |x− y|)ε|ς(α, x− y)| dx dα dy � R−ε‖ς‖B
ε,4

.

For (II), taking N ≥ d+ 1, we have

(II) � ‖ς‖L1

∫
|y|>R/2

2ld

(1 + 2l|y|)N dy � (2lR)−1‖ς‖L1 ≤ R−ε‖ς‖B
0,4

,

and (3.5) follows. (3.6) follows by combining (3.4) and (3.5).
We now turn to (3.7) and we separate the proof into two cases, R ≤ 2l and

R ≥ 2l. For R ≤ 2l we have, by (3.4),∫∫
|x|≥R

(1 + |αi|)δ|Qlς(α, x)| dx dα ≤
∫∫

|αi|≤2l

+

∫∫
|αi|>2l

=: (III) + (IV ).

For (III), we apply (3.4) to see

(III) � 2lδ
∫∫

|Qlς(α, x)| dx dα � 2−l(ε−δ)‖ς‖Bε
.

Also, we have

(IV ) � 2−l(ε−δ)

∫
(1 + |αi|)ε

∫
|Qlς(α, x)| dx dα

� 2−l(ε−δ)

∫∫
(1 + |αi|)ε|ς(α, x)| dx dα � 2−l(ε−δ)‖ς‖Bε

.

In the second case, R ≥ 2l, we have∫∫
|x|≥R

(1 + |αi|)δ|Qlς(α, x)| dx dα ≤
∫∫

|αi|≤R
|x|≥R

+

∫∫
|αi|>R

=: (V ) + (V I).

Using (3.5),

(V ) � Rδ

∫∫
|x|≥R

|Qlς(α, x)| dx dα � Rδ−ε‖ς‖Bε
.
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And,

(V I) � Rδ−ε

∫
|αi|>R

(1 + |αi|)ε
∫

|Qlς(α, x)| dx dα

� Rδ−ε

∫∫
(1 + |αi|)ε|ς(α, x)| dx dα � Rδ−ε‖ς‖Bε

,

which completes the proof of (3.7).
Finally, we turn to (3.8). This we separate into four cases. In the first case,

R ≤ 2l, τ ≥ 2−l, we have

|τ |−δ

∫∫
|x|≥R

|Qlς(α+ τej , x)−Qlς(α, x)| dx dα

� 2lδ
∫∫

|Qlς(α, x)| dx dα � 2−l(ε−δ)‖ς‖Bε
.

In the second case, R ≤ 2l, |τ | ≤ 2−l, we have

|τ |−δ

∫∫
|x|≥R

|Qlς(α+ τej , x)−Qlς(α, x)| dx dα

� 2−l(ε−δ)|τ |−ε

∫∫
|ς(α+ τej , x)− ς(α, x)| dx dα � 2−l(ε−δ)‖ς‖Bε

.

In the third case, R ≥ 2l, |τ | ≥ R−1, we have

|τ |−δ

∫∫
|x|≥R

|Qlς(α+ τej , x)−Qlς(α, x)| dx dα

� Rδ

∫∫
|x|≥R

|Qlς(α, x)| dx dα � Rδ−ε‖ς‖Bε
,

where in the last inequality we have used (3.5). In the last case, R ≥ 2l, |τ | ≤ R−1,

|τ |−δ

∫∫
|x|≥R

|Qlς(α+ τej , x)−Qlς(α, x)| dx dα

� Rδ−ε|τ |−ε

∫∫
|ς(α+ τej , x)− ς(α, x)| dx dα � Rδ−ε‖ς‖Bε

,

as desired. This completes the proof. �

Proof of Proposition 3.3, conclusion. Let ςj be as in the statement of

the proposition. By Lemma 3.5 we already know the sum
∑

j∈Z
ς
(2j)
j converges

in the topology on LS ′(Rn × Rd). Our goal is to show convergence of the sum

‖
∑

j∈Z
ς
(2j)
j ‖Kδ

in Kδ for 0 < δ < ε/2. Fix j1, j2 ∈ Z, j1 < j2. Define K =∑
j1≤j≤j2

ς
(2j)
j . We will show ‖K‖Kδ

� supj ‖ςj‖Bε
, with the implicit constant

independent of j1, j2. The result then follows y a limiting argument. In what
follows, summations in j are taken over the range j1 ≤ j ≤ j2. We assume, without
loss of generality,

sup
j

‖ςj‖Bε
= 1.

Let χ0 ∈ S(Rd) be so that χ̂0(ξ) = 1 for |ξ| ≤ 1 and χ̂0 is supported in

{ξ : |ξ| ≤ 2}. For l ≥ 1 let χl = χ
(2l)
0 − χ

(2l−1)
0 , so that supl∈Z

χ̂l(ξ) = 1 for ξ 	= 0.
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We write

K =
∑
j

ς
(2j)
j =

∑
l≥0

∑
j

ς
(2j)
j,l ,

where
ςj,l(α, ·) = χl ∗ ςj(α, ·)

and the convolution is in Rd. Let

Kl =
∑
j

ς
(2j)
j,l .

The proof will be complete once we have shown ‖Kl‖Kδ
� 2−l(ε−2δ).

Our first goal is to show, for 1 ≤ i ≤ n, t ∈ R,

(3.9)

∫
(1 + |αi|)δ‖η ∗K(t)

l ‖L2(Rd) dα � (1 + l)2−l(ε−δ)

which gives ‖Kl‖Kη
δ,1

� (1 + l)2−l(ε−δ). To prove (3.9), we will show

(3.10)

∫
(1+|αi|)δ

∥∥η∗ς(2jt)j,l (α, ·)
∥∥
2
dα �

⎧⎪⎨⎪⎩
(2l(ε−δ)2jt)−

ε−δ
1+ε−δ if 2jt ≥ 2l,

2−l(ε−δ) if 2−2l ≤ 2jt ≤ 2l,

(2l+jt)d/2 if 2jt ≤ 2−2l.

Summing (3.10) in j yields (3.9), so we focus on (3.10).
First we consider the case when 2jt ≥ 2l. Letting r ∈ [1, 2jt] be chosen later,

we use that
∫
ςj,l(α, x) dx = 0 to see∫

(1 + |αi|)δ
∥∥η ∗ ςj,l(α, ·)(2

jt)
∥∥
2
dα

�
∫
(1 + |αi|)δ

(∫ ∣∣∣ ∫ [η(x− y)− η(x)](2jt)dςj,l(α, 2
jty) dy

∣∣∣2 dx) 1
2

dα

�
∫
(1 + |αi|)δ

∫
|ςj,l(α, v)|‖η(· − v

2jt )− η(·)‖L2(Rd) dv dα

�
∫∫

(1 + |αi|)δ|ςj,l(α, v)|min{ |v|
2jt , 1} dv dα

=

∫∫
|v|≤r

+

∫∫
|v|>r

=: (I) + (II).

We have, using (3.7) with R = 0,

(I) � r

2jt

∫∫
(1 + |αi|)δ|ςj,l(α, v)| dv dα � r

2jt
2−l(ε−δ).

Using (3.7) with R = r,

(II) �
∫∫

|x|≥r

(1 + |αi|)δ|ςj,l(α, v)| dv dα � r−(ε−δ).

We choose r so that r1+ε−δ = 2l(ε−δ)2jt; this yields (3.10) in the case 2jt ≥ 2l

under consideration.
For 2−2l ≤ 2jt ≤ 2l we use the trivial L1 → L2 bound for convolution with η

and a change of variables, combined with (3.7) (with R = 0) to see∫
(1 + |αi|)δ‖η ∗ ς(2

jt)
j,l (α, ·)‖2 dα �

∫
(1 + |αi|)δ‖ςj,l(α, ·)‖1 dα � 2−l(ε−δ),

as desired.
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Now assume 2jt ≤ 2−l. Let u ∈ S(Rd) be such that û(ξ) = 1 for |ξ| ≤ 2, so
that û(2−l·) = 1 on the support of ς̂j,l. We then have, using ‖û(2−j−lt−1·)η̂(·)‖2 �
(2j+lt)d/2,∫

(1 + |αi|)δ‖η ∗ ς(2
jt)

j,l (α, ·)‖2 dα �
∫
(1 + |αi|)δ‖η ∗ u(2j+lt)‖2‖ςj,l(α, ·)‖1 dα

�
∫
(1 + |αi|)δ‖û(2−j−lt−1·)η̂(·)‖2‖ςj,l(α, ·)‖1 dα � (2j+lt)d/2.

This completes the proof of (3.10) and therefore of (3.9).
A simple modification of the above proof, using (3.8) in place of (3.7), gives for

|τ | ≤ 1,

∫ ∥∥η∗ [ς(2jt)j,l (α+τej , ·)−ς
(2jt)
j,l (α, ·)]

∥∥
2
dα � |τ |δ ·

⎧⎪⎨⎪⎩
(2jt)−(ε−δ) if 2jR ≥ 2l,

2−l(ε−δ) if 2−2l ≤ 2jR ≤ 2l,

(2l+jR)d if 2jR ≤ 2−2l.

Summing in j shows that for 0 < h ≤ 1,

h−ε

∫ ∥∥η ∗ [K(t)
l (α+ hei, ·)−K

(t)
l (α, ·)]

∥∥
2
dα � (1 + l)2−l(ε−δ)

and hence ‖Kl‖Kη
δ,2

� (1 + l)2−l(ε−δ).

Next we wish to show ‖Kl‖Kδ,3
� (1+ l)2−l(ε−δ), that is, for 1 ≤ i ≤ n, R > 0,

(3.11)

∫∫
R≤|x|≤2R

(1 + |αi|)δ|Kl(α, x)| dx dα � (1 + l)2−(ε−δ)l.

To prove (3.11) we will show

(3.12)

∫∫
R≤|x|≤2R

(1 + |αi|)δ|ς(2
j)

j,l (α, x)| dx dα �

⎧⎪⎨⎪⎩
(2jR)−(ε−δ) if 2jR ≥ 2l,

2−l(ε−δ) if 2−2l ≤ 2jR ≤ 2l,

(2l+jR)d if 2jR ≤ 2−2l.

Summing (3.12) in j yields (3.11). Now, applying (3.7),∫∫
R≤|x|≤2R

(1 + |αi|)δ|ς(2
j)

j,l (α, x)| dx dα ≤
∫∫

2jR≤|x|

(1 + |αi|)δ|ςj,l(α, x)| dx dα

�
{
(2jR)−(ε−δ) if 2jR ≥ 2l,

2−l(ε−δ) if 2jR ≤ 2l.

Thus, to complete the proof of (3.12) we need only consider the case when 2jR ≤
2−2l. We have∫∫

R≤|x|≤2R

(1 + |αi|)δ|ς(2
j)

j,l (α, x)| dx dα =

∫∫
2jR≤|x|≤2j+1R

(1 + |αi|)δ|ςj,l(α, x)| dx dα

� (2jR)d
∫
(1 + |αi|)δ‖ςj,l(α, ·)‖L∞(Rd) dα

� (2jR)d2ld
∫
(1 + |αi|)δ‖ςj(α, ·)‖L1(Rd) dα

� (2j+lR)d,

competing the proof of (3.12) and therefore of (3.11).
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A simple modification of the above yields, for 0 < |τ | ≤ 1,∫∫
R≤|x|≤2R

|ς(2
j)

j,l (α+τei, x)−ς
(2j)
j,l (α, x)|dxdα � |τ |δ·

⎧⎪⎨⎪⎩
(2jR)−(ε−δ) if 2jR ≥ 2l,

2−l(ε−δ) if 2−2l ≤ 2jR ≤ 2l,

(2l+jR)d if 2jR ≤ 2−2l.

Summing in j yields, for 0 < h ≤ 1, R > 0,

h−δ

∫∫
R≤|x|≤2R

|Kl(α+ hei, x)−Kl(α, x)| dx dα � (1 + l)2−(ε−δ)l

and hence ‖K‖Kε,4
� (1 + l)2−(ε−δ)l.

Finally, we wish to show, for R ≥ 2, y ∈ Rd,

(3.13) Rδ

∫∫
|x|≥R|y|

|K(α, x− y)−K(α, x)| dx dα � 2−l(ε−2δ).

First, estimate

Rδ

∫∫
|x|≥R|y|

|ς(2
j)

j,l (α, x− y)− ς
(2j)
j,l (α, x)| dx dα

= Rδ

∫∫
|x|>2j |y|R

|ςj,l(α, x− 2jy)− ςj,l(α, x)| dx dα

� Rδ min{1, 2j+l|y|}min{2−lε, (2j |y|R)−ε} =: E(j, l, R).

Here we applied (3.6) with 2j |y| in place of |h| and 2j |y|R in place of R. Note the
left hand side of (3.13) is bounded by

∑
j E(j, l, R).

In the case R ≥ 22l, we estimate∑
j

E(j, l, R) �

∑
2j |y|≥2−l

Rδ−ε(2j |y|)−ε+
∑

2l/R≤2j |y|≤2−l

2l(2j |y|)1−εRδ−ε+
∑

2j |y|≤2l/R

Rδ(2j |y|)2l(1−ε).

The first two sums are O(Rδ−ε2lε), and the third sum is O(Rδ−12(2−ε)l); here we
used R ≥ 22l.

In the case R ≤ 22l we have∑
j

E(j, l, R) �

∑
2j |y|≥2l/R

Rδ−ε(2j |y|)−ε +
∑

2−l≤2j |y|≤2l/R

Rδ2−lε +
∑

2j |y|≤2−l

Rδ2j |y|2l(1−ε).

The first sum is O(Rδ2−lε), the second sum is O(Rδ2−lε log(1 + 22l/R)), and since
R ≤ 22l the third sum is O(Rδ2−lε). In both cases we obtain

∑
j E(j, l, R) �

2−l(ε−2δ). This completes the proof of (3.13). Combining all of the above inequal-
ities completes the proof of the proposition. �
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CHAPTER 4

Adjoints

This chapter is devoted to studying the space Bε ; in particular will give the
proof of Theorem 2.9. It will be advantageous to work with a variant of this class,
for functions on RN , with N = n+ d.

Definition 4.1. Fix ε > 0 and N ∈ N. We define a Banach space Bε(R
N ) to

be the space of measurable functions γ : RN → C such that the norm

‖γ‖Bε
:= max

1≤i≤N

∫
(1 + |si|)ε|γ(s)| ds+ sup

0<h≤1
1≤i≤N

h−ε

∫
|γ(s+ hei)− γ(s)| ds,

is finite. Here e1, . . . , eN denotes the standard basis of RN .

Remark 4.2. The spaces Bε(R
n+d) and Bε(R

n × Rd) coincide; indeed, for
ς ∈ Bε(R

n × Rd), we have the equivalence

‖ς‖Bε
≈ ‖ς‖Bε

,

with implicit constants depending only on d. In this section we find it more useful
to use the space Bε as it treats the α and x variables symmetrically.

The following two propositions involve operations on functions in Bε involving
inversions and multiplicative shears. They are the main technical results needed
for the proof of Theorem 2.9.

Proposition 4.3. Let ε > 0 and δ < ε/3. Let γ ∈ Bε(R
N ) and

J1γ(s1, . . . , sN ) := s−2
1 γ(s−1

1 , s2, . . . , sN ),

γ ∈ Bε(R
N ). Then J1γ ∈ Bδ(R

N ) and

‖J1γ‖Bδ
� ‖γ‖Bε

.

Proposition 4.4. Let ε > 0 and δ < ε/3. Let γ ∈ Bε(R
N ), n ∈ {1, . . . , N}

and set

Mγ(s1, . . . , sN ) := sn−1
1 γ(s1, s1s2, . . . , s1sn, sn+1, sn+2, . . . , sN ).

Then Mγ ∈ Bε′(R
N ) and

‖Mγ‖Bδ
� n‖γ‖Bε

.

For later use in §4.5 we state these results in a different form:

Corollary 4.5. Let 1 ≤ n ≤ N . For γ ∈ Bε(R
N ) define two functions

Γ1(s1, . . . , sN ) := s−n−1
1 γ(s−1

1 , s−1
1 s2, . . . , s

−1
1 sn, sn+1, . . . , sN ),

Γ2(s1, . . . , sN ) := s
−(n−1)
1 γ(s1, s

−1
1 s2, . . . , s

−1
1 sn, sn+1, . . . , sN ).

There exists ε′ = ε′(ε) > 0 (depending neither on N nor n) such that

‖Γ1‖Bε′ + ‖Γ2‖Bε′ ≤ Cε,ε′n‖γ‖Bε
.

31
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Proof. Notice that Γ1 = J1Mγ, Γ2 = J1MJ1γ where J1 and M are as in the
propositions above. �

4.1. Proof of Theorem 2.9

We assume Proposition 4.3 and Proposition 4.4 and deduce Theorem 2.9. If
ς ∈ L1(Rn × Rd) and � is a permutation of {1, . . . , n+ 2}, we shall show

Λ[ς](b�(1), . . . , b�(n+2)) = Λ[
�ς](b1, . . . , bn+2),

such that ‖
�ς‖L1 = ‖ς‖L1 and such that there exists ε′ > cε, with c independent
of �, and

‖
�ς‖B
ε′

� n2‖ς‖Bε

for ς ∈ Bε.
Every permutation of {1, . . . , n+2} is a composition of at most four permuta-

tions of the following three forms, with the permutation in (iii) occuring at most
twice.

(i) A permutation of {1, . . . , n}, leaving n+ 1 and n+ 2 fixed.
(ii) The permutation which switches n+1 and n+2, leaving all other elements

fixed.
(iii) The permutation which switches n + 1 and 1, leaving all other elements

fixed.

Case (i) If � is a permutation of {1, . . . , n}, leaving n+1 and n+2 fixed, then
it is immediate to verify

(4.1) 
�ς(α, v) = ς(α�−1(1), . . . , α�−1(n), v),

and thus ‖
�ς‖Bε
= ‖ς‖Bε

and ‖
�ς‖L1 = ‖ς‖L1 .
Case (ii). If � is the permutation which switches n+ 1 and n+ 2, leaving all

other elements fixed, then it is immediate to verify that

(4.2) 
�ς(α, v) = ς(1− α1, . . . , 1− αn, v).

We have ‖ς�‖Bε
≈ ‖ς‖Bε

and ‖ς�‖L1 = ‖ς‖L1 .

In both of the above cases, if
∫
ς(α, v) dv = 0 ∀α then

∫
ς�(α, v) dv = 0 ∀α.

Case (iii). We compute

Λ[ς](bn+1, b2, . . . , bn, b1, bn+2)

=

∫∫∫
ς(α, v)bn+1(x− α1v)

( n∏
i=2

bi(x− αiv)
)
b1(x− v)bn+2(x) dv dx dα

=

∫∫∫
|α1|−dς(α, α−1

1 w)bn+1(x− w)×

( n∏
i=2

bi(x− αiα
−1
1 w)

)
b1(x− α−1

1 w)bn+2(x) dx dw dα

=

∫∫∫
βd−n−1ς(β−1

1 , β−1
1 β2, . . . , β

−1
1 βn, β1w)×

n∏
i=1

bi(x− βiv)bn+1(x− w)bn+2(x)dx dw dβ

where we have first changed variables v = α−1
1 u, then interchanged the order of

integration, and changed variables α1 = β−1
1 , αi = βiβ

−1
1 for i = 2, . . . , n. Hence if
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� is the transposition interchanging 1 and n + 1 and leaving 2, . . . , n, n + 2 fixed
then Λ�[ς] = Λ[
�ς] with

(4.3) 
�ς(α1, . . . , αn, v) = ς(α−1
1 , α−1

1 α2, . . . , α
−1
1 αn, α1v) .

Now if we define the inversion J , with respect to the α1 variable, and multiplicative

shears Mn−1, M̃d by

Jg(α1, . . . , αn, v) = α−2
1 g(α−1

1 , α2, . . . , αn, v)

Mn−1g(α1, . . . , αn, v) = αn−1
1 g(α1, α1α2, . . . , α1αn, v)

M̃dg(α1, . . . , αn, v) = αd
1g(α1, . . . , αn, α1v)

then it is straightforward to check that the linear transformation 
� in (4.3) can
be factorized as

(4.4) 
� = J ◦ M̃d ◦ J ◦Mn−1 ◦ J .

By Remark 4.2 the Bε(R
n × Rd) and the Bε(R

n+d) norms are equivalent with
equivalence constants not depending on n. By Proposition 4.3 we have ‖Jg‖B′

ε
�

‖g‖Bε
, and by Proposition 4.4 we have ‖Mn−1g‖B′

ε
� n‖g‖Bε

, and ‖Mdg‖B′
ε
�

‖g‖Bε
, for ε′ < ε/3. Hence ‖
�ς‖Bδ

� n‖ς‖Bε
, at least when δ < 3−5ε.

Finally if � is a general permutation than we can split � = �1 ◦�2 ◦�3 ◦�4,
each�i of the form in (i), (ii) or (iii), with at most two of the form in (iii). Hence we
get Λ�[ς] = Λ[
�ς] where ‖
�ς‖Bδ

� n2‖ς‖Bε
, at least for δ < 3−10ε. We remark

that if we avoid the factorization (4.4) and use the formula for 
� directly we should
get a better range for δ but this will be irrelevant for our final boundedness results
on the forms Λ�. �

4.2. Proof of Propositions 4.3 and 4.4

We first prove several preliminary lemmata, then give the proof of Proposition
4.3 in §4.2.2 and the proof of Proposition 4.4 in §4.2.3.

4.2.1. Preparatory Results. We first recall a standard fact about Besov
spaces Bε

1,q(R); 1 ≤ q ≤ ∞. If 0 < ε < 1 then there the characterizations

(4.5a) ‖f‖Bε
1,q

≈ ‖f‖1 +
(∫ 1

0

‖f(·+ h)− f‖q1
dh

h1+εq

)1/q
, 1 ≤ q < ∞,

and

(4.5b) ‖f‖Bε
1,∞

≈ ‖f‖1 + sup
0<h<1

h−ε‖f(·+ h)− f‖1 .

Moreover there are the continous embeddings

(4.6) Bε
1,q1 ⊂ Bε

1,q2 , q1 < q2.

For (4.5) and (4.6) we refer to [35, §V.5] or [39]. As a corollary we get
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Lemma 4.6. Let 0 < δ < ε < 1. Then for functions in L1(R) then there are
constants c, C > 0 depending only on ε, δ such that

c‖f‖1 + c

∫
0<h<1

h−δ‖f(·+ h)− f‖1
dh

h

≤‖f‖1 + sup
0<h<1

h−ε‖f(·+ h)− f‖1

≤C‖f‖1 + C

∫
0<h<1

h−ε‖f(·+ h)− f‖1
dh

h
.

We let ei, i = 1, . . . , N , denote the standard basis vectors in RN and let e⊥i to
be the orthogonal complement. For g ∈ L1(RN ) and w ∈ e⊥i define

(4.7) πw
i g(s) = g(sei + w);

this is defined as an L1(R) function for almost every w ∈ e⊥i , and by Fubini w �→∫
R
|πw

i g(s)|ds belongs to L1(e⊥i ). Moreover if g ∈ Bε(R
N ) for some ε > 0 then for

almost every w ∈ e⊥i the function h �→
∫
R
|πw

i g(s+ h)− πw
i g(s)|ds is continuous.

Lemma 4.7. Let 0 ≤ δ < 1. Then the following statements hold.
(i)

‖g‖Bδ(RN ) ≤ max
i=1,...,n

∫
e⊥i

∥∥πw
i g
∥∥
Bδ(R)

dw .

(ii) If 0 < δ < ε ≤ 1 then there exists C = C(ε, δ) > 0 (not depending on N)
such that for all f ∈ Bε(R

N )

max
i=1,...,N

∫
e⊥i

∥∥πw
i g
∥∥
Bδ(R)

dw ≤ C‖g‖Bε(RN ) .

Proof. (i) follows immediately from the definitions of Bδ(R) and Bδ(R
N ).

For (ii) fix i ∈ {1, . . . , N} and split
∫
e⊥i

∥∥πw
i g
∥∥
Bδ(R)

dw = I + II where

I =

∫
e⊥i

∫
(1 + |s|)δ|g(sei + w)|ds dw

II =

∫
e⊥i

sup
0≤h≤1

|h|−δ

∫
|g((s+ h)ei + w)− g(sei + w)|ds dw .

It is immediate that I ≤ ‖g‖Bδ(RN ) ≤ ‖g‖Bε(RN ). For the second term we use
Lemma 4.6 to estimate

II ≤ Cδ

∫
e⊥i

∫
0≤h≤1

|h|−δ

∫
|g((s+ h)ei + w)− g(sei + w)|ds dh

h
dw

= Cδ

∫ 1

0

hε−δh−ε

∫
RN

|g(x+ hei)− g(x)|dx dh

h

≤ Cδ(ε− δ)−1 sup
0<h<1

|h|−ε‖g(·+ hei)− g‖L1(RN )

and hence II ≤ C(ε, δ)‖g‖Bε(RN ). �

Lemma 4.8. Let R ≥ 1 and let Ωi
R = {x ∈ RN : |xi| ≥ R}. Then∫

Ωi
R

|g(x)|dx ≤ R−ε‖g‖Bε(RN ).
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Proof. This is immediate from∫
Ωi

R

|g(x)| dx ≤ R−ε

∫
(1 + |xi|)ε|g(x)| dx . �

The following lemma is a counterpart to Lemma 4.8 which is used when inte-
grating over sets whose projection to a coordinate axis has small measure. It can
be seen as a standard application of a Sobolev embedding theorem for functions on
the real line. For measurable J ⊂ R we denote by |J | the Lebesgue measure.

Lemma 4.9. Let 0 < ε ≤ 1 and f ∈ Bε(R
N ), and let 0 < ε′ < ε. Let E ⊂ RN

and let

proji(E) = {s ∈ R : sei + w ∈ E for some w ∈ e⊥i }.
Then ∫

E

|f(x)|dx ≤ Cε,ε′ |proji(E)|ε′‖f‖
Bε(R

N )
.

Moreover for i = 1, . . . , N , δ < ε,∫
e⊥i

∫
|xi|≤1

|xi|−δ|f(x)|dx ≤ C(ε, δ)‖f‖Bε(RN ).

Proof. For k ≥ 0 let Ek = {x ∈ RN : 2−k−1 ≤ |xi| ≤ 2−k}. The second
inequality is a consequence of the first applied to the sets Ek.

To prove the first statement pick p = (1 − ε′)−1 > 1 so that ε′ = 1− p−1. By
Hölder’s inequality,∫

E

|f(x)|dx ≤ |proji(E)|ε′
∫
e⊥i

(∫
|f(sei + w)|pds

)1/p
dw .

Let πw
i f(s) = f(sei + w). Let φ ∈ S(R),

∫
φ(s)ds = 1 such that the Fourier

transform φ̂ is supported in {|ξ| ≤ 1}. Let ψk = 2kφ(2k·)− 2k−1φ(2k−1·). Choose

φ̃ ∈ S(R) whose Fourier transform is equal to 1 on {|ξ| ≤ 2} and let φ̃k = 2kφ̃(2k·).
Then

πw
i f = φ̃ ∗ φ ∗ πw

i f +

∞∑
k=1

φ̃k ∗ ψk ∗ πw
i f

and thus, by Young’s inequality,

‖πw
i f‖Lp(R) ≤ ‖φ̃‖Lp(R)‖φ ∗ πw

i f‖Lp(R) +

∞∑
k=1

‖φ̃k‖Lp(R)‖ψk ∗ πw
i f‖L1(R)

� ‖φ ∗ πw
i f‖Lp(R) +

∞∑
k=1

2k(1−1/p)‖ψk ∗ πw
i f‖L1(R).

Since
∫
ψk(s)ds = 0 we have∣∣ψk ∗ πw

i f(s)
∣∣ = ∣∣∣ ∫ ψk(h)

[
πw
i f(s− h)− πw

i f(s)
]
dh
∣∣∣

�
∫

2k

(1 + 2k|h|)3
∣∣πw

i f(s− h)− πw
i f(s)

∣∣dh .
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Using this in the above expression we get after integration in w∫
e⊥i

(∫
|f(sei + w)|pds

)1/p
dw

� ‖f‖1 +
∞∑
k=1

2k(1−
1
p )

∫
2k

(1 + 2k|h|)3
∣∣πw

i f(s− h)− πw
i f(s)

∣∣ds dw dh

� ‖f‖1 +
∞∑
k=1

∫
|h|≤1

2k(2−
1
p )|h|ε

(1 + 2k|h|)3 dh sup
|u|≤1

‖f(·+ uei)− f(·)‖1
|u|ε

+

∞∑
k=1

∫
|h|≥1

2k(2−
1
p )

(1 + 2k|h|)3 dh ‖f‖1.

The last term is estimated by C
∑∞

k=1 2
−k(1+1/p)‖f‖1 � ‖f‖1. The middle term

is �
∑∞

k=1 2
k(−ε+1−1/p)‖f‖Bε

and since 1 − 1/p = ε′ < ε we obtain the required
bound. �

4.2.2. Proof of Proposition 4.3. The main lemma needed in the proof is
an estimate for functions on the real line.

Lemma 4.10. For g ∈ Bε(R) let Jg(s) = s−2g(s−1). Then for δ < ε/3

‖Jg‖Bδ(R) ≤ C(ε, δ)‖g‖Bε(R).

Proof. First observe that for ε′ < ε∫
(1 + |σ|)ε′ |Jg(σ)|dσ =

∫
(1 + |s|−1)ε

′ |g(s)|ds � ‖g‖Bε(R),

by Lemma 4.9. Thus, in light of Lemma 4.6 it remains to prove that for ρ ≤ 1/2,

(4.8)

∫ 2ρ

ρ

∫
|Jg(σ + h)− Jg(σ)|dσdh

h
� ρδ

′‖g‖Bε
,

for any ε′ < δ′ < ε/3. Choose any β ∈ (δ′/ε, 1/3). We have using changes of
variables ∫ 2ρ

ρ

∫
|σ|≤ρβ

|Jg(σ + h)|+ |Jg(σ)|dσdh
h

�
∫
|σ|≤3ρβ

|Jg(σ)|dσ ≤
∫
|s|≥ρ−β/3

|g(s)|ds ≤ ρβε‖g‖Bε

by Lemma 4.8. Also∫ 2ρ

ρ

∫
|σ|≥ρ−β

|Jg(σ + h)|+ |Jg(σ)|dσdh
h

�
∫
|σ|≤ρβ/2

|Jg(σ)|dσ

≤
∫
|s|≤2ρβ

|g(s)|ds ≤ ρβε‖g‖Bε
,

by Lemma 4.9. It remains to consider∫ 2ρ

ρ

∫ ρ−β

ρβ

|Jg(σ + h)− Jg(σ)|dσdh
h

=

∫ 2ρ

ρ

∫ ρ−β

ρβ

∣∣ s−2

(s−1+h)2 g
(

1
s−1+h

)
− g(s)

∣∣ds dh

h

=

∫ 2ρ

ρ

∫ ρ−β

ρβ

∣∣ 1
(1+hs)2 g

(
s

1+hs

)
− g(s)

∣∣ds dh

h
;
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here we have performed the change of variable s = σ−1. We now interchange the

order of integration and then change variables u = s
1+hs − s = − s2h

1+hs . Observe

that du/dh = s2(1 + hs)−2 and thus |du|
|u| = |1 + hs|−1 |dh|

|h| . Therefore for |h| ≈ ρ

and ρβ < |s| ≤ ρ−β we can replace |dh|/|h| by |du|/|u|. Also observe that h =
−u(su+ s2)−1 and 1+ hs = s(u+ s)−1. Thus the last displayed expression can be
written as∫

ρβ≤|s|≤ρ−β

∫ − ρs2

1+ρs

− 2ρs2

1+2ρs

∣∣(u+s
s

)2
g(s+ u)− g(s)

∣∣du
|u|ds ≤ (I) + (II)

where

(I) :=

∫∫
ρβ≤|s|≤ρ−β

|u|≈ρs2

∣∣ (u+s)2

s2 − 1
∣∣|g(s+ u)|du|u| ds

(II) :=

∫∫
ρβ≤|s|≤ρ−β

|u|≈ρs2

∣∣g(s+ u)− g(s)
∣∣du
|u| ds .

First estimate

(I) �
∫
ρβ≤|s|≤ρ−β

∫
|u|≈ρs2

|g(u+ s)|u
2 + 2|us|

s2
du

|u| ds

�
∫ Cρ1−2β

0

∫ Cρ−β

cρβ

(ρ+ |s|−1)|g(s)|ds du

� ρ1−2β‖g‖1 +
∑
k≥0

2−k≥cρβ

2k
∫
2−k≤|s|≤21−k

|g(s)|ds

and, since by Lemma 4.9
∫
|s|≤2−k |g(s)|ds � 2−kε′′‖g‖Bε

for ε′′ < ε, we get

(I) � ρ1−2β
(
‖g‖1 +

∑
k≥0

2−k≥cρβ

2k(1−ε′′)‖g‖Bε

)
� ρ1−3β+βε′′‖g‖Bε

.

Finally,

(II) ≤
∑

k:2−k≤Cρ1−2β

∫
2−k≤|u|≤21−k

‖g(·+ u)− g‖1
du

|u|

≤
∑

k:2−k≤Cρ1−2β

2−kε‖g‖Bε
1,∞

� ρ(1−2β)ε‖g‖Bε
.

Now collect the estimates and keep in mind that β < 1/3 is chosen close to 1/3.
We may choose ε′′ above so that 3δ′ < ε′′ < ε. Then the asserted estimate (4.8)
follows, and the lemma is proved. �

Proof of Proposition 4.3, concluded. Let πw
i g(s) = g(sei + w) be as in

(4.7). We have

‖J1γ‖Bδ
≤ max

1≤i≤N

∫
e⊥i

‖πw
i (J1g)‖Bδ(R)dw.
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By Lemma 4.7 and a change of variable w1 �→ w−1
1 we obtain for 2 ≤ i ≤ n, δ1 > δ,∫

e⊥i

‖πw
i (J1g)‖Bδ(R)dw =

∫
e⊥i

‖πw
i g‖Bδ(R)dw � ‖g‖Bδ1

(RN ).

Let 3δ < ε̃ < ε. For the main term with i = 1 we use Lemma 4.10 and then Lemma
4.7 to get∫
e⊥1

‖πw
i (J1g)‖Bδ(R)dw =

∫
e⊥1

‖J1(πw
i g)‖Bδ(R)dw �

∫
e⊥1

‖πw
i g‖Bε̃(R)dw � ‖g‖Bε(RN ).

This concludes the proof of the proposition. �

4.2.3. Proof of Proposition 4.4. We now turn to Proposition 4.4. Fix ε > 0,
n ∈ {1, . . . , N}, γ ∈ Bε(R

N ) and recall the definition

Mγ(s) = sn−1
1 γ(s1, s1s2, . . . , s1sn, sn+1, . . . , sN ).

We separate the proof into three lemmata. The most straightforward one is

Lemma 4.11. Let 0 < ε < 1. For δ < ε/2, i = 1, . . . , N ,∫
(1 + |si|)δ|Mγ(s)| ds � ‖γ‖Bε

.

Proof. Let ε′ > 0 be a number, to be chosen later. If i = 1 or n+1 ≤ i ≤ N ,
we have, by a change of variable,∫

(1 + |σi|)ε
′ |Mγ(σ)| dσ =

∫
(1 + |si|)ε

′ |γ(s)| ds � ‖γ‖Bε
, ε′ ≤ ε.

Let 2 ≤ i ≤ n. We have by a change of variable∫
(1 + |σi|)ε

′ |Mγ(σ)| dσ =

∫
(1 + | si

s1
|)ε′ |γ(s)| ds.

Let Ω1 = {s : |s1| ≥ 3}, Ω2 = {s : |s1| ≤ 3, |si| ≥ |s1|−1}, Ω3 = {s : |s1| ≤ 3, |si| ≤
|s1|−1}, and bound the integrals over the three regions separately. First, for ε′ ≤ ε,∫

Ω1

(1 + | si
s1

|)ε′ |γ(s)| ds �
∫
(1 + |si|)ε

′ |γ(s)| ds ≤ ‖γ‖Bε
,

Next, for ε′ ≤ ε/2,∫
Ω2

(1 + | si
s1

|)ε′ |γ(s)| ds �
∫
(1 + |si|)2ε

′ |γ(s)| ds ≤ ‖γ‖Bε
.

Finally, for the third term we use Lemma 4.9 to estimate, for ε′ < ε/2,∫
Ω3

(1 + | si
s1

|)ε′ |γ(s)| ds �ε′

∫
|s1|≤3

(1 + |s1|−2ε′)|γ(s)| ds ≤ ‖γ‖Bε
.

The asserted estimate follows. �

Lemma 4.12. (i) For n+ 1 ≤ i ≤ N , ε > 0

sup
0<h≤1

h−ε‖Mγ(·+ hei)−Mγ‖1 ≤ ‖γ‖Bε
.

(ii) For 2 ≤ i ≤ n, δ < ε/2

sup
0<h≤1

h−δ‖Mγ(·+ hei)−Mγ‖1 � ‖γ‖Bε
.
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Proof. In the case n+ 1 ≤ i ≤ N a change of variables shows,∫
RN

|Mγ(σ + hei)−Mγ(σ)| dσ =

∫
RN

|γ(s+ hei)− γ(s)| ds,

and the result follows.
Now consider the case 2 ≤ i ≤ n. By Lemma 4.6 it suffices to show that for

ρ ≤ 1

(4.9)

∫ 2ρ

ρ

∫
RN

|Mγ(σ + hei)−Mγ(σ)| dσ dh

h
� ρε

′‖γ‖Bε
, ε′ ≤ ε/2.

Our assumptions are symmetric in s2, . . . , sn, and thus it suffices to prove (4.9) for
i = 2. The result is trivial for 10−2 ≤ ρ ≤ 1, so we may assume ρ ≤ 10−2. In the
inner integral we change variables, setting

(s1, . . . , sN ) = (σ1, σ1σ2, . . . , σ1, σn, σn+1, . . . , σN )

and the left hand side of (4.9) becomes∫ 2ρ

ρ

∫
RN

|γ(s1, s2 + s1h, s1s3, . . . , sn, sn+1, . . . , sN )− γ(s)| ds dh

h

=

∫∫
ρ≤h≤2ρ

|s1|≥ρ−β

+

∫∫
ρ≤h≤2ρ

|s1|≤ρ−β

=: (I) + (II)

where β ∈ (0, 1) is to be determined. We have the following estimate for the first
term:

(I) ≤ 2

∫∫
ρ≤h≤2ρ

|s1|≥ρ−β

|γ(s)| ds dh

h
�

∫
|s1|≥ρ−β

|γ(s)| ds

� ρβε
∫
(1 + |s1|)ε|γ(s)| ds � ρβε‖γ‖Bε

.

For the term (II) we interchange the order of integration and put for fixed s1,

h̃ = s1h so that dh̃/h̃ = dh/h. Also, on the domain of integration of (II), we have

|h̃| ≤ 2ρ1−β. Thus we may estimate

(II) ≤
∫
|h̃|≤2ρ1−β

‖γ(·+ h̃e2)− γ(·)‖1|h̃|−1dh̃

≤ ‖γ‖Bε

∫ 2ρ1−β

0

h̃ε−1 dh̃ � ρε(1−β)‖γ‖Bε
.

If we choose β = 1/2 then (4.9) follows from the estimates for (I) and (II). �

Remark. One can replace the application of Lemma 4.6 by a more careful
argument to show that (4.9) implies that the statement (ii) in the lemma holds
even for the endpoint δ = ε/2. However this is not important for the purposes of
this paper.

The main technical estimate in the proof of Proposition 4.4 is an analogue of
Lemma 4.12 for regularity in the first variable, given as Lemma 4.14 below. We
first give an auxiliary estimate for functions of two variables.
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Lemma 4.13. Let β < 1/2, ε′ < ε. For g ∈ Bε(R
2), and 0 < ρ ≤ 1,∫∫∫

ρβ≤|s1|≤ρ−β

ρ≤h≤2ρ

∣∣∣(1 + h
s1

)
g(s1 + h, (1 + h

s1
)s2)− g(s1 + h, s2)

∣∣∣ ds1ds2 dh
h

≤ C(β, ε′)
(
ρε

′β + ρ1−2β
)
‖g‖Bε(R2) .

Proof. We may assume that ρ ≤ 10−2/β , since otherwise the bound is trivial.
We wish to discard the contributions of the integral where |s2| ≤ ρβ or |s2| ≥ ρ−β.
We estimate the left hand side by A+ I1 + I2 + II1 + II2 where

A =

∫∫∫
ρβ≤|s1|,s2≤ρ−β

ρ≤h≤2ρ

∣∣∣(1 + h
s1

)
g(s1 + h, (1 + h

s1
)s2)− g(s1 + h, s2)

∣∣∣ ds1ds2 dh
h

,

I1 + II1 =

∫∫∫
ρβ≤|s1|≤ρ−β

|s2|≤ρβ

ρ≤h≤2ρ

+

∫∫∫
ρβ≤|s1|≤ρ−β

|s2|≥ρ−β

ρ≤h≤2ρ

∣∣∣(1 + h
s1

)
g(s1 + h, (1 + h

s1
)s2)
∣∣∣ ds1ds2 dh

h
,

I2 + II2 =

∫∫∫
ρβ≤|s1|≤ρ−β

|s2|≤ρβ

ρ≤h≤2ρ

+

∫∫∫
ρβ≤|s1|≤ρ−β

|s2|≥ρ−β

ρ≤h≤2ρ

|g(s1 + h, s2)| ds1ds2
dh

h
.

To bound I1 we change (for fixed h, s1) variables as σ2 = (1+ h/s1)s2 and observe
that (1+h/s1) ≈ 1. Thus the σ2 integration is extended over σ2 � ρβ , and we may
apply Lemma 4.9. A similar argument applies to I2, and we get

I1 + I2 � ρβε
′‖g‖Bε(R2).

The same argument applies to the terms II1, II2, with the σ2 integration now
extended over |σ2| ≥ ρ−β − 2ρ ≥ cρ−β for c > 0. Now we apply Lemma 4.8 instead
and the result is

II1 + II2 � ρβε‖g‖Bε(R2).

We now consider the term A and estimate A ≤ III + IV where

III =

∫∫∫
ρβ≤|s1|,|s2|≤ρ−β

ρ≤h≤2ρ

∣∣1 + h
s1

∣∣∣∣g(s1 + h, (1 + h
s1
)s2)− g(s1 + h, s2)

∣∣ ds1ds2 dh
h

,

IV =

∫∫∫
ρβ≤|s1|,|s2|≤ρ−β

ρ≤h≤2ρ

|h|
|s1| |g(s1 + h, s2)| ds1ds2

dh

h
.

Since h ≈ ρ and |s1| � ρβ in the domain of integration we immediately get

IV � ρ1−β‖g‖L1(R2) .

In the estimation of III we may ignore the factor 1+h/s1 which is O(1). We make
the change of variable σ1 = s1 + h which does not substantially change the domain
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of integration since 1
2ρ

β ≤ |σ1| ≤ 2ρ−β for the ranges of ρ we consider here. We see
that

III �
∫∫∫

1
2ρ

β≤|σ1|,|s2|≤2ρ−β

ρ≤h≤2ρ

∣∣g(σ1, (1 +
h

σ1−h )s2)− g(σ1, s2)
∣∣ dσ1ds2

dh

h

We now interchange the order of integration, and then, for fixed σ1, s2 change
variables u = u(h) = hs2

σ1−h . Then observe that

∂u

∂h
=

σ1s2
(σ1 − h)2

,
du

u
=

σ1

σ1 − h

dh

h
;

moreover the range of |u| is contained in [ 14ρ
1+2β, 4ρ1−2β ]. Since |du|/|u| ≈ |dh|/|h|

we get the estimate

III �
∑

2−k−1≤4ρ1−2β

∫ 2−k

2−k−1

∫∫
|g(σ1, s2 + u)− g(σ1, s2)

∣∣ dσ1ds2
du

|u|

�
∑

2−k−1≤4ρ1−2β

2−kε‖g‖Bε(R2) � ρ1−2β‖g‖Bε(R2) .

We collect the estimates and obtain the desired bound. �

Lemma 4.14. For 0 < ε ≤ 1, δ < ε/3,

sup
0<h≤1

h−δ‖Mγ(·+ he1)−Mγ‖1 � n‖γ‖Bε
.

Proof. Let ε̃ < ε, δ1 > δ be such that δ < δ1 < ε̃/3. By Lemma 4.6 it suffices
to show for ρ ≤ 1 the inequality

(4.10)

∫ 2ρ

ρ

‖Mγ(·+ he1)−Mγ‖1
dh

h
� ρδ1n‖γ‖Bε

.

We let β < 1/2 to be chosen later; a suitable choice will be β ∈ (δ1/ε̃, 1/3). We
may assume ρ ≤ 10−2/β since otherwise the result is obvious. We first discard the
contributions of the integral for |s1| ≤ ρβ or |s1| ≥ ρ−β. We estimate∫ 2ρ

ρ

‖Mγ(·+ he1)−Mγ‖1
dh

h
� ρδ1 ≤ (A) + (I1) + (I2) + (II1) + (II2)

where

(A) =

∫ 2ρ

ρ

∫
s:ρβ≤|s1|≤ρ−β

|Mγ(s+ he1)−Mγ(s)| dsdh
h

,

(I1) + (I2) =

∫ 2ρ

ρ

∫
s:|s1|≤ρβ

|Mγ(s+ he1)| ds
dh

h
+

∫ 2ρ

ρ

∫
s:|s1|≤ρβ

|Mγ(s)| dsdh
h

,

(II1) + (II2) =

∫ 2ρ

ρ

∫
s:|s1|≥ρ−β

|Mγ(s+ he1)| ds
dh

h
+

∫ 2ρ

ρ

∫
s:|s1|≥ρ−β

|Mγ(s)| dsdh
h

.

We make a change of variable σ = (s1 + h, (s1 + h)s2, . . . , (s1 + h)sn, sn+1, . . . , sN )
and estimate

(I1) ≤
∫ 2ρ

ρ

∫
σ:|σ1|≤ρβ+2ρ

|γ(σ)| dσdh
h

� ρβε‖γ‖Bε(RN ).
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where we have used Lemma 4.9. Similarly

(II1) ≤
∫ 2ρ

ρ

∫
σ:|σ1|≥ρ−β−2ρ

|γ(σ)| dσdh
h

� ρβε‖γ‖Bε(RN ).

by Lemma 4.8 and the estimate 2ρ ≤ 1
2ρ

−β which holds in the range of ρ under

consideration. The bound (I2) + (II2) � ρβε‖γ‖Bε(RN ) follows in the same way.
It thus remains to estimate (A). We change variables and write

(A) =

∫∫
ρ≤h≤2ρ

S:ρβ≤|s1|≤ρ−β

∣∣(s1 + h)n−1γ(s1 + h, (s1 + h)s2, . . . , (s1 + h)sn, sn+1, . . . , sN )

− sn−1
1 γ(s1, s1s2, . . . , s1sn, sn+1, . . . , sN )

∣∣ ds dh

h

=

∫∫
ρ≤h≤2ρ

s:ρβ≤|s1|≤ρ−β

∣∣(1 + h
s1

)n−1
γ(s1 + h, (1 + h

s1
)s2, . . . , (1 +

h
s1
)sn, sn+1, . . . , sN )

− γ(s1, s2, . . . , sn, sn+1, . . . , sN )
∣∣ ds dh

h
.

We split the integrand as a sum of n differences Δk(s, h), k = 0, . . . , n− 1, where

Δ0(s, h) = γ(s+ he1)− γ(s)

and, for k = 1, . . . , n− 1,

Δk(s, h) =
(
1 + h

s1

)k
γ(s1 + h, (1 + h

s1
)s2, . . . , (1 +

h
s1
)sk, (1 +

h
s1
)sk+1, sk+2 . . . , sN )

−
(
1 + h

s1

)k−1
γ(s1 + h, (1 + h

s1
)s2, . . . , (1 +

h
s1
)sk, sk+1, . . . , sN ).

Then (A) ≤
∑n−1

k=0(Ak) where

(Ak) =

∫ 2ρ

ρ

∫
s:ρβ≤|s1|≤ρ−β

|Δk(s, h)| ds
dh

h
.

It is immediate that
(A0) � ρε‖γ‖Bε

.

For the estimation of (Ak) we make a change of variable in the si variables where
2 ≤ i ≤ k; this replaces (1 + h/s1)si by si (i.e. there is no change of variable if
k = 1). This gives, for 1 ≤ k ≤ n− 1,

(Ak) =

∫ 2ρ

ρ

∫
s:ρβ≤|s1|≤ρ−β

∣∣∣(1+ h
s1

)
γ(s1+h, s2, . . . , sk, (1+

h
s1
)sk+1, sk+2 . . . , sN )

− γ(s1 + h, s2, . . . , sk, sk+1, . . . , sN )
∣∣∣ dsdh

h
.

By symmetry considerations we may assume k = 1. We may now freeze the
s3, . . . , sN -variables, apply the auxiliary Lemma 4.13 for functions of (s1, s2) and
obtain for ε′ < ε̃

(Ak) �
(
ρε

′β + ρ1−2β
) ∫

· · ·
∫ ∥∥g(·, ·, s3, . . . , sN )

∥∥
Bε̃(R2)

ds3 · · · dsN .

Since ε̃ < ε this also implies, by Lemma 4.7,

(Ak) �
(
ρε

′β + ρ1−2β
)
‖g‖Bε(RN ).
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We collect estimates we see that the quantity on the left hand side of (4.10) is
estimated by

C(β, ε′, ε)n
(
ρβε

′
+ ρ1−2β

)
‖f‖Bε(RN )

and with the correct choice of ε′ ∈ (3δ, ε) and then β ∈ (δ/ε′, 1/3) we see that
(4.10) is established. �

4.3. A decomposition lemma

Later in the paper, we will need a decomposition result for Bε(R
n×Rd), which

we present here.

Lemma 4.15. Fix 0 < ε < 1 and 0 < δ < ε/2. If ς ∈ Bε(R
n × Rd). Then there

are ςm ∈ Bδ(R
n × Rd), m ∈ N, with supp(ςm) ⊆ {(α, v) : |v| ≤ 1/4} and

ς =
∑
m≥0

ς(2
−m)

m ,

such that

‖ςm‖Bδ
� 2−m(ε−2δ)‖ς‖Bε

.

Proof. Let η0 ∈ C∞
0 be supported in {|x| ≤ 1/4} such that with 0 ≤ η0 ≤ 1

and η0(x) = 1 for |x| ≤ 1/8. Set η1(v) = η0(v) − η0(2v), so that 0 ≤ |η1| ≤ 1,
supp(η1) ⊆ { 1

16 ≤ |v| ≤ 1
4} and 1 = η0(v) +

∑
m≥1 η1(2

−mv). For m ∈ N, define

ςm(v) =

{
η0(v)ς(α, v) if m = 0,

η1(v)2
mdς(α, 2mv) if m ≥ 1.

Then ςm(x) = 0 for |x| ≥ 1/4 and ς =
∑

m≥0 ς
(2−m)
m . Clearly ‖ς0‖Bε

� ‖ς‖Bε
. It

remains to bound ‖ςm‖Bδ
for m ≥ 1.

We show

∫∫
(1 + |αi|)δ|ςm(α, v)| dα dv +

∫∫
(1 + |v|)δ|ςm(α, v)| dα dv � 2−m(ε−δ)‖ς‖Bε

,

(4.11)

sup
|h|≤1

|h|−δ

∫∫
|ςm(α+ hei, v)− ςm(α, v)| dα dv � 2−m(ε−δ)‖ς‖Bε

.

(4.12)

We change variables and see that the left hand side of (4.11) is bounded by∫∫
(1+ |αi|)δ|ς(α, v)||η1(2−mv)| dα dv+

∫∫
(1+ |2−mv|)δ|ς(α, v)||η1(2−mv)| dα dv .

We estimate∫∫
|αi|≤2m

|v|≈2m

(1 + |α|)δ|ς(α, v)|dαdv

� 2−m(ε−δ)

∫∫
(1 + |v|)ε|ς(α, v)|dαdv � 2−m(ε−δ)‖ς‖Bε

,
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|αi|≥2m

|v|≈2m

(1 + |α|)δ|ς(α, v)|dαdv

� 2−m(ε−δ)

∫∫
(1 + |αi|)ε|ς(α, v)|dαdv � 2−m(ε−δ)‖ς‖Bε

,

and∫∫
|v|≈2m

(1 + 2−m|v|)δ|ς(α, v)|dαdv

� 2−m(ε−δ)

∫∫
(1 + |v|)ε|ς(α, v)|dαdv � 2−m(ε−δ)‖ς‖Bε

,

and (4.11) follows.
Next, we consider, for |h| ≤ 1, the expression∫∫
|ςm(α+ hei, v)− ςm(α, v)| dα dv �

∫∫
|η1(2−mv)||ς(α+ hei, v)− ς(α, v)| dα dv

and distinguish the cases 2m|h| ≤ 1 and 2m|h| ≥ 1. If 2m ≥ |h|−1 then we estimate∫∫
|v|≈2m

|ς(α+ hei, v)− ς(α, v)| dα dv

� 2−mε

∫
(1 + |v|)ε|ς(α, v)| dαdv � |h|δ2−m(ε−δ)‖f‖Bε

and if 2m ≤ |h|−1,∫∫
|v|≈2m

|ς(α+ hei, v)− ς(α, v)| dα dv � |h|ε‖ς‖Bε
� |h|δ2−m(ε−δ)‖f‖Bε

.

Now (4.12) follows. Note that so far we have only used δ < ε.
For our last estimate we need δ < ε/2, and we need to show

(4.13)

∫∫
|ςm(α, v + h)− ςm(α, v)|dαdv � |h|δ2−m(ε−2δ)‖ς‖Bε

.

The left hand side is estimated by (I) + (II) where

(I) =

∫∫
|η(v + h)− η(v)|2md|ς(α, 2m(v + h))| dα dv ,

(II) =

∫∫
|η(v)|2md|ς(α, 2m(v + h))− ς(α, 2mv)| dα dv .

Note that |η(v + h)− η(v)| � χ{ 1
32≤|v|≤ 1

2 }|h| and so the first term is estimated as

(I) � |h|
∫∫

1
64≤|v|≤1

2md|ς(α, 2mv)| dα dv = |h|
∫∫

2m−8≤|v|≤2m

|ς(α, v)| dα dv

� 2−mε|h|
∫∫

(1 + |v|)ε|ς(α, v)| dα dv � |h|2−mε‖ς‖Bε
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which is a better bound than the one in (4.13). More substantial is the estimate
for (II). Here we first consider the case |h| ≥ 2−2m and bound

(II) �
∫∫

2−4≤|v|≤2−2

2md|ς(α, 2m(v + h))− ς(α, 2mv)| dα dv

≤ 2

∫∫
2−8≤|v|≤2−1

2md|ς(α, 2mv)| dα dv �
∫∫

2m−8≤|v|≤2m−1

|ς(α, v)| dα dv

� 2−mε

∫∫
(1 + |v|)ε|ς(α, v)| dα dv � 2−mε‖ς‖Bε

� |h|δ2−m(ε−2δ)‖ς‖Bε
.

Finally for the case |h| ≤ 2−2m we get

(II) �
∫∫

|ς(α, v + 2mh)− ς(α, v)| dα dv � (2m|h|)ε‖ς‖Bε
� |h|δ2−m(ε−2δ)‖ς‖Bε

.

This yields (4.13) and the proof is complete. �

4.4. Invariance properties

We state certain identities concerning the behavior of our multilinear forms
with respect to scalings and translations. These will be used repeatedly. The
straightforward proofs are omitted.

Lemma 4.16. Let ς ∈ L1(Rn × Rd), and ς(2
j)(α, ·) = 2jdς(α, 2j ·). Let bi ∈

Lpi(Rd), for i = 1, . . . , n+ 2. Then

(i) Let τhf = f(· − h). Then

Λ[ς](τhb1, . . . , τhbn+2) = Λ[ς](b1, . . . , bn+2) .

(ii)

Λ[ς(2
j)](b1, . . . , bn+2) = 2−jdΛ[ς](b1(2

−j ·), . . . , bn+2(2
−j ·)) .

(iii)

Λ[ς(2
j)](b1, . . . , bn+2) =

∫
bn+2(x)

∫
2jdkj(2

jx, 2jy)bn+1(y) dy dx

where

kj(x, y) =

∫
ς(α, x− y)

n∏
i=1

bi(2
−j(x− αi(x− y))) dα.

(iv) If gi = 2−jd/pibi(2
−j ·) then ‖gi‖pi

= ‖bi‖pi
, and

Λ[ς(2
j)](b1, . . . , bn+2) = Λ[ς](g1, . . . , gn+2) if

n+2∑
i=1

p−1
i = 1 .

(v) Let κ1, . . . , κn+2 be bounded Borel measures and κ
(t)
i = tdκ(t·). Set b̃i(x) =

bi(2
−jx). Then

Λ[ς(2
j)](κ1 ∗ b1, . . . , κn+2 ∗ bn+2) = 2−jdΛ[ς](κ

(2−j)
1 ∗ b̃1, . . . , κ(2−j)

n+2 ∗ b̃n+2).
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(vi)

Λ[ς(2
j)](κ1 ∗ b1, . . . , κn+2 ∗ bn+2) =

∫
2jdk̃j(2

jx, 2jy)bn+1(y) bn+2(x) dx

where

k̃j(x, y)=

∫∫
ς(α,w−z)

n∏
i=1

κ
(2−j)
i ∗[bi(2−j ·)](w−αi(w−z))dκn+2((x−w)dκn+1(z−y) .

4.5. The role of projective space, revisited

A particular special case of Theorems 2.9 and 2.8 involve the case when

K(α, v) = γ0(α)K0(v),

K0 is a classical Calderón-Zygmund convolution kernel which is homogeneous of
degree −d, smooth away from 0, and γ0 ∈ Bε(R

n) for some ε > 0. We saw in
Section 2.4.2 that such operators would be closed under adjoints provided we could
see the space of γ0 as a space of densities on RPn in an appropriate way. Indeed,
this is the case, and this section is devoted to discussing that fact. These results
are not used in the sequel, and are intended as motivation for our main results.

For a measurable function f : Rn → C, and 0 < ε < 1, we set

‖f‖Bε
1,∞(Rn) := ‖f‖L1 + max

i=1,...,n
sup

0<hi≤1
|hi|−ε

∫
|f(s+ hiei)− f(s)| ds,

where e1, . . . , en is the standard basis for Rn.
Let M be a compact manifold of dimension n, without boundary. Let μ be

a measure on M . Take a finite open cover V1, . . . , VL of M such that each Vj is
diffeomorphic to Bn(1)–the open ball of radius 1 in Rn. Let Φj : Bn(1) → Vj be
this diffeomorphism and let φ1, . . . , φL be a C∞ partition of unity subordinate to

this cover. On each neighborhood Vj , let Φ
#
j μ denote the pull back of μ via Φj . We

suppose Φ#
j μ is absolutely continuous with respect to Lebesgue measure on Bn(1)

and we write dΦ#
j μ =: γj(x) dx where dx denotes Lebesgue measure.

Remark 4.17. γj is called a density, because of the way it transforms under
diffeomorphisms.

Definition 4.18. For 0 < ε < 1 we define Bε
1,∞(M) to be the space of those

measures μ such that the following norm is finite:

‖μ‖Bε
1,∞(M) :=

L∑
j=1

‖φj ◦ Φj(·)γj(·)‖Bε
1,∞(Rn).

Remark 4.19. The norm ‖ · ‖Bε
1,∞(M) depends on various choices we made: the

finite open cover, the diffeomorphisms Φj , and the partition of unity φj . However,
the equivalence class of the norm ‖ · ‖Bε

1,∞(M) does not depend on any of these

choices, and therefore the Banach space Bε
1,∞(M) does not depend on any of these

choices.

We now turn to the case M = RPn. Given a measure μ ∈ Bε
1,∞(RPn), we

consider the map taking Rn ↪→ RPn induced by the map Rn ↪→ Rn+1 given by
(x1, . . . , xn) �→ (x1, . . . , xn, 1). Pulling μ back via this map, we obtain a measure
on Rn–since μ ∈ Bε

1,∞(RPn) this pulled back measure is absolutely continuous with
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respect to Lebesgue measure and we write this pulled back measure as γ0(x) dx.
This induces a map taking measures in Bε

1,∞(RPn) to functions Rn given by μ �→ γ0.

Theorem 4.20. The map μ �→ γ0 is a bijection⋃
0<ε<1

Bε
1,∞(RPn) →

⋃
0<ε<1

Bε(R
n)

in the following sense:
(i) ∀ε ∈ (0, 1), ∃ε′ ∈ (0, ε], and C = C(ε, n) < ∞ such that ∀μ ∈ Bε

1,∞(RPn),
γ0 ∈ Bε′(R

n) and ‖γ0‖Bε′ ≤ C‖μ‖Bε
1,∞(RPn).

(ii) ∀ε ∈ (0, 1), ∃ε′ ∈ (0, ε], ∀γ0 ∈ Bε(R
n), there exists a unique μ ∈ Bε′

1,∞(RPn)
with μ �→ γ0 under this map. Furthermore, ∃C = C(ε, n) such that ‖μ‖Bε′

1,∞(RPn) ≤
C‖γ0‖Bε

.

Proof. Fix ε ∈ (0, 1) and let μ ∈ Bε
1,∞(RPn). We define an open cover of

RPn. For j = 1, . . . , n+1, let Vj denote those points {(x1, . . . , xj−1, 1, xj , . . . , xn) :
x ∈ Rn, |x| < 2}, written in homogenous coordinates on RPn. Vj is an open subset

of RPn which is diffeomorphic to Bn(2), and ∪n+1
j=1Vj = RPn.

Let φj , 1 ≤ j ≤ n + 1 be a smooth partition of unity subordinate to the
cover V1, . . . , Vn+1. μ =

∑n
j=1 φjμ. By the assumption that μ ∈ Bε

1,∞(RPn), it

follows that φjμ = γj(x) dx, when written in the standard coordinates on Vj , and
‖γj‖Bε

1,∞(Rn) � ‖μ‖Bε
1,∞(RPn). Since γj has compact support, we have ‖γj‖Bε

�
‖γj‖Bε

1,∞(Rn) � ‖μ‖Bε
1,∞(RPn). Finally,

γ0(x) dx = γn+1(x) dx

+
n∑

j=1

x−n−1
j γj(x

−1
j x1, x

−1
j x2, . . . , x

−1
j xj−1, x

−1
j xj+1, . . . , x

−1
j xn, x

−1
j ) dx .

It follows from Corollary 4.5, applied to each term of the sum, that ‖γ0‖Bε′ ≤
Cn‖μ‖Bε

1,∞(RPn), and part (i) is proved.

Because γ0 uniquely determines μ except at those point which cannot be written
in homogeneous coordinates as (x1, . . . , xn, 1), it follows that there is at most one
μ ∈ ∪ε>0B

ε
1,∞(RPn) which maps to a given γ0 (because such a μ is absolutely

continuous with respect to Lebesgue measure in every coordinate chart, and gives
such points measure 0). Hence, given γ0 ∈ Bε(R

n) there is at most one μ such that
μ �→ γ. We wish to construct such a μ.

Let φj be the coordinate charts from above. Given γ0 ∈ Bε(R
n) define

γn+1(x) dx := φn+1(x)γ0(x) dx and for 1 ≤ j ≤ n,

γj(x) dx := φj(x)x
−n−1
n γ0(x

−1
n x1, . . . , x

−1
n xj−1, x

−1
n , x−1

n xj , . . . , x
−1
n xn−1) dx.

Define dμj := γj(x) dx on Vj . By Corollary 4.5, there exists ε′ > 0 with ‖γj‖Bε′ ≤
C‖γ‖Bε

. We set μ =
∑n+1

j=1 μj . We have ‖μ‖Bε′
1,∞(RPn) ≤ C ′‖γ0‖Bε

and μ �→ γ0, as

desired. �

Remark 4.21. In this section we were not explicit about how each constant
depends on n. The above can be set up in such a way that all constants are
polynomial in n, which is natural for our purposes–see §2.4.1. In fact, it would
be hard to avoid this polynomial dependance on n, since there are naturally n+ 1
coordinate charts in the definition of RPn.
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Remark 4.22. Corollary 4.5 implies that the space
⋃

ε>0 Bε(R
n) (when thought

of as densities on RPn) is closed under the action of a particular diffeomorphism of
RPn. Namely, if γ ∈

⋃
ε>0 Bε(R

n), then

s−n−1
1 γ(s−1

1 , s−1
1 s2, . . . , s

−1
1 sn) ∈

⋃
ε>0

Bε(R
n).

Theorem 4.20 tells us that more is true:
⋃

ε>0 Bε(R
n) is closed under the action of

any smooth diffeomorphism of RPn (as
⋃

ε>0 B
ε
1,∞(RPn) clearly is). It is not hard

to see that, when taking adjoints of our multilinear operator in the special case
when K(α, x) = γ0(α)K0(x) where K0 is a homogenous Calderón-Zygmund kernel,
each permutation of b1, . . . , bn+2 corresponds to the action of a diffeomorphism of
RPn on γ0. In fact, each permutation corresponds to an action of an element of
GL(n + 1,R) on RPn (where the action of GL(n + 1,R) on RPn is defined in the
usual way).
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CHAPTER 5

Outline of the proof of boundedness

In this chapter, we begin the proof of Theorem 2.10 on the boundedness of our
multilinear forms. Let φ be an even C∞

0 function supported in {|x| < 1} such that

φ ≥ 0 and
∫
φ = 1. For j ∈ Z define φ(2j)(x) := 2jdφ(2jx) and define the operator

Pjf = f ∗ φ(2j). Furthermore, we choose φ to be even so that P ∗
j = Pj =

tPj (here

P ∗
j is the adjoint of Pj and tPj is the transpose). There are two key facts to note

about Pj . First, for all f ∈ S(Rd),

(5.1) lim
j→+∞

Pjf = f, lim
j→−∞

Pjf = 0,

with convergence in S ′. Secondly, by the nonnegativity of φ the operator norm on
L∞ is bounded by 1:

(5.2) ‖Pj‖L∞→L∞ = 1 .

In Theorem 2.10 we are given a bounded family in Bε,

(5.3) �ς = {ςj : j ∈ Z}.
For (parts of the) proof of Theorem 2.10 we shall also need to assume the cancel-
lation condition

(5.4)

∫
ςj(α, v) dv = 0

for all j ∈ Z. Of particular interest are the choices in Proposition 3.2, namely

ςj = (QjK)(2
−j), given K ∈ Kα for some α > ε. Theorem 2.10 concerns the sum

(5.5) Λ(b1, . . . , bn+2) = lim
N→∞

N∑
j=−N

Λ[ς
(2j)
j ](b1, . . . , bn+2),

where b1, . . . , bn ∈ L∞(Rd), bn+1 ∈ Lp(Rd), and bn+2 ∈ Lp′
(Rd), with p ∈ (1, 2]

and p′ ∈ [2,∞) is the dual exponent to p. We have not yet shown that this
sum converges in any reasonable sense though it is easy to see that it converges
if all bj belong to C∞

0 (Rd). One first establishes estimates for the partial sums∑N
j=−N Λ[ς

(2j)
j ](b1, . . . , bn+2) which are independent of N . Thus, in order to state

a priori results one should first assume that all but finitely many of the ςj are
zero. In the general case we shall establish convergence in the operator topology of
multilinear functionals (or in slightly stronger convergence modes). Throughout we
take n ≥ 1, as the result for n = 0 is classical. Our estimates will involve quantities
depending on the family �ς . It will be convenient to use the following notation. Let

(5.6) Γε ≡ Γε[�ς ] :=
supj ‖ςj‖Bε

supj ‖ςj‖L1

,
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and for n ≥ 1, ν ≥ 0 set

(5.7) M
n,ε
ν ≡ M

n,ε
ν [�ς] := sup

j
‖ςj‖

L1 log
ν(1 + nΓε(�ς)) .

We split the sum (5.5) into various terms which we study separately. For
1 ≤ l1 < l2 ≤ n+ 2, we define

Λ1
l1,l2(b1, . . . , bn+2) :=∑

j∈Z

Λ[ς
(2j)
j ](b1, . . . , bl1−1, (I − Pj)bl1 , Pjbl1+1, . . . ,

Pjbl2−1, (I − Pj)bl2 , Pjbl2+1, . . . , Pjbn+2).

(5.8)

For 1 ≤ l ≤ n+ 2, we define
(5.9)

Λ2
l (b1, . . . , bn+2) :=

∑
j∈Z

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbl−1, (I − Pj)bl, Pjbl+1, . . . , Pjbn+2).

Finally, we define

(5.10) Λ3(b1, . . . , bn+2) :=
∑
j∈Z

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+2).

One verifies (by induction on n) that

(5.11) Λ(b1, . . . , bn+2)

=
∑

1≤l1<l2≤n+2

Λ1
l1,l2(b1, . . . , bn+2) +

∑
1≤l≤n+2

Λ2
l (b1, . . . , bn+2) + Λ3(b1, . . . , bn+2).

For b1, . . . , bn ∈ L∞(Rd) fixed, we can identify the multilinear form Λ with an
operator T ≡ T [b1, . . . , bn] defined by

(5.12)

∫
g(x)T [b1, . . . , bn]f(x) dx := Λ(b1, . . . , bn, f, g).

In this way we associate operators T 1
l1,l2

, T 2
l and T 3 to the forms Λ1

l1,l2
, Λ2

l and Λ3.
We shall see that the sums defining these operators converge in the strong operator
topology as operators Lp → Lp (for fixed b1, . . . , bn ∈ L∞(Rd)), see §1.3 for the
definitions.

The main estimates. We separate the proof of Theorem 2.10 into the fol-
lowing five parts.

Theorem 5.1. Let p ∈ (1, 2] and p′ ∈ [2,∞) with 1
p + 1

p′ = 1.

(a) Suppose that ςj = 0 for all but finitely many j. Then

(I)∣∣Λ1
n+1,n+2(b1, . . . , bn+2)

∣∣ � M
n,ε
2 [�ς ]

( n∏
i=1

‖bi‖L∞
)
‖bn+1‖Lp‖bn+2‖Lp′ .

(II) For 1 ≤ l1 ≤ n, l2 ∈ {n+ 1, n+ 2},

|Λ1
l1,l2(b1, . . . , bn+2)| � M

n,ε
5/2[�ς ]

( n∏
i=1

‖bi‖∞
)
‖bn+1‖p‖bn+2‖p′ .
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(III) For 1 ≤ l1 < l2 ≤ n,

|Λ1
l1,l2(b1, . . . , bn+2)| � M

n,ε
3 [�ς ]

( n∏
i=1

‖bi‖∞
)
‖bn+1‖p‖bn+2‖p′ .

(IV) Under the additional cancellation condition (5.4) we have, for 1 ≤ l ≤
n+ 2,

|Λ2
l (b1, . . . , bn+2)| � nM

n,ε
3 [�ς ]

( n∏
i=1

‖bi‖∞
)
‖bn+1‖p‖bn+2‖p′ .

(V) Suppose that (5.4) holds. Then

|Λ3(b1, . . . , bn+2)| � n2 M
n,ε
3 [�ς ]

( n∏
i=1

‖bi‖∞
)
‖bn+1‖p‖bn+2‖p′ .

In the above inequalities the implicit constants depend only on p ∈ (1, 2], d ∈ N,
and ε > 0.

(b) For general families �ς = {ςj : j ∈ Z}, bounded in Bε, the sums defining the
above five functionals converge in the operator topology of multilinear functionals
and the limits satisfy the above estimates.

(c) Let T 1
l1,l2

[b1, . . . , bn], T
2
l [b1, . . . , bn] and T 3[b1, . . . , bn] denote the operators

associated to the forms Λ1
l1,l2

, Λ2
l and Λ3 via (5.12). Then the sums defining these

operators converge in the strong operator topology as operators from Lp → Lp.

Summing up the estimates for the five parts yields Theorem 2.10.
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CHAPTER 6

Some auxiliary operators

In this chapter, we introduce some auxiliary operators which play a role in the
proof of Theorems 2.10, 5.1. Recall that in Chapter 5 we introduced the operator

Pj , which was defined as Pjf = f ∗ φ(2j), where φ ∈ C∞
0 (Bd(1)) was a fixed even

function with
∫
φ = 1, φ ≥ 0, and φ(2j)(x) = 2jdφ(2jx).

Define ψ(x) := φ(x) − 2−dφ(x/2) ∈ C∞
0 (Bd(0, 2)), and let Qkf = f ∗ ψ(2k) so

that

(6.1) Qk = Pk − Pk−1 .

Note that, in the sense of distributions, we have the following identities

(6.2) I =
∑
j∈Z

Qj , Pj =
∑
k≤j

Qk, I − Pj =
∑
k>j

Qk

with convergence in the strong operator topology (as operators Lp → Lp, 1 < p <
∞).

Remark 6.1. There is one subtlety that we must consider. While for f ∈
C∞

0 (Rd) (or even f ∈ Lp, p 	= ∞) we have limj→−∞ Pjf = 0 it is not the case that
limj→−∞ Pjf = 0 for f ∈ L∞. Indeed, this is not true for a constant function.
Thus, the first two identities in (6.2) do not hold when thought of as operators on
L∞. However, the third identity does hold (with the limit taken almost everywhere),
which we shall use.

Let χ0 ∈ S(Rd) so that χ0(ξ) = 1 for |ξ| < 1/2 and χ0 is supported in {|ξ| < 1}.
For j ≥ 1 let ηj be defined via

(6.3) η̂j(ξ) = χ0(2
−jξ)− χ0(2

1−jξ)

so that η̂j is supported in the annulus {ξ : 2j−2 ≤ |ξ| ≤ 2j} and
∑

j∈Z
η̂j(ξ) = 1

for ξ 	= 0. Let η̃0 be a Schwartz function so that its Fourier transform vanishes in
a neighborhood of the origin and is compactly be supported, and equal to 1 on the

support of η̂0. Let η̃j = η̃
(2j)
0 . Note that ηj , η̃j belong to S0(R

d) – the space of
Schwartz functions, all of whose moments vanish. Define

(6.4) Qjf = f ∗ ηj , Q̃jf = f ∗ η̃j .

and note that

(6.5) Qj = QjQ̃j = Q̃jQj

and I =
∑

j∈Z
Qj =

∑
j∈Z

QjQ̃j =
∑

j∈Z
Q̃jQj , where this identity holds in the

weak (distributional sense) and also in the strong operator topology, as operators
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on Lp, if 1 < p < ∞. We also have the following well known estimates for the
associated Littlewood-Paley square functions: for 1 < p < ∞, f ∈ Lp(Rd),

(6.6) ‖f‖p ≈
∥∥∥(∑

j∈Z

|Qjf |2
) 1

2
∥∥∥
p
≈
∥∥∥(∑

j∈Z

|Q̃jf |2
) 1

2
∥∥∥
p

with implicit constants depending only on p and d. The same estimates hold with

Qk and Q̃k replaced by their adjoints.

We introduce a class of operators generalizing Qj , Qj , and Q̃j .

Definition 6.2. U is defined to be the space of those functions u ∈ C1(Rd)
such that the norm

‖u‖U := sup
x∈Rd

(1 + |x|d+ 1
2 )(|u(x)|+ |∇u(x)|)

is finite and such that ∫
u(x) dx = 0.

Definition 6.3. For u ∈ U and j ∈ Z, define Qj [u]f := f ∗ u(2j).

Remark 6.4. Note that ψ, η0, η̃0 ∈ U and Qj = Qj [ψ], Qj = Qj [η0], and

Q̃j = Qj [η̃0].

The class U comes up through the following proposition (which is very close to
a similar one in [7]).

Proposition 6.5. If {fj}j∈Z ⊂ L2(Rd), then∥∥∥∑
j∈Z

Qjfj

∥∥∥
2
� sup

u∈U
‖u‖U=1

(∑
j∈Z

‖Qj [u]fj‖22
) 1

2

,

in the sense that
∑

j Qjfj converges unconditionally in the L2 norm if the right
hand side is finite.

6.1. Proof of Proposition 6.5

We need several lemmata.

Lemma 6.6. For 
 ≤ 0, φ ∈ C∞
0 (Bd(2)), u ∈ S(Rd) if we define γ−� :=

φ ∗ u(2−
), we have γ−� ∈ U and ‖γ−�‖U � 2�/2.

Proof. It is clear that γ−� ∈ C∞(Rd), so it suffices to prove the bound on
‖γ−�‖U. Because, for ν = 1, . . . , d, ∂xν

γ−� is of the same form as γ−�, it suffices
to show |γ−�(x)| � 2�/2(1 + |x|d+1/2)−1. This is evident for |x| ≤ 4, since |γ−�| ≤
‖φ‖∞‖u‖1 � 1.

Since φ(x− y) is supported on |x− y| ≤ 2, we have for |x| ≥ 4 and any m,

|γ−�(x)| �
∫
|x−y|≤2

2−�d(1 + 2−�|y|)−m dy � 2−�d(1 + 2−�|x|)−m.

Taking m = d+ 1/2, we have

|γ−�(x)| � 2−�d(1 + 2−�|x|)−d−1/2 � 2�/2(1 + |x|d+1/2)−1, |x| ≥ 4,

as desired. �
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Lemma 6.7. Suppose u1 ∈ S(Rd), u2 ∈ S0(R
d). For j ≥ 0, let uj := u1 ∗ u(2j)

2 .
Then, for m = 0, 1, 2, . . . ,∑

|α|≤m

|∂α
x uj(x)| � 2−jm(1 + |x|)−m.

Proof. The goal is to show, for every m, {2jmuj : j ≥ 0} ⊂ S(Rd) is a
bounded set. To do this, we show {2jmûj : j ≥ 0} ⊂ S(Rd) is a bounded set. We
have, for every α,∣∣∣∂α

ξ ûj(ξ)
∣∣∣ = |

∑
β+γ=α

Cβ,γ∂
β
ξ û1(ξ)∂

β
ξ û2(2

−jξ)| �
∑

β+γ=α

2−j|γ||∂β
ξ û1(ξ)(∂

γ
ξ û2)(2

−jξ)|

�
∑

β+γ=α

2−j|γ|(1 + |ξ|)−2m|2−jξ|m(1 + |2jξ|)−2m � 2−mj(1 + |ξ|)−m.

The result follows. �
Lemma 6.8. There exists functions ϕ1, . . . , ϕd ∈ C∞

0 (Bd(2)) such that ψ =∑d
ν=1 ∂xν

ϕν .

Proof. Indeed, write

ψ(x) = φ(x)− 2−dφ(2−1x) =
d∑

ν=1

ψν(x),

where ψν(x) is given by

2−(ν−1)φ(x1/2, x2/2, . . . , xν−1/2, xν , xν+1, . . . , xd)

− 2−νφ(x1/2, x2/2, . . . , xν/2, xν+1, . . . , xd).

Letting ϕν(x) =
∫ xν

−∞ ψν(x1, . . . , xν−1, yν , xν+1, . . . , xd) dyν , the result follows. �

Lemma 6.9. For j, k ∈ Z, Q̃j+kQj = 2−|k|/2Qj [uk], where uk ∈ U and ‖uk‖U �
1.

Proof. By scale invariance, it suffices to consider the case j = 0; then uk =

ψ ∗ η̃(2
k)

0 . When k ≤ 0, we use Lemma 6.8 to see

uk(x) =

d∑
ν=1

∫
(∂xν

ϕν)(y)η̃
(2k)
0 (x− y) dy = −2k

d∑
ν=1

∫
ϕν(y)(∂xν

η̃0)
(2k)(x− y) dy.

From here, the desired estimate follows from Lemma 6.6. For k ≥ 0, the result
follows immediately from Lemma 6.7. �

Proof of Proposition 6.5, conclusion. Let {fj : j ∈ Z} ⊂ L2(Rd) and
let g ∈ L2(Rd) with ‖g‖L2 = 1. Let 〈·, ·〉 denote the inner product in L2. We have,
letting uk be as in Lemma 6.9,∣∣∣〈g, J2∑

j=J1

Qjfj
〉∣∣∣ = ∣∣∣〈g, J2∑

j=J1

∑
k∈Z

Qj+kQ̃j+kQjfj
〉∣∣∣ ≤∑

k∈Z

J2∑
j=J1

∣∣∣〈Q∗
j+kg, Q̃j+kQjfj

〉∣∣∣
�
∑
k∈Z

( J2∑
j=J1

∥∥Q∗
j+kg
∥∥2
2

) 1
2
( J2∑

j=J1

∥∥Q̃j+kQjfj
∥∥2
2

) 1
2 �
∑
k∈Z

2−|k|/2
( J2∑

j=J1

∥∥Qj [uk]fj
∥∥2
2

) 1
2

.

The result follows easily. �
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6.2. A decomposition result for functions in U

The proof of the following result follows closely a similar result in [33].

Proposition 6.10. Let u ∈ U. Then there exists uj ∈ C1
0 (B

d( 14 )) with

‖uj‖C0 � ‖u‖U,
∫
uj = 0, and

u =
∑
j≤0

2j/2u
(2j)
j .

Proof. Let χ0 ∈ C∞
0 , supported in {|x| ≤ 1/4}. with 0 ≤ χ0 ≤ 1 and

χ0(x) = 1 for |x| ≤ 1/8. For j ≥ 1 define χj(x) = χ0(2
−jx) − χ0(2

1−jx) so that
that for j ≥ 1, supp(χj) ⊆ {2j−4 ≤ |x| ≤ 2j−2}, and

1 =

∞∑
j=0

χj(x).

Observe that

(6.7)

∫
χj(x) dx = (2jd − 1)

∫
χ0(x)dx � 2jd.

Also let

χ̃j(x) =
χj(x)∫
χj(y) dy

.

Set aj =
∫
u(x)χj(x) dx and Aj =

∑
k≥j ak = −

∑
0≤k<j ak (where the second

equality follows from the fact that
∑

aj =
∫
u = 0).

Note |a0| � 1, and for j ≥ 1,
(6.8)

|aj | ≤
∫

|u(x)||χj(x)| dx ≤
∫
2j−4≤|x|≤2j−2

(1 + |x|d+1/2)−1 dx‖u‖U � 2−j/2‖u‖U.

Thus,

(6.9) |Aj | ≤
∑
k≥j

|ak| � 2−j/2‖u‖U.

Notice, A0 = 0. We have,

u(x) =
∑
j≥0

u(x)χj(x) =
∑
j≥0

(u(x)χj(x)− ajχ̃j(x)) +
∑
j≥0

(Aj −Aj+1)χ̃j(x)

=
∑
j≥0

(u(x)χj(x)− ajχ̃j(x)) +
∑
j≥1

Aj(χ̃j(x)− χ̃j−1(x)) =:
∑
j≥0

Bj(x),

where Bj(x) = u(x)χj(x)− ajχ̃j(x) + (Aj(χ̃j(x)− χ̃j−1(x)))εj and εj = 1 if j ≥ 1,
ε0 = 0. Here we have used A0 = 0 and limj→∞ Aj = 0. Clearly

∫
Bj = 0, and

supp(Bj) ⊆ {|x| ≤ 2j−2}. We have

|Bj(x)| ≤ |u(x)χj(x)|+ |aj ||χ̃j(x)|+ |Aj |(|χ̃j(x)|+ |χ̃j−1(x)|)εj .
(6.7) shows |χ̃j(x)| � 2−jd. The support of χj shows |u(x)χj(x)| � 2−j(d+ 1

2 )‖u‖U.
Combining this with (6.8) and (6.9) shows |Bj(x)| � 2−j(d+ 1

2 )‖ς‖U. Setting, for

j ≥ 0, u−j(x) = 2jd2j/2Bj(2
jx), the result follows easily. �
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CHAPTER 7

Basic L2 estimates

7.1. An L2 estimate for rough kernels

An essential part to many of our estimates is the following L2 estimate.

Theorem 7.1. Let u be a continuous function supported in {y ∈ Rd : |y| ≤ 1/4}
such that ‖u‖∞ ≤ 1 and ∫

u(y)dy = 0.

Let Qk be the operator of convolution with u(2k). Let 0 < ε < 1, ς ∈ Bε(R
n×Rd) and

assume that supp(ς) ⊂ {(α, v) : |v| ≤ 1/4}. Then for all k ∈ N, for bn+1, bn+2 ∈
L2(Rd), bi ∈ L∞(Rd), i = 1, . . . , n,

|Λ[ς](b1, . . . ,Qkbn+1, bn+2)| � 2−kε/(3d+3)n‖ς‖Bε
‖bn+1‖2‖bn+2‖2

n∏
i=1

‖bj‖∞.

In §7.2 below we shall prove a similar theorem without the support assumptions
on ς and u. In what follows we give the proof of Theorem 7.1.

7.1.1. Applying the Leibniz rule. We have

(7.1) Λ[ς](b1, . . . ,Qkbn+1, bn+2) =

∫∫
Fk[ς](x, y) bn+1(y)bn+2(x) dx dy,

where, using the cancellation of u we have

Fk[ς](x, y) =

∫∫
ς(α, x− z)

n∏
i=1

bi(x− αi(x− z)) u(2k)(z − y) dz dα

=

∫∫ [
ς(α, x− z)

n∏
i=1

bi(x− αi(x− z))− ς(α, x− y)

n∏
i=1

bi(x− αi(x− y))
]

× u(2k)(z − y) dz dα .

We let Tk[ς] denote the operator with Schwartz kernel Fk[ς].
For further decomposition we use a Leibniz rule for differences

n∏
j=0

Aj −
n∏

j=0

Bj =

(A0 −B0)
( n∏
j=1

Aj

)
+

n−1∑
i=1

(( i−1∏
j=0

Bj

)
(Ai −Bi)

( n∏
j=i+1

Aj

))
+
( n−1∏
j=0

Bj

)
(An −Bn).

Thus

Fk[ς] =

n∑
i=0

Fk,i[ς]
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where

Fk,0[ς](x, y) =∫∫ [
ς(α, x− z)− ς(α, x− y)

] n∏
j=1

bj(x− αj(x− z)) u(2k)(z − y) dz dα ,

and for i = 1, . . . , n,

Fk,i[ς](x, y) =

∫∫
ς(α, x− y)

] i−1∏
j=1

bi(x− αi(x− y))×(
bi(x− αi(x− z)− bi(x− αi(x− y))

)
×

n∏
j=i+1

bj(x− αj(x− z)) u(2k)(z − y) dz dα ,

with the convention that the products
∏0

j=1 and
∏n

j=n+1 stand for the number 1.

We thus have to estimate the L2 → L2 operator norms for the operators Tk,i[ς]
with Schwartz kernels Fk,i[ς]. For i = 0 we may use the standard Schur test and
the condition ς ∈ Bε

sup
x

∫
|Fk,0[ς](x, y)| dy

(7.2a)

≤ sup
x

n∏
j=1

‖bj‖∞
∫
|h|≤2−k

|u(2k)(h)|
∫

|ς(α, x− y − h)− ς(α, x− y)| dy dα dh

�
n∏

j=1

‖bj‖∞ sup
|h|≤2−k

∫
‖ς(α, · − h)− ς(α, ·)‖dα � 2−kε

n∏
j=1

‖bj‖∞‖ς‖Bε

and similarly

(7.2b) sup
y

∫
|Fk,0[ς](x, y)|dx � 2−kε

n∏
j=1

‖bj‖∞‖ς‖Bε
.

Hence

(7.3) ‖Tk,0[ς]‖L2→L2 � 2−kε
n∏

j=1

‖bj‖∞‖ς‖Bε
.

We shall now turn to the operators Tk,i[ς], i = 1, . . . , n. We start with a trivial
bound.

Lemma 7.2. For 1 ≤ p ≤ ∞

‖Tk,i[ς]‖Lp→Lp � ‖ς‖L1(Rn×Rd)

n∏
j=1

‖bi‖∞.

Proof. This follows immediately from Schur’s test since

sup
x

∫
|Fk,i[ς](x, y)| dy + sup

y

∫
|Fk,i[ς](x, y)| dx � ‖ς‖L1(Rn×Rd)

n∏
j=1

‖bi‖∞. �
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We begin with a regularization of ς, in the x and the αi variables, depending on
a parameter R to be chosen later. Here 1 � R � 2k (we shall see that R = 2k/(3d+3)

will be a good choice).
Let φ ∈ C∞(Rd) supported in {x : |x| ≤ 1/2} so that

∫
φ(x)dx = 1. Let

ϕ ∈ C∞(R) be supported in {u : |u| ≤ 1/2} so that
∫
ϕ(u)du = 1. Define

ςiR(α, v) =

∫∫
χ[−R,R](α− sei)ς(α− sei, v − z)Rϕ(Rs)Rdφ(Rz) dz ds.

Lemma 7.3. For i = 1, . . . , n,

(i)

‖ς − ςiR‖L1(Rn×Rd) � R−ε

(ii)

‖Tk,i[ς − ςiR]‖L2→L2 � R−ε‖ς‖Bε
.

Proof. We expand ς − ςiR = I + II + III where

I(α, v) =

∫ [
ς(α, v) − ς(α, v − z)

]
Rdφ(Rz) dz,

II(α, v) =

∫∫ [
ς(α, v − z) − ς(α− sei, v − z)

]
Rϕ(Rs)Rdφ(Rz) dz ds,

III(α, v) =

∫∫
χ[−R,R]�(α− sei)ς(α− sei, v − z)Rϕ(Rs)Rdφ(Rz) dz ds .

Then

‖I‖L1(Rn×Rd) �
∫

Rd|φ(Rz)|
∫∫ ∣∣ς(α, v) − ς(α, v − z)

∣∣ dα dv |Rdφ(Rz)| dz

� R−ε‖ς‖Bε,3
.

For the second term,

‖II‖L1(Rn×Rd) �
∫

R|ϕ(Rs)|
∫∫ ∣∣ς(α, v) − ς(α− sei, v)

∣∣ dα dv ds � R−ε‖ς‖Bε,2
.

Finally

‖III‖L1(Rn×Rd) �
∫ ∫

[−R,R]�
|ς(α, v)| dα dv � R−ε‖ς‖Bε,1

and part (i) follows. The second part follows from Lemma 7.2 applied to ς − ςiR,
and the first part. �

For the more regular term ςiR we shall need the inequalities

Lemma 7.4. Let 0 < ε < 1, d ≥ 2. Then

(i) ∫ (∫ ∣∣ςiR(α, v)∣∣2dv) 1
2

dα � R
d
2−ε‖ς‖Bε

.

(ii) Let θ ∈ Sd−1 and let θ⊥ the orthogonal complement of Rθ. Then∫
sup
θ

(∫
θ⊥

sup
s∈R

∣∣ςiR(α, v⊥ + sθ)|2dvθ⊥

) 1
2

dα � R
d+1
2 −ε‖ς‖Bε

and∫
sup
θ

(∫
θ⊥

sup
s∈R

∣∣∂αi
ςiR(α, v

⊥ + sθ)|2dvθ⊥

) 1
2

dα � R
d+3
2 −ε‖ς‖Bε

.
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Proof. Let β0 ∈ S(Rd) so that β̂0(ξ) = 1 for |ξ| < 1/2 and β̂0 is supported in

{|ξ| < 1}. Let β1 = β
(2)
0 −β0 and βk = β

(2k−1)
1 so that β̂k has support in an annulus

{|ξ| ≈ 2k}, and f =
∑∞

k=0 βk ∗ f in the sense of distributions. Let β̃0 ∈ S(Rd) be

such that its Fourier transform equals 1 on the support of β̂0. Let β̃1 be a Schwartz
function so that its Fourier transform vanishes in a neighborhood of the origin and

is compactly be supported, and equal to 1 on the support of β̂1. Let β̃k = β̃
(2k−1)
1 .

Let

ς̃iR(α, v) =

∫∫
χ[−R,R](α− sei)ς(α− sei, v)Rϕ(Rs) ds

so that ς̃iR(α, ·) ∗ φR = ςiR (the definition of ϕ was given right before the statement
of Lemma 7.3). Then

ςiR(α, ·) =
∞∑
l=0

βl ∗ ς̃iR(α, ·) ∗ φR ∗ β̃l.

By Young’s inequality

‖ςiR(α, v) ∗ β̃l ∗ βl‖2 ≤ ‖ς̃iR(α, ·) ∗ βl‖1‖β̃l ∗ ΦR‖2

and it is easy to see that

‖β̃l ∗ ΦR‖2 ≤ CM2ld/2 min{1, (R2−l)M} .

Thus ∫ (∫ ∣∣ςiR(α, v)∣∣2dv) 1
2

dα

�
∞∑
l=0

2ld/2 min{1, (R2−l)M}
∫∫ ∣∣∣ ∫ βl(v − w)ςiR(α,w)dw

∣∣∣ dv dα
�

∞∑
l=0

2ld/2 min{1, (R2−l)M}2−lε‖ς̃iR‖Bε
� R

d
2−ε‖ς‖Bε

.

The first inequality in (ii) is proved similarly, except that we first use the
one-dimensional version of Young’s inequality in the θ-direction. Since the Fourier
transform of βl is supported on a set of diameter O(2l) we have, for fixed θ and
almost every α,

(∫
θ⊥

sup
s∈R

∣∣βl∗ςiR(α, v⊥+sθ)|2dv⊥
) 1

2 � 2l/2
(∫

θ⊥

∫ ∞

−∞

∣∣βl∗ςiR(α, v⊥+sθ)|2ds dv⊥
) 1

2

.

Notice that the double integral on the right hand side is just the L2(Rd) norm of
ςiR(α, ·) and thus does not depend on θ. Take the sup over θ, then integrate in α,
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and sum in l. Arguing as above we obtain:∫
sup
θ

(∫
θ⊥

sup
s∈R

∣∣βl ∗ ςiR(α, v⊥ + sθ)|2dv⊥
) 1

2

dα

�
∑
l≥0

2l/2
∫ (

|βl ∗ ςiR(α, v)|2dv
)1/2

dα

�
∑
l≥0

2l(d+1)/2min{1, (R2−l)M}
∫∫

|βl ∗ ς̃iR(α, v)| dv dα

�
∑
l≥0

2l(d+1)/2min{1, (R2−l)M}2−lε‖ς̃iR‖Bε
� R

d+1
2 −ε‖ς‖Bε

.

The second inequality in (ii) is proved in the same way. The differentiation in
αi hitting the mollifier Rϕ(R·) produces an additional factor of R. �

By the support assumptions on ς and u, we have

supp(Fk,i[ς
i
R]) ⊆ {(x, y) : |x− y| < 1}.

We shall use the following lemma to obtain the bound C(R)2−kε′ of the L2 operator
norms.

Lemma 7.5. Suppose V (x, y) ∈ L1
loc(R

d×Rd) is supported in the strip {(x, y) :
|x− y| ≤ 1} and let V be the operator with Schwartz kernel V . Then,

‖V‖2L2→L2 � sup
z

∫∫
|x−z|<1
|y−z|<1

|V (x, y)|2 dx dy.

Proof. Let A denote the quantity on the right hand side. For z ∈ Zd let qz be
the cube z+ [0, 1]d and fz = χqz

. Then f =
∑

z
fz and for each z, V fz is supported

in the union q∗z of cubes which have a common side with qz. By Hölder’s inequality
it is immediate that

‖Vfz‖2 �
(∫∫

q∗z×qz

|V (x, y)|2dx dy
)1/2

‖fz‖2l ≤ C(d)A‖fz‖2,

and then

‖Vf‖2 =
∥∥∥∑

z

Vfz
∥∥∥
2
≤ 3d/2

(∑
z

∥∥Vfz∥∥22)1/2
≤ C ′(d)A

(∑
z

∥∥fz∥∥22)1/2 ≤ C ′(d)A‖f‖2 . �

In light of Lemma 7.5 the following proposition gives a basic L2 bound for the
operators Tk,i[ςR].

Proposition 7.6. For k ≥ 0

(7.4)
(
sup
y0

∫∫
|x−y0|<1
|y−y0|<1

|Fk,i[ς
i
R](x, y)|2 dx dy

) 1
2 � 2−k/3Rd+1

n∏
i=1

‖bi‖∞.
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7.1.2. Proof of Proposition 7.6. Note that the class of operators is invariant
under translations. That is, if τaf := f(x−a), then the kernel of τaTk,i[ς

i
R]τ−a, i.e.

Fk,i[ς
i
R](x− a, y− a), is of the same form of Fk,i, with the functions bj replaced by

τabj . Therefore we may take y0 = 0 in Proposition 7.6. We may also assume

(7.5) ‖bj‖∞ ≤ 1, 1 ≤ j ≤ n .

As in §4 we decompose α as α = αiei + α⊥
i where α⊥

i = (..., αi−1, αi+1, ...) ∈
Rn−1. We bound, using the Cauchy-Schwarz inequality in the z-variable, and then
Minkowski’s inequality in the α⊥

i variables, as well as (7.5) for j 	= i,

∫∫
|x|<1
|y|<1

|Fk,i[ς
i
R](x, y)|2 dx dy

) 1
2

�
∫ ( ∫∫∫

|x|,|y|≤1

|y−z|≤2−k

2kd
∣∣∣ ∫ ςiR(α, x− y)

[
bi(x− αi(x− z))− bi(x− αi(x− y))

]
dαi

∣∣∣2

dz dx dy
)1/2

dα⊥
i

�
∫ (

2kd
∫∫∫

|x|,|v|,|w|≤2

|v−w|≤2−k

∣∣∣ ∫ ςiR(α, v)
[
bi(x− αiv)− bi(x− αiw)

]
dαi

∣∣∣2dv dw dx
)1/2

dα⊥
i

where for the last integral we have changed variables to v = x− z, w = x− y. The
proof of Proposition 7.6 will be complete after the following lemma is proved.

Lemma 7.7. Let ςiR be as in Proposition 7.6. Then for g ∈ L∞(Rd) and k > 0,

(
2kd

∫∫∫
|x|<2

|v|,|w|<2

|v−w|<2−k

∣∣∣ ∫ ςiR(α, v)
(
g(x− αiv)− g(x− αiw)

)
dα
∣∣∣2 dx dv dw) 1

2

� Rd+1−ε2−kε/3‖ς‖Bε
‖g‖∞.

Proof. We may and shall assume ‖g‖L∞ = 1. Let gR(x) = g(x) if |x| ≤ 2R+2
and gR(x) = 0 if |x| > 2R + 2. We first observe that since ςiR(α, v) = 0 for
|αi| ≥ R+ 1 we may replace g by gR in the above expression. Note that

(7.6) ‖gR‖2 � Rd/2.
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We interchange the (v, w)- and x-integrations, then apply Plancherel’s theorem,
and interchange integrals again to get∫ (

2kd
∫∫∫
|x|<2

|v|,|w|<2

|v−w|<2−k

∣∣∣ ∫ ςiR(α, v)
(
gR(x− αiv)− gR(x− αiw)

)
dα
∣∣∣2 dx dv dw) 1

2

dα⊥
i

=

∫ (∫
|ĝR(ξ)|22kd×∫∫

|v|,|w|<2

|v−w|<2−k

∣∣∣ ∫ ςiR(α, v)
(
e2πıαi〈v,ξ〉 − e2πıαi〈w,ξ〉)dαi

∣∣∣2 dv dw dξ
) 1

2

dα⊥
i .

For a constant U ≥ 1 (to be determined) we split the ξ-integration into the parts
for |ξ| ≤ U and |ξ| ≥ 1.

For |ξ| ≤ U we bound |e2πıαi〈v,ξ〉 − e2πıαi〈w,ξ〉| � RU2−k since |αi| ≤ (R + 1)
and |v − w| ≤ 2−k. Hence we obtain

∫ (∫
|ξ|≤U

|ĝR(ξ)|22kd×

(7.7)

∫∫
|v|,|w|<2

|v−w|<2−k

∣∣∣ ∫ ςiR(α, v)
(
e2πıαi〈v,ξ〉 − e2πıαi〈w,ξ〉)dαi

∣∣∣2 dv dw dξ
) 1

2

dα⊥
i

� RU2−k‖ĝR‖2
∫ (∫

|ςiR(α, v)|2dv
)1/2

dα

� R
d+2
2 −εU2−k‖gR‖2‖ς‖Bε

where in the last inequality we have used part (i) of Lemma 7.4.
Next we consider the part when |ξ| > U . Using the symmetry in v, w we may

estimate

∫ (∫
|ξ|≥U

|ĝR(ξ)|22kd×∫∫
|v|,|w|<2

|v−w|<2−k

∣∣∣ ∫ ςiR(α, v)
(
e2πı〈v,ξ〉αi − e2πı〈w,ξ〉αi

)
dαi

∣∣∣2 dv dw dξ
) 1

2

dα⊥
i

≤ 2

∫ (∫
|ξ|≥U

|ĝR(ξ)|22kd
∫∫

|v|,|w|<2

|v−w|<2−k

∣∣∣ ∫ ςiR(α, v)e
2πı〈v,ξ〉αidαi

∣∣∣2 dv dw dξ
) 1

2

dα⊥
i

�
∫ (∫

|ξ|≥U

|ĝR(ξ)|2
∫ ∣∣∣ ∫ ςiR(α, v)e

2πı〈v,ξ〉αidαi

∣∣∣2 dv dξ) 1
2

dα⊥
i .

For fixed ξ = |ξ|θ (θ ∈ Sd−1) we separate the v-integral into two parts. Let
0 < b < 1 (which will be optimally chosen later). For fixed θ = ξ/|ξ|, α⊥

i we have
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v = πθ⊥v + sθ where πθ⊥v is the projection of v to the orthogonal complement of
Rθ and s = 〈θ, v〉. We split∫ ∣∣∣ ∫ ςiR(α, v)e

2πı〈v,ξ〉αidαi

∣∣∣2 dv =

∫ ∫ ∣∣∣ ∫ ςiR(α, πθ⊥v + sθ))e2πıs|ξ|αidαi

∣∣∣2dsdvθ⊥

=:Ib(α
⊥
i , |ξ|θ) + IIb(α

⊥
i , |ξ|θ)

where

Ib(α
⊥
i , |ξ|θ) :=

∫ ∫
[−b,b]

∣∣∣ ∫ ςiR(α, πθ⊥v + sθ))e2πıs|ξ|αidαi

∣∣∣2dsdvθ⊥

IIb(α
⊥
i , |ξ|θ) :=

∫ ∫
[−b,b]�

∣∣∣ ∫ ςiR(α, πθ⊥v + sθ))e2πıs|ξ|αidαi

∣∣∣2dsdvθ⊥

so that ∫ (∫
|ξ|≥U

|ĝR(ξ)|2
∫ ∣∣∣ ∫ ςiR(α, v)e

2πı〈v,ξ〉αidαi

∣∣∣2 dv dξ) 1
2

dα⊥
i

�
∫ (∫

|ξ|≥U

|ĝR(ξ))|2[Ib(α⊥
i , ξ) + IIb(α

⊥
i , ξ)]dξ

) 1
2

dα⊥
i .

The expression Ib is estimated as

Ib(α
⊥
i , |ξ|θ)| ≤ 2b

∫
sup
|s|≤b

[ ∫
|ςiR(α, πθ⊥v + sθ))|dαi

]2
dvθ⊥

and we get using part (ii) of Lemma 7.4∫ (∫
|ξ|≥U

|ĝR(ξ))|2Ib(α⊥
i , ξ)dξ

) 1
2

dα⊥
i

� b1/2‖gR‖2
∫ (

sup
θ

∫
sup
s

[ ∫
|ςiR(α, πθ⊥v + sθ))|dαi

]2
dvθ⊥

)1/2
dα⊥

i

� b1/2R
d+1
2 −ε‖ς‖Bε

‖gR‖2 .(7.8)

To estimate IIb(α⊥, ξ) we observe that the function αi �→ ςiR(α, v) is smooth
and compactly supported. We use integration by parts to write∫

ςiR(α, πθ⊥v+sθ))e2πıs|ξ|αidαi = −
∫

∂αi
ςiR(α, πθ⊥v+sθ))(2πı|ξ|)−1s−1e2πısαidαi

and thus for |ξ| ≥ U

IIb(α
⊥
i , |ξ|θ)| ≤

∫ ∞

b

|ξ|−2|s|−2ds

∫
sup
t

[ ∫
|∂αi

ςiR(α, πθ⊥v + tθ))|dαi

]2
dvθ⊥

� U−2b−1

∫
sup
t

[ ∫
|∂αi

ςiR(α, πθ⊥v + tθ))|dαi

]2
dvθ⊥ .

Hence, by the second inequality in part (ii) of Lemma 7.4,∫ (∫
|ξ|≥U

|ĝR(ξ))|2IIb(α⊥
i , ξ)dξ

) 1
2

dα⊥
i

� U−1b−1/2‖gR‖2
∫ (

sup
θ

∫
sup
t

[ ∫
|∂αi

ςiR(α, πθ⊥v + tθ)|dαi

]2
dvθ⊥

)1/2
dα⊥

i

� U−1b−1/2R
d+3
2 −ε‖ς‖Bε

‖gR‖2.
(7.9)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

7.2. GENERALIZATIONS OF THEOREM 7.1 65

We combine (7.7), (7.8), (7.9) to deduce
(7.10)∫ (

2kd
∫∫∫
|x|<2

|v|,|w|<2

|v−w|<2−k

∣∣∣ ∫ ςiR(α, v)
(
gR(x− αiv)− gR(x− αiw)

)
dα
∣∣∣2 dx dv dw) 1

2

dα⊥
i

�
(
R

d+2
2 −εU2−k + R

d+1
2 −εb1/2 + R

d+3
2 −εU−1b−1/2

)
‖ς‖Bε

‖gR‖2 .

We choose b, U so that the three terms are comparable, i.e. b = RU−1, U = 22k/3.
The result is that the left hand side of (7.10) is bounded by a constant times

R
d+2
2 −ε2−k/3‖ς‖Bε

‖gR‖2 � Rd+1−ε2−k/3‖ς‖Bε
,

by (7.6), and the proof is complete. �

7.1.3. Proof of Theorem 7.1. By (7.3),

‖Tk,0[ς]‖L2→L2 � 2−kε‖ς‖Bε

n∏
l=1

‖bl‖∞.

By Lemma 7.3 and Proposition 7.6 we have for i = 1, . . . , n,

‖Tk,i[ς]‖L2→L2 ≤ ‖Tk,i[ς − ςiR]‖L2→L2 + ‖Tk,i[ς
i
R]‖L2→L2

� R−ε(1 + 2−k/3Rd+1)‖ς‖Bε

n∏
l=1

‖bl‖∞ .

Choosing R = 2k/(3d+3) yields the bound

n∑
i=0

‖Tk,i[ς]‖L2→L2 � (n+ 1)2−kε/(3d+3)‖ς‖Bε

n∏
l=1

‖bl‖∞

and thus the estimates for the multilinear forms claimed in Theorem 7.1. �

7.2. Generalizations of Theorem 7.1

We shall now drop the support assumptions on x �→ ς(α, x) and on u in Theorem

7.1. Moreover, we extend to Lp estimates and replace ς by the scaled versions ς(2
j)

(with the scaling in the x variables).

Theorem 7.8. There exists c > 0, independent of n and ε, so that the following
statement holds for all 1 ≤ p ≤ ∞. For all ς ∈ Bε(R

n × Rd), for all j, k ∈ Z,
1 ≤ l1 	= l2 ≤ n + 2, bl1 ∈ L2(Rd), bl2 ∈ L2(Rd), bl ∈ L∞(Rd) for l 	= l1, l2, and
u ∈ U,

|Λ[ς(2j)](b1, . . . , bl2−1, Qk[u]bl2 , bl2+1, . . . , bn+2)|

� min{n2cε(j−k)‖ς‖Bε
, ‖ς‖L1}‖u‖

U

( ∏
l �=l1,l2

‖bl‖L∞

)
‖bl1‖2‖bl2‖2 .
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Proof. In light of Theorem 2.9, Theorem 7.8 follows immediately from Lemma
2.7 and the estimate (for some c′ > 0, independent of n)

(7.11) Λ[ς(2
j)](b1, . . . , bn, Qk[u]bn+1, bn+2)

� ‖ς‖Bε
n2−c′ε(k−j)‖u‖U

( n∏
l=1

‖bl‖∞
)
‖bn+1‖2‖bn+2‖2 .

By scaling (Lemma 4.16) it suffices to prove (7.11) for j = 0. Theorem 7.1
covers the case of ς supported in Rn × {|x| ≤ 1/4}. To cover the general case we

apply Proposition 6.10 to write u =
∑

l≥0 2
−l/2u

(2−l)
l where ul is continuous and

supported in {|x| ≤ 1/4},
∫
ul = 0, and ‖ul‖C0 � ‖u‖U. We apply Theorem 4.15 to

write ς =
∑

m≥0 2
−mc1ες

(2m)
m for some c1 > 0, where ςm ∈ Bc1ε, ‖ςm‖Bc1ε

� ‖ς‖Bε
,

and supp(ςm) ⊂ {(α, v) : |v| ≤ 1
4}. We then have∣∣Λ[ς](b1, . . . , bn, Qk[u]bn+1, bn+2

)∣∣
≤
∑
l≥0

∑
m≥0

2−l/22−mc1ε
∣∣Λ[ς(2−m)

m ]
(
b1, . . . , bn, Qk[u

(2−l)
l ]bn+1, bn+2

)∣∣
=
∑
l≥0

∑
m≥0

2−l/22−mc1ε
∣∣Λ[ςm]

(
g1, . . . , gn, Qk−l+m[ul]gn+1, gn+2

)∣∣
where gl = bl(2

m·), l = 1, . . . , n, gn+1 = 2md/2bn+1(2
m·), gn+2 = 2md/2bn+2(2

m·)
(see Lemma 4.16). By Theorem 7.1 we have, for some c2 > 0∣∣Λ[ςm]

(
g1, . . . , gn, Qk−l+m[ul](gn+1), gn+2

)∣∣
� min{1, n2−(k−l+m)c2ε}‖u‖

U

( n∏
i=1

‖gi‖∞
)
‖gn+1‖2‖gn+2‖2 .

Now
∑

l≥0

∑
m≥0 2

−l/22−mc1ε min{1, n2−(k−l+m)c2ε} � n2−kc3ε for some c3 with

0 < c3 < min{1/2, c2} and (7.11) for j = 0 follows easily. �
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CHAPTER 8

Some results from Calderón-Zygmund theory

In this chapter, we present some essentially well known results from the
Calderón-Zygmund theory which do not seem to be stated in the literature in the
precise form we need them. We begin by recalling some classical results (see [36]).

Consider kernels K ∈ D′(Rd × Rd) such that K is locally integrable on (Rd ×
Rd) \Δ; here Δ = diag(Rd × Rd) = {(x, x) : x ∈ Rd}. Let TK : C∞

0 (Rd) → D′(Rd)
be the operator with Schwartz kernel K. Then the expression

〈TKf, g〉 =
∫∫

K(x, y)f(y)g(x) dy dx

makes sense for bounded functions f , g with compact and disjoint supports. For
such kernels K we define the singular integral semi-norms

SI1[K] := sup
y,y′

∫
|x−y|≥2|y−y′|

|K(x, y)−K(x, y′)| dx,(8.1)

SI∞[K] := sup
x,x′

∫
|y−x|≥2|x−x′|

|K(x, y)−K(x′, y)| dy.(8.2)

Let 1 < q < ∞. It is a standard and classical theorem (see [36]) that if TK

extends as a bounded operator on Lq(Rd) and SI1[K] < ∞ then TK extends as an
operator of weak type (1, 1), as an operator mapping the Hardy space H1(Rd) to
L1(Rd) and as a bounded operator on Lp, 1 ≤ p < 2, and one has the following
estimates for the operator norms (or quasi-norms).

(8.3) ‖TK‖H1→L1 + ‖TK‖L1→L1,∞ � ‖TK‖Lq→Lq + SI1[K].

We note that in order to prove the H1 → L1 result, it suffices to check ‖TKa‖1 ≤
‖TK‖Lq→Lq+SI1[K] for q-atoms, see [29]. Let L∞

0 be the subspace of L∞ consisting
of functions with compact support (in the sense of distributions). Then we also have
for q ≥ 1

(8.4) ‖TK‖L∞
0 →BMO � ‖TK‖Lq→Lq + SI∞[K].

Furthermore (taking q = 2), by interpolation

(8.5) ‖TK‖Lp→Lp ≤ Cp,d(‖TK‖L2→L2 + ‖TK‖2−
2
p

L2→L2(SI
1[K])

2
p−1), 1 < p < 2,

and

(8.6) ‖TK‖Lp→Lp ≤ Cp,d(‖TK‖L2→L2 + ‖TK‖
2
p

L2→L2(SI
∞[K])1−

2
p ), 2 < p < ∞.

We will apply these results to singular integral kernels given by

(8.7) K =
∑
j

Dil2jτj ≡
∑
j

2jdτj(2
j ·, 2j ·)

where τj satisfy suitable uniform Schur and regularity conditions.

67



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

68 8. SOME RESULTS FROM CALDERÓN-ZYGMUND THEORY

8.1. Classes of kernels

8.1.1. Schur Norms and Regularity Conditions. In what follows we con-
sider complex-valued locally integrable functions (x, y) �→ k(x, y) on Rd × Rd.

We formulate conditions related to the usual Schur test, involving integrability
conditions in the x and y variables. We let Int1 be the class of kernels k ∈ L1

loc(R
d×

Rd) for which

(8.8) Int1[k] = sup
y∈Rd

∫
|k(x, y)| dx

is finite. Here and in what follows supy is used synonymously with essential supre-

mum (or L∞-norm). We let Int∞ be the class of kernels k ∈ L1
loc(R

d × Rd) for
which

(8.9) Int∞[k] = sup
x∈Rd

∫
|k(x, y)| dy

is finite. Here the supremum is interpreted as essential supremum (i.e. the L∞

norm with respect to y). The notation is motivated by the fact that for k ∈ Int1

the integral operator with kernel k is bounded on L∞(Rd), with operator norm
Int1[k], and for k ∈ Int∞ this operator is bounded on L∞(Rd), with operator norm
Int∞[k].

Next we need stronger conditions, which add some weights in terms of the
distance of (x, y) to the diagonal Δ. Define

Int1ε[k] := sup
y∈Rd

∫
(1 + |x− y|)ε|k(x, y)| dx,(8.10)

Int∞ε [k] := sup
x∈Rd

∫
(1 + |x− y|)ε|k(x, y)| dy.(8.11)

Let

kdual(x, y) = k(y, x)

and note that Int∞ε [k] = Int1ε[k
dual].

In Calderón-Zygmund theory we also need some variants involving regularity,
in either the left (x-) or right (y-)variable. We define

Reg1ε,lt[k] := sup
0<|h|≤1

sup
y

|h|−ε

∫
|k(x+ h, y)− k(x, y)| dx,(8.12)

Reg1ε,rt[k] := sup
0<|h|≤1

sup
y

|h|−ε

∫
|k(x, y + h)− k(x, y)| dx,(8.13)

and

Reg∞ε,lt[k] := sup
0<|h|≤1

sup
x

|h|−ε

∫
|k(x+ h, y)− k(x, y)| dy,(8.14)

Reg∞ε,rt[k] := sup
0<|h|≤1

sup
x

|h|−ε

∫
|k(x, y + h)− k(x, y)| dy,(8.15)

so that Reg∞ε,lt[k] = Reg1ε,rt[k
dual] and Reg∞ε,lt[k] = Reg1ε,rt[k

dual].
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8.1.2. Singular Integral Kernels. We now consider distributions K ∈
D′((Rd×Rd) \Δ) which are locally integrable in (Rd×Rd) \Δ. We define variants
of (8.1), (8.2) with more decay away from the diagonal (here ε ≥ 0)

SI1ε[K] := sup
y,y′

sup
R≥2

Rε

∫
|x−y|≥R|y−y′|

|K(x, y)−K(x, y′)| dx ,(8.16)

SI∞ε [K] := sup
x,x′

sup
R≥2

Rε

∫
|y−x|≥R|x−x′|

|K(x, y)−K(x′, y)| dy .(8.17)

Note that for ε = 0 we recover the norms defined in (8.1), (8.2).

Remark. We shall also use the alternative notation ‖K‖SI1ε = SI1ε[K] etc. We

will say K ∈ SI1ε if SI1ε[K] < ∞ etc.

We say that K ∈ L1
loc((R

d × Rd) \ Δ) satisfies one of the uniform annular

integrability conditions Ann1, Ann∞ if the respective expressions

Ann1[K] := sup
R>0

sup
y

∫
x:R≤|x−y|≤2R

|K(x, y)| dx,(8.18)

Ann∞[K] := sup
R>0

sup
x

∫
y:R≤|x−y|≤2R

|K(x, y)| dy(8.19)

are finite.
We say that K satisfies the averaged annular integrability condition Annav if

(8.20) Annav[K] = sup
a∈Rd

sup
R>0

R−d

∫∫
|x−a|≤R

R≤|x−y|≤2R

|K(x, y)| dy dx

is finite.
The last notion will be used in §8.2 below.

Lemma 8.1. Let K ∈ L1
loc((R

d × Rd) \Δ}). Then

Annav[K] ≈ Annav[K
dual].

Moreover,
Annav[K] � min{Ann1[K],Ann∞[K]} .

Proof. Immediate from the definitions. �
Lemma 8.2. Let K ∈ L1

loc((R
d × Rd) \Δ). Suppose that for some ε > 0,

SI1ε[K] ≤ B, Ann[K] ≤ A.

Then
SI10[K] � A log(2 + ε−1B/A).

Proof. Fix y 	= y′ and split∫
|x−y|≥2|y−y′|

|K(x, y)−K(x, y′)| dx = I + II

where

I =

∫
2|y−y′|≤|x−y|≤R|y−y′|

|K(x, y)−K(x, y′)| dx ,

II =

∫
|x−y|≥R|y−y′|

|K(x, y)−K(x, y′)| dx .
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Then if we apply condition Ann1 with O(logR) annuli to estimate

I � A logR;

moreover we have

II � BR−ε.

If we choose R = 2 + (B/A)1/ε the assertion follows. �

8.1.3. Integral conditions for singular integrals. We formulate a propo-
sition which is used to verify the condition SI1ε , SI∞ε for kernels of the form (8.7).

Proposition 8.3. Suppose that τj ∈ Int1ε ∩ Reg1ε,R and

sup
j

Int10[τj ] ≤ A,

sup
j

Int1ε[τj ] + sup
j

Reg1ε,rt[τj ] ≤ B.

Then the sum (8.7) converges in the sense of L1
loc((R

d × Rd) \Δ) and the limit K
satisfies

(8.21) SI1ε/2[K] � B.

Moreover,

(8.22) SI10[K] � A log(2 +B/A) .

Proof. We fix y, y′ and R ≥ 0 and consider

IRj (y, y′) =

∫
x:|x−y|≥R|y−y′|

|Dil2j τj(x, y)−Dil2j τj(x, y
′)| dx

=

∫
x:|x−2jy|≥R|2jy−2jy′|

|τj(x, 2jy)− τj(x, 2
jy′)| dx.

Clearly IRj (y, y′) ≤ 2A. We now give two estimates, the first valid when 2j |y−y′| ≥
1/R, the second valid when 2j |y − y′| ≤ 1; thus both estimates will be valid when
1/R ≤ 2j |y − y′| ≤ 1.

For 2j |y − y′| ≥ 1/R we have∫
x:|x−2jy|≥R|2jy−2jy′|

|τj(x, 2jy)|dx ≤
∫

|τj(x, 2jy)|
(1 + |x− 2jy|)ε
(R2j |y − y′|)ε dx

≤ (2j |y − y′|R)−εInt1ε[τj ] ≤ B(2j |y − y′|R)−ε.

Also note that if |x− 2jy| ≥ R|2jy− 2jy′| then also |x− 2jy′| ≥ (R− 1)|2jy− 2jy′|.
Thus the last argument also gives (for R ≥ 2)∫

x:|x−2jy|≥R|2jy−2jy′|
|τj(x, 2jy′)|dx ≤ B(2j |y − y′|(R− 1))−ε

and hence

IRj (y, y′) � B(2j |y − y′|)−εR−ε if 2j |y − y′| ≥ 1/R .

For 2j |y − y′| ≤ 1 we obtain

IRj (y, y′) ≤
∫

|τj(x, 2jy)− τj(x, 2
jy′)| dx ≤ Reg1ε[τj ](2

j |y − y′|)ε ≤ B(2j |y − y′|)ε.
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Hence∑
j∈Z

IRj (y, y′) �
∑

j:2j |y−y′|≤R−1/2

B(2j |y − y′|)ε +
∑

j:2j |y−y′|>R−1/2

B(R2j |y − y′|)−ε

� BR−ε/2

and (8.21) follows. The same argument gives∑
j∈Z

IRj (y, y′) �
∑
j∈Z

min{A,B(2j |y − y′|)ε, B(2j |y − y′|)ε � A(log(2 +B/A))

which yields (8.22). �

The following proposition is useful for verifying membership in the classes Ann1,
Ann∞ for kernels of the form (8.7).

Proposition 8.4. Suppose that τj ∈ Int1ε ∩ Reg1ε,lt such that

sup
j

Int10[τj ] ≤ A ,

sup
j

Int1ε[τj ] + sup
j

Reg1ε,lt[τj ] ≤ B .

Then the sum K =
∑

j Dil2jτj converges in the sense of L1
loc((R

d × Rd) \Δ) and

Ann1[K] � A log(2 + B/A) .

This follows from the following lemma regarding functions in L1(Rd).

Lemma 8.5. Let 0 < ε < 1, gj ∈ L1(Rd) such that∫
|gj(x)| dx ≤ A,∫

|gj(x)|(1 + |x|)ε dx ≤ B1,

and

sup
|h|<1

|h|−ε

∫
|gj(x+ h)− gj(x)| dx ≤ B2 .

Then for every compact set K ⊂ Rd \ {0}, the series G(x) =
∑

j∈Z
2jdgj(2

jx)

converges in L1(K), so that G ∈ L1
loc(R

d \ {0}). Moreover, if KR = {x : R ≤ |x| ≤
2R},

sup
R>0

∫
KR

|G(x)|dx � A log(1 +
B1 +B2

A
) .

Proof. It suffices to consider the case K = KR. Let Gj = 2jdgj(2
j ·) then

‖Gj‖L1(KR) = ‖gj‖L1(K2jR) ≤ A.

First assume that 2jR ≥ 1. In this case

‖gj‖L1(K2jR) � (2jR)−εB1.

For 2jR ≤ 1 we have by Hölder’s inequality

‖gj‖L1(K2jR) � (2jR)d/p
′‖gj‖p,
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and by Sobolev imbedding it follows ‖gj‖p � B1 provided that d/p′ < ε. Hence we
obtain for 0 < ε′ < ε we get

‖G‖L1(KR) �
∑
j∈Z

min{A,B1(2
jR)−ε, B2(2

jR)ε
′} � A log

(
1 +

B1 +B2

A

)
. �

Proof of Proposition 8.4. Apply Lemma 8.5 to v �→ K(y + v, y). �

8.1.4. Kernels with cancellation. We state a standard estimates involving
the Schur test for compositions with operators exhibiting some cancellation; this
will be used when proving L2 estimates in §10.2.

Lemma 8.6. Fix 0 < ε ≤ 1. Let 
 ∈ Z with 
 ≤ 0. Suppose ρ, σ� : R
d×Rd → C

are measurable functions satisfying

Int1[ρ] ≤ A1, Int∞ε [ρ] ≤ Aε,∞,(8.23a)

Int1[σ�] ≤ B1, Int∞[σ�] ≤ B∞,(8.23b)

and

(8.23c) Int∞[∇xσ�] ≤ 2−�B̃∞.

Assume

(8.24)

∫
ρ(x, y) dy = 0 for almost every x ∈ Rd.

Let R, S� be the integral operators with Schwartz kernels ρ(x, y), σ�(x, y). Then

‖RS�‖L2→L2 � 2−�ε/2

√
A1Aε,∞B1(B∞ + B̃∞).

Proof. Let k� be the Schwartz kernel of RS�. Then, by the cancellation
assumption,

k�(x, y) =

∫
ρ(x, z)

(
σ�(z, y)− σ�(x, y)

)
dz

Clearly for a.e. y ∈ Rd∫
|k�(x, y)|dx ≤

∫
|σ�(z, y)|

∫
|ρ(x, z)|dx dz � B1A1.

Moreover, ∫
|k�(x, y)|dy ≤ (Ix) + (IIx)

where

(Ix) :=

∫
|x−z|≤2


|ρ(x, z)|
∫ ∣∣σ�(z, y)− σ�(x, y)

∣∣ dy dz,
(IIx) :=

∫
|x−z|≥2


|ρ(x, z)|
∫ (

|σ�(z, y)|+ |σ�(x, y)|
)
dy dz.

Now by assumption, for fixed x, z∫
|σ�(z, y)| dy +

∫
|σ�(x, y)|dy � B∞
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and ∫ ∣∣σ�(z, y)− σ�(x, y)
∣∣ dy =

∫ ∣∣∣ ∫ 1

0

〈z − x,∇xσ�((1− s)x+ sz), y〉 ds
∣∣∣ dy

≤ |x− z|
∫ 1

0

∫
|∇xσ�((1− s)x+ sz), y)| dy dτ � B̃∞2−�|x− z|.

For (Ix) we then get

(Ix) ≤ B̃∞

∫
|z−x|≤2


|ρ(x, z)|2−�|x− z| dz

and estimate (using ε ≤ 1)∫
|z−x|≤2


|ρ(x, z)|2−�|x− z| dz ≤
∫
|z−x|≤2


|ρ(x, z)|[2−�|x− z|]ε dz

� 2−�ε

∫
|ρ(x, z)(1 + |x− z|)εdz � 2−�εAε,∞.

Hence (Ix) � 2−�εB̃∞Aε,∞. For (IIx) we have

(IIx) ≤ B∞

∫
|z−x|≥2


|ρ(x, z)| dz � B∞2−�ε

∫
|z−x|≥2


|ρ(x, z)|(1 + |x− z|)ε dz

and thus (IIx) � 2−�εB∞Aε,∞. Finally, we obtain by Schur’s test

‖RS�‖L2→L2 ≤
√
Int1[k�]

√
Int∞[k�] �

√
A1B1

√
(B∞ + B̃∞)Aε,∞2−�ε.

The assertion is proved. �

8.1.5. On operator topologies. We finish this section by stating a version
of the uniform boundedness principle which is used for the partial sums of operators
defined by kernels of the form (8.7).

Lemma 8.7. Let X, Y be Banach spaces and let ΣN : X → Y be bounded
operators. Assume that ΣN converges in the weak operator topology, i.e. there is
a linear operator Σ : X → Y so that for every f ∈ X and every linear functional
g ∈ Y ′,

lim
N→∞

〈ΣNf, g〉 = 〈Σf, g〉.

Then Σ : X → Y is bounded, and there exists B < ∞ so that

‖Σ‖X→Y ≤ sup
N

‖ΣN‖X→Y ≤ B.

Proof. We have supN ‖〈ΣNf, g〉| ≤ Cf,g < ∞ for every f,∈ X, g ∈ Y ′. By
the uniform boundedness principle this implies supN ‖ΣNf‖Y ≤ Cf < ∞ for all
f ∈ X. By the uniform boundedness principle again there is A < ∞ so that
A := supN ‖ΣN‖X→Y < ∞. Thus Cf,g ≤ A‖f‖X‖g‖Y ′ . Passing to the limit we see
|〈Σf, g〉| ≤ A‖f‖X‖g‖Y ′ which implies ‖Σ‖X→Y ≤ A. �

Given a formal series
∑

j∈Z
Tj of bounded operators we say that

∑
j∈Z

Tj con-
verges in the weak operator topology as operators X → Y if the partial sums

ΣN =
∑N

j=−N Tj satisfy the assumptions in Lemma 8.7.
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Lemma 8.8. Let X, Y be Banach spaces, let W be a linear subspace of X which
is dense in X. Let ΣN : X → Y be bounded operators. Assume that

sup
N

‖ΣN‖X→Y ≤ A

and that for every f ∈ W , and every g ∈ Y ′

lim
N→∞

〈ΣNf, g〉 = 〈Σf, g〉

where Σ : W → Y is a linear operator. Then ΣN converges to Σ in the weak
operator topology (as operators X → Y ) and we have ‖Σ‖X→Y ≤ A.

Proof. The assumptions imply that ‖Σf‖Y ≤ ‖f‖X for all f ∈ W , and Σ
extends uniquely to a bounded operator X → Y with operator norm at most A.
Moreover, using ‖ΣN‖X→Y ≤ A it follows easily that ΣN → Σ in the weak operator
topology. �

8.1.6. Consequences for sums of dilated kernels. We now formulate
some consequences of the propositions above and the boundedness result (8.5).

Proposition 8.9. Let τj ∈ Int1ε ∩ Reg1ε,rt, so that

Int10[τj ] � A, Int1ε[τj ] + Reg1ε,rt[τj ] ≤ B.

Let Tj denote the integral operator with kernel Dil2j τj.
(i) Suppose that T =

∑
j∈Z

Tj converges in the weak operator topology as oper-

ators L2 → L2. Then, for 1 < p ≤ 2, T extends to an operator bounded on Lp such
that

‖T‖Lp→Lp ≤ Cd,p,ε

(
‖T‖L2→L2 + ‖T‖2−

2
p

L2→L2

(
A log(2 +B/A)

) 2
p−1)

.

Moreover T extends to an operator bounded from H1 to L1 and

‖T‖H1→L1 ≤ Cd,ε

(
‖T‖L2→L2 +A log(2 +B/A)

)
.

(ii) Suppose that T =
∑

j∈Z
Tj converges in the strong operator topology, as

operators L2 → L2. Then the sum also converges in the strong operator topology
as operators Lp → Lp, 1 < p < 2 and in the strong operator topology as operators
H1 → L1.

Proof. By Proposition 8.3 we have for K as in (8.7) SI10[K] ≤ log(2 + B/A)
and the assertion (i) follows from (8.5) and (8.3).

For (ii) we examine the proof of H1 → L1 boundedness. Let a be a 2-atom
supported in a cube Q with center yQ, i.e. we have ‖a‖2 ≤ |Q|−1/2,

∫
a(x)dx = 0.

Let Q∗ be the double cube with the same center. By assumption
∑N

j=−N Tja

converges in L2(Q∗) and by Hölder’s inequality in L1(Q∗). Also, by the argument
in the proof of Proposition 8.3,

‖Tja‖L1(Rd\Q∗) �
∫

|a(y)|
∫
Rd\Q∗

|Dil2jτj(x, y)−Dil2j τj(x, yQ)| dx dy

� Bmin{(2jdiam(Q))ε, (2jdiam(Q))−ε}

and clearly
∑N

j=−N Tja converges in L1(Rd \Q∗) as well.

Let f ∈ H1; we need to establish convergence of
∑

j Tjf in L1. By the atomic

decomposition f =
∑∞

ν=1 cνaν where aν are 2-atoms and
∑

ν |cν | � ‖f‖H1 . Given
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ε > 0 take M so that
∑∞

ν=M |cν | ≤ ε. Then there is C independent of M , ε so that
for all N we have ∥∥∥ N∑

j=−N

T
( ∞∑
ν=M

cνaν
)∥∥∥

1
< Cε.

It is now straightforward to combine the arguments and deduce the convergence of∑
j Tjf in L1.
In order to prove convergence in the strong operator topology as operators

Lp → Lp, 1 < p < 2, we apply the interpolation inequality ‖h‖p ≤ ‖h‖
2
p−1

1 ‖h‖2−
2
p

2

to h =
∑

j∈J Tjg where g ∈ H1∩L2. This yields that
∑

j Tjg converges in Lp. Since

H1 ∩L2 is dense and since the operator norms
∑

j∈J Tj are bounded uniformly in

J , it is now straightforward to show convergence of
∑

j Tjf for every f ∈ Lp. �

In our applications we work with the following setting. Let φ ∈ C∞
0 (Bd(1))

have
∫
φ = 1 and define Pjf = f ∗ φ(2j). Set ψ(x) = φ(x) − 2−dφ(2−1x), and set

Qjf = f ∗ ψ(2j). We have I =
∑

j∈Z
Qj , Pj =

∑
k≤j Qk and I − Pj =

∑
k>j Qk in

the sense of distributions.

Corollary 8.10. Let sj : Rd × Rd → C be a sequence of locally integrable
kernels and assume that

sup
j

Int10[sj ] ≤ A, sup
j

Int1ε[sj ] ≤ B .

Let Sj be the integral operator with integral kernel Dil2jsj. Suppose the sum S =∑
j∈Z

SjPj converges in the weak operator topology as operators L2 → L2. Then,
for 1 < p ≤ 2, S : Lp → Lp is bounded and

‖S‖Lp→Lp ≤ Cd,p,ε

(
‖S‖L2→L2 + ‖S‖2−

2
p

L2→L2(A log(2 +B/A))
2
p−1
)
.

Proof. The kernel of SjPj is equal to Dil2jτj where

τj(x, y) =

∫
sj(x, z)φ(z − y) dz .

Clearly Int1ε[τj ] � Int1ε[sj ] for ε ≥ 0 and in view of the regularity and support of φ
we also have

Reg1δ,rt[τj ] � Int10[sj ]

for δ ≤ 1. The assertion now follows from Corollary 8.9. �

Corollary 8.11. Let sj, Sj be as in Corollary 8.10 For k ∈ N define Sk :=∑
j∈Z

SjQj+k. Suppose that this sum converges in the weak operator topology as

operators L2 → L2, and suppose that for some ε′ > 0

Dε′ := sup
k>0

2kε
′‖Sk‖L2→L2 < ∞.

Also define D0 := supk>0 ‖Sk‖L2→L2 . Then, for 1 < p ≤ 2,

‖Sk‖Lp→Lp ≤

Cp,d,ε

(
min{2−kε′Dε′ , D0}+

(
min{2−kε′Dε′ , D0}

)2− 2
p
(
A log(2k +B/A)

) 2
p−1
)
.
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Proof. By definition ‖Sk‖L2→L2 ≤ min{2−kε′Dε′ , D0}. The integral kernel of
SjQj+k is given by Dil2j τj,k where

τj,k(x, y) =

∫
sj(x, z)2

kdψ(2k(z − y)) dz .

We have Int1ε[τj,k] � Int1ε[sj ] for ε ≥ 0 and now

Reg1δ,rt[τj,k] � 2kInt10[sj ] � 2kA

for δ ≤ 1. The assertion follows from Corollary 8.9. �

Corollary 8.12. Let sj, Sj, S
k be as in Corollary 8.11. Define

S̃ :=
∑
j∈Z

Sj(I − Pj) =
∑
k>0

Sk.

For 1 < p ≤ 2 ,

‖S̃‖Lp→Lp ≤

Cp,d,ε,ε′

(
D0 log

(
2 +

Dε′

D0

)
+D

2− 2
p

0 A
2
p−1 log

(
2 +

Dε′

D0

)
log

2
p−1
(
2 +

Dε′

D0
+

B

A

))
.

Proof. By Corollary 8.11, we have

‖S̃‖Lp→Lp �∑
k>0

min{2−kε′Dε′ , D0}+
∑
k>0

(
min{2−kε′Dε′ , D0}

)2− 2
p
(
A log(2k +B/A))

2
p−1.

Clearly,
∑

k>0min{2−kε′Dε′ , D0} � D0 log(2 + Dε′/D0). Also, the second sum
equals

D
2− 2

p

0 A
2
p−1
∑
k>0

min
{
2−kε′ Dε′

D0
, 1
}2− 2

p
(
log(2k +

B

A
)
) 2

p−1
.

To conclude apply the following Lemma 8.13 with β = −1 + 2/p. �

Lemma 8.13. Fix ε > 0, α > 0, β ≥ 0. Let U, V ≥ 1, then∑
k≥0

(min{2−kεU, 1})α logβ(2k + V ) ≤ Cε,α,β log(1 + U) logβ(1 + U + V ).

Proof. Let Jk(U, V ) = (min{2−kεU, 1})α logβ(2k + V ).
We first consider the terms with 2−kε/2U ≤ 1. Observe∑

2−kε/2U≤1

2k≤V

Jk(U, V ) � logβ(1 + V )
∑

2kε/2≤U

(U2−kε)α � logβ(1 + V )

and ∑
2−kε/2U≤1

2k>V

Jk(U, V ) �
∑

2−kε/2U≥1

(U2−kε)αkβ �
∑

k:2−kε/2U≤1

(U2−kε/2)α � 1 .

The main contribution comes from the terms with 2−kε/2U ≥ 1; here we use∑
2−kε/2U≥1

2k≤V

Jk(U, V ) � logβ(1 + V )
∑

2kε/2≤U

1 � log(1 + U) logβ(1 + V )
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and ∑
k:2−kε/2U≥1

2k≥V

Jk(U, V ) �
∑

k:2kε/2≤U

kβ � logβ+1(1 + U) .

Clearly, all four terms are � log(1 + U) logβ(1 + U + V ) and the asserted bound
follows. �

8.2. On a result of Journé

For a cube Q let Q∗ be the double cube with same center.

Definition 8.14. Let T : C∞
0 (Rd) → D′(Rd) be an operator with Schwartz

kernel K. We say that T satisfies a Carleson condition if there is a constant C so
that for all cubes Q and for all bounded functions f supported in Q, Tf ∈ L1(Q∗)
and the inequality ∫

Q∗
|Tf(x)|dx ≤ C|Q|‖f‖∞

is satisfied. We denote by ‖T‖Carl the best constant in the displayed inequality.

Journé [28] considered a class of operators associated with regular singular
integral kernels satisfying, say, |K(x, y)| � |x− y|−d, |∇xK(x, y)|+ |∇yK(x, y)| �
|x− y|−d−1 and showed that the following conditions are equivalent.

• T satisfies a Carleson condition.
• T maps H1 to L1.
• T maps L∞

0 to BMO.

He then used an interpolation theorem to show that each condition is equivalent
with

• T maps L2 to L2.

We now give versions of Journé’s theorem for larger classes of kernels which
arise in our main result.

Definition 8.15. (i) A integrable function is called an ∞-atom associated to
a cube Q if a is supported on Q, and satisfies ‖a‖∞ ≤ |Q|−1 and

∫
a(x)dx = 0.

(ii) A linear operator defined on compactly supported functions with integral
zero satisfies the atomic boundedness condition if

‖T‖At := sup ‖Ta‖1 < ∞
where the sup is taken over all ∞-atoms.

Remark 8.16. One can also make a definition of a class At(q) where one
works with q-atoms satisfying supp(a) ⊂ Q, ‖a‖q ≤ |Q|−1+1/q and

∫
a(x)dx = 0.

Define ‖T‖At(q) = sup ‖Ta‖1 where the supremum is taken over all q-atoms. For
the case 1 < q < ∞ one has T ∈ At(q) if and only if T extends to a bounded
operator H1 → L1, and ‖T‖At(q) ≈ ‖T‖H1→L1 . This is a special case of a result by
Meda, Sjögren and Vallarino [29]. The equivalence may fail for the case q = ∞, as
was shown by Bownik [3]. We remark that for special classes of Calderón-Zygmund
operators the equivalence holds true even for q = ∞ (see [30, §7.2], and the proof of
Theorem 8.20 below). For most situations in harmonic analysis the use of ∞-atoms
(instead of q-atoms) does not yield a significant advantage, but in our application
it will be crucial to work with ∞-atoms.
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In the following three propositions T : C∞
0 (Rd) → D′(Rd) will denote a linear

operator with Schwartz kernel K ∈ D′(Rd×Rd)∩L1
loc((R

d×Rd)setminusΔ). The
proofs use the arguments of Journé [28, §4.2].

Proposition 8.17. Suppose that T satisfies the atomic boundedness condition
and the averaged annular integrability condition. Then

‖T‖Carl � ‖T‖At +Annav[K] .

Proposition 8.18. Suppose that SI∞[K] < ∞ , Annav[K] < ∞ and that T
satisfies a Carleson condition. Then T extends to a bounded operator from L∞

0 to
BMO satisfying

‖T‖L∞
0 →BMO � ‖T‖Carl + SI∞[K].

Proposition 8.19. Suppose that SI1[K] < ∞ and that T extends to a bounded
operator T : L∞

0 → BMO. Then T satisfies the atomic boundedness condition and

‖T‖At � ‖T‖L∞
0 →BMO + SI1[K].

For the convenience of the reader we give the proof of the three propositions.
In what follows Q will denote a cube, xQ its center, and as above Q∗ will be the
double cube with same center.

Proof of Proposition 8.17. Let f be a bounded function supported in a
cube Q. We need to establish the estimate

(8.25)

∫
Q∗

|Tf |dx � C|Q|‖f‖∞
(
‖T‖At +Annav[K]

)
.

Let Q1 be a cube with the same sidelength of Q∗ and of distance diam(Q∗)
to Q∗. Let f1 be a function supported in Q ∪ Q1 so that f1(y) = f(y) for y ∈ Q,
‖f1‖∞ ≤ ‖f‖∞ and

∫
f1(y)dy = 0. Then, if

a(x) = |Q|−1‖f‖−1
∞ f1(x)

then there is Cd > 0 so that C−1
d a is an ∞-atom. Set f2 = f − f1 so that f2 is

supported in Q1 and split∫
Q∗

|Tf |dx �
∫
Q∗

|Tf1|dx+

∫
Q∗

|Tf2|dx.

We estimate

(8.26)

∫
Q∗

|Tf1|dx � |Q| ‖T‖At‖f‖∞.

Since dist(Q∗, Q1) ≈ diam(Q1) ≈ diam(Q∗) ≈ diam(Q) we may use the averaged
annular integrability condition and estimate

1

|Q|

∫
Q1

∫
Q∗

|K(x, y)|dy dx � Annav[K].

This yields

(8.27)

∫
Q∗

|Tf2|dx �
∫
Q∗

∫
Q1

|K(x, y)||f2(y)|dx dy � ‖f2‖∞|Q|Annav[K].

Since ‖f2‖∞ ≤ 2‖f‖∞, (8.25) follows from (8.26) and (8.27). �
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Proof of Proposition 8.18. Let g ∈ L∞
0 and let Q be any cube with center

xQ. We have to verify

(8.28) inf
C

\
∫
Q

|Tg(x)− C|dx ≤ ‖T‖Carl + SI∞[K]

where the slashed integral denotes the average over Q.
Let g1 = g�Q∗ , g2 = g�Rd\Q∗ , so that g = g1+g2. Since g has compact support

it is immediate by the assumed finiteness of Annav[K] that Tg2(w) is finite for
almost every w in

BQ := {w : |w − xQ| ≤ (2d)−1diam(Q)}.

Now

inf
C

\
∫
Q

|Tg(x)− C|dx � \
∫
BQ

[
\
∫
Q

|Tg1(x)|dx+ \
∫
Q

|Tg2(x)− Tg2(w)|dx
]
dw.

From the Carleson condition we get

\
∫
Q

|Tg1(x)|dx ≤ 4d‖T‖Carl‖g1‖∞ � ‖T‖Carl‖g‖∞ .

Moreover,

\
∫
BQ

\
∫
Q

|Tg2(x)− Tg2(w)|dx dw ≤ ‖g2‖∞ sup
w∈BQ

\
∫
Q

∫
Rd\Q∗

|K(x, y)−K(w, y)|dy dx

� SI∞[K]‖g‖∞ .

and (8.28) follows. �

Proof of Proposition 8.19. Let a be an ∞-atom, associated with the cube
Q. We need to verify

(8.29) ‖Ta‖1 � ‖T‖L∞
0 →BMO + SI∞[K] .

First estimate Ta in the complement of Q∗, using the cancellation of a:∫
Rd\Q∗

|Ta(x)| dx �
∫
Rd\Q∗

∣∣∣ ∫
Q

[K(x, y)−K(x, xQ)]a(y)dy
∣∣∣ dx

≤
∫
Q

|a(y)|
∫

|x−xQ|≥2|y−xQ|

|K(x, y)−K(x, xQ)| dx dy

≤ SI1[K]‖a‖1 � SI1[K] .

Let Q̃ be a cube which is contained in CQ∗ \Q∗ and has distance O(diam(Q)) to
Q∗, say, a cube adjacent to Q∗ and of same sidelength. The above calculation also
yields

(8.30)

∫
˜Q

|Ta(x)|dx � SI1[K] .

We choose such a cube Q̃ and estimate∫
Q∗

|Ta(x)|dx � IQ + IIQ + IIIQ
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where

IQ =

∫
Q∗

∣∣∣Ta(x)− \
∫
Q∗

Ta(y)dy
∣∣∣ dx ,

IIQ = |Q∗|
∣∣∣ \∫

Q∗
Ta(y)dy − \

∫
˜Q

Ta(y)dy
∣∣∣ ,

IIIQ = |Q∗|
∣∣∣ \∫

˜Q

Ta(y)dy
∣∣∣ .

Clearly

|IQ| ≤ |Q∗|‖Ta‖BMO ≤ ‖T‖L∞→BMO|Q∗|‖a‖L∞ � ‖T‖L∞→BMO.

To estimate IIQ we let Q∗∗ be a cube containing both Q∗ and Q̃, and of comparable
sidelength. Then∣∣∣ \∫

Q∗
Ta(y)dy − \

∫
˜Q

Ta(y)dy
∣∣∣

≤ \
∫
Q∗

∣∣∣Ta(y)− \
∫
Q∗∗

Ta(z)dz
∣∣∣ dy + \

∫
˜Q

∣∣∣Ta(y)− \
∫
Q∗∗

Ta(z)dz
∣∣∣ dy

� \
∫
Q∗∗

∣∣∣Ta(y)− \
∫
Q∗∗

Ta(z)dz
∣∣∣ dy � ‖Ta‖BMO

and thus

|IIQ| � ‖T‖L∞
0 →BMO|Q|‖a‖∞ � ‖T‖L∞

0 →BMO|Q|‖a‖∞ � ‖T‖L∞
0 →BMO .

Finally,

|IIIQ| ≤ |Q∗|
∣∣∣ \∫

˜Q

Ta(y)dy
∣∣∣ � ‖Ta‖L1( ˜Q) � A ,

by (8.30), and the proof of (8.29) is finished. �

Theorem 8.20. Let T : C∞
0 (Rd) → D′(Rd) and assume that the Schwartz

kernel K is locally integrable in (Rd × Rd) \Δ. Assume that

SI[K] := Annav[K] + SI1[K] + SI∞[K] < ∞.

(i) Let 1 < q < ∞. The following statements are equivalent.

• T satisfies a Carleson condition.
• T maps L∞

0 → BMO.
• T satisfies the atomic boundedness condition.
• T extends to a bounded operator H1 → L1.
• T extends to an operator bounded on Lq.

(ii) We have the following equivalences of norms.
(8.31)
‖T‖Carl + SI[K] ≈ ‖T‖L∞

0 →BMO + SI[K] ≈ ‖T‖At + SI[K] ≈q ‖T‖Lq→Lq + SI[K].

Moreover,

(8.32) ‖T‖At ≈ ‖T‖H1→L1 .

Proof. The first three equivalences are immediate from a combination of
Propositions 8.17, 8.18 and 8.19. Since ∞-atoms satisfy ‖a‖H1 ≤ C it is clear
that

‖T‖At � ‖T‖H1 �→L1 .
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The converse

(8.33) ‖T‖H1→L1 � ‖T‖At

is not obvious (and the inequality without the term SI[K] might not hold if we
drop our assumption SI[K] < ∞, see [3]). By the Coifman-Latter theorem about
the atomic decomposition (see [36, §III.2]) we may write f =

∑
Q λQaQ, with∑

Q |λQ| � ‖f‖H1 and aQ being ∞-atoms; here the convergence of the series is

understood in the L1 sense. We immediately get∥∥∥∑
Q

λQTaQ

∥∥∥
1
≤
∑
Q

|λQ|‖T‖At‖aQ‖1 � ‖T‖At‖f‖H1
.

However the decomposition f =
∑

Q λQaQ is not unique and in order to prove that

the expression
∑

Q λQTaQ can be used as a definition for Tf we need to show the

following consistency condition for a sequence of atoms {aν}∞ν=1,

(8.34)
∑
Q

|cν | < ∞ ,
∑
ν

cνaν = 0 =⇒
∑
ν

cνTaν = 0.

Fortunately, a version of an approximation (or weak compactness) argument in [30,
§7.2] applies to our situation. As stated above the atomic boundedness condition
implies the Carleson condition. Let φ ∈ C∞

0 be supported in a ball of radius 1/2
such that

∫
φ(x)dx = 1. Set Pmf = φ(2m) ∗ f . Let Km be the distribution kernel

for PmTPm. Note that we have

|Km(x, y)| � 2mdAnnav[K] if |x− y| ≥ 22−m

and

|Km(x, y)| � 2md‖T‖Carl if |x− y| ≤ 22−m.

Hence Km ∈ L∞(Rd × Rd) and thus PmTPm maps L1 to L∞. This implies∑
ν cνPmTPmaν = PmTPm(

∑
cνaν) = 0. Now, since the Pm form an approxima-

tion of the identity, it is clear that, for each atom aν , we have ‖PmTPmaν−Taν‖1 →
0 as ν → ∞. Taking in account that

∑
ν |aν | < ∞, a straightforward limiting argu-

ment yields
∑

ν cνTaν = 0. Note that the condition SI[K] < ∞ is used to establish
(8.32) only in order to verify the implication (8.34) (via the boundedness of Km);
it does not enter in (8.32) itself.

We still have to show the equivalence of the first three conditions in (8.31)
with the fourth condition. Assume first that T is Lq-bounded. Then we have
the standard estimates (8.3), (8.4) and thus the H1 → L1 operator norms and
L∞
0 → L∞ operator norms of T are bounded by ‖T‖Lq→Lq + SI[K]. The other

direction uses the interpolation result (cf. the remarks below)

‖T‖Lq→Lq ≤ Cq‖T‖1/qH1→L1‖T‖1−1/q
L∞

0 →BMO

together with the equivalence of the first three conditions in (8.31) and the equiv-
alence (8.32). �

Remarks on interpolation of H1 and BMO. In the above interpolation one uses the
interpolation formulas [H1, BMO]θ,q = Lp,q, [H1, BMO]θ = Lp for 1 − θ = 1/p,
1 < p < ∞, or a direct interpolation result for operators in §3.III of Journé’s
monograph [28]. One also has [L1, BMO]θ,q = Lp,q, [L1, BMO]θ = Lp for 1− θ =
1/p, 1 < p < ∞.
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The result for complex interpolation can be obtained from [H1, Lp1 ]ϑ = Lp,
1/p = 1−ϑ+ϑ/p1, 1 < p1 < ∞, (or its respective standard counterpart [L1, Lp1 ]ϑ =
Lp), together with [Lp0 , BMO]ϑ = Lp, 1/p = (1 − θ)/p0, 1 < p0 < ∞ which can
be found in Fefferman and Stein [16], see also the discussion in Janson and Jones
[27]. The stated interpolation formula for H1 and BMO follows then from Wolff’s
four space reiteration theorem for the complex method [40]. One can also use the
results by Fefferman, Rivière, Sagher [15] for the real method, and then combine it
with Wolff’s result [40] for the real method. From the above remarks we also get
an interpolation inequality for functions g ∈ L1 ∩BMO,

(8.35) ‖g‖p ≤ Cp‖g‖1/pL1 ‖f‖1−1/p
BMO , 1 < p < ∞

which will be useful in the proof of Theorem 8.22 below.

8.3. Sums of dilated kernels

We shall now formulate some corollaries for operators of the form (8.7) or its
relatives. We use norms combining the various Schur and regularity norms.

For each j ∈ Z, let τj : R
d ×Rd → C be a measurable function. Let 0 < ε ≤ 1.

Set, for 0 < ε ≤ 1,

‖τ‖Opε
= Int1ε[τ ] + Int∞ε [τ ] + Reg1ε,lt[τ ] + Reg∞ε,lt[τ ] + Reg1ε,rt[τ ] + Reg∞ε,rt[τ ],

and set

‖τ‖Op0
:= Int10[τ ] + Int∞0 [τ ].

This means for ε > 0

‖τ‖Opε
=

sup
x

∫
(1 + |x− y|)ε|τ (x, y)| dy + sup

y

∫
(1 + |x− y|)ε|τ (x, y)| dx

+ sup
y

0<|h|≤1

∫ |τ (x+ h, y)− τ (x, y)|
|h|ε dx+ sup

x
0<|h|≤1

∫ |τ (x+ h, y)− τ (x, y)|
|h|ε dy

+ sup
y

0<|h|≤1

∫ |τ (x, y + h)− τ (x, y)|
|h|ε dx+ sup

x
0<|h|≤1

∫ |τ (x, y + h)− τ (x, y)|
|h|ε dy

(8.36)

and, for ε = 0,

(8.37) ‖τ‖Op0
= sup

x

∫
|τ (x, y)| dy + sup

y
|τ (x, y)| dx .

We shall consider families {τj} for which the Opε norm is uniformly bounded
in j. We let Tj be the operator with kernel Dil2jτj , i.e.

(8.38) Tjf(x) =

∫
2jdτj(2

jx, 2jy)f(y)dy .

Theorem 8.21. Suppose that supj ‖τj‖Opε
≤ Cε for some ε ∈ (0, 1) and that

supj ‖τj‖Op0
≤ C0. Let Tj be the operator with kernel Dil2j τj and suppose that
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j Tj converges to an operator T : L∞

comp → L1
loc in the sense that for compactly

supported L∞ functions f and g

〈 N∑
j=−N

Tjf, g
〉
→ 〈Tf, g〉

as N → ∞ and assume that there exists A > 0 such that for all x ∈ Rd, t > 0,
N ∈ N,

(8.39)
∣∣∣〈 N∑

j=−N

Tjf, g
〉∣∣∣ ≤ Atd‖f‖L∞‖g‖L∞ if supp(f) ∪ supp(g) ⊂ Bd(x, t).

Then T extends to an operator bounded on L2(Rd) and

‖T‖L2→L2 ≤ Cd,ε

(
A+ C0 log

(
1 +

Cε
C0
))

.

Proof. The inequality (8.39) implies ‖
∑N

j=−N Tj‖Carl � A. This inequality
extends to the limit T . Let KN , K be the Schwartz kernels of the operators∑N

j=−N Tj and T respectively. Then by Propositions 8.3 and 8.4, applied to both

τj and its adjoint version we have SI[KN ], SI[K] � C0 log(2+Cε/C0) . The assertion
follows now from Theorem 8.20. �

Theorem 8.22. Suppose that supj ‖τj‖Opε
≤ Cε for some ε ∈ (0, 1) and that

supj ‖τj‖Op0
≤ C0. Let Tj be the operator with kernel Dil2j τj and suppose that the

sum T =
∑

Tj converges in the sense of distributions on C∞
0,0 (test functions with

vanishing integrals), i.e. for every f ∈ C∞
0,0 and every g ∈ C∞

0 we have

(8.40) lim
N→∞

N∑
j=−N

〈Tjf, g〉 = 〈Tf, g〉.

Then the following statements hold.

(i) If supN ‖
∑N

j=−N Tj‖H1→L1 ≤ A, for some A < ∞, then we also have

sup
N

∥∥∥ N∑
j=−N

Tj

∥∥∥
L2→L2

� A+ C0 log
(
1 +

Cε
C0
)
.

Moreover, T extends to a bounded operator on L2,
∑N

j=−N Tj converges to T in the

weak operator topology and ‖T‖L2→L2 � A+ C0 log
(
1 + Cε/C0

)
.

(ii) If supN ‖
∑N

j=−N Tj‖L2→L2 ≤ B, for some B < ∞, then we also have

sup
N

∥∥∥ N∑
j=−N

Tj

∥∥∥
H1→L1

� B + C0 log
(
1 +

Cε
C0
)
.

Moreover T extends to an operator bounded from H1 to L1,
∑N

j=−N Tj → T con-

verges in the weak operator topology (as operators H1 → L1) and ‖T‖H1→L1 �
B + C0 log

(
1 + Cε/C0

)
.

(iii) The sum T =
∑

j∈Z
Tj converges in the strong operator topology as opera-

tors H1 → L1 if and only if it converges in the strong operator topology as operators
L2 → L2.
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Proof. The assertions on the operators
∑N

j=−N Tj follow immediately from

Theorem 8.20. Note that C∞
0,0 is dense in both H1 and Lp, 1 < p < ∞. The uniform

bounds for the operator norms of
∑N

j=−N Tj and the convergence hypothesis (8.40)
imply convergence in the respective weak operator topologies.

Now we prove (iii). If T =
∑

j∈Z
Tj converges in the strong operator topology

as operators L2 → L2 then it is immediate from Proposition 8.9 that T =
∑

j∈Z
Tj

converges in the strong operator topology as operators H1 → L1.
Vice versa assume that T =

∑
j∈Z

Tj converges in the strong operator topology

as operators H1 → L1. By the interpolation inequality (8.35) we have for any finite
set J ∈ Z and any f ∈ C∞

0,0.∥∥∥∑
j∈J

Tjf
∥∥∥
2
≤ C
∥∥∥∑

j∈J
Tjf
∥∥∥1/2
1

∥∥∥∑
j∈J

Tjf
∥∥∥1/2
BMO

≤ C
∥∥∥∑

j∈J
Tjf
∥∥∥1/2
1

∥∥∥∑
j∈J

Tj

∥∥∥1/2
L∞→BMO

‖f‖∞

and since ‖
∑

j∈J Tj‖L∞→BMO is bounded independently of J we see that
∑

j Tjf

converges in L2 for any f ∈ C∞
0,0. Since C∞

0,0 is dense in L2 we conclude that
∑

j Tj

converges in the strong operator topology as operators L2 → L2. �

We now formulate a version of Theorem 8.21 which has a convergence statement
with respect to the strong operator topology.

Theorem 8.23. Suppose that supj ‖τj‖Opε
≤ Cε for some ε ∈ (0, 1) and that

supj ‖τj‖Op0
≤ C0. Let Tj be the operator with kernel Dil2jτj. Suppose that

∑
j Tj

converges to an operator T : L∞
comp → L1

loc in the strong sense that for any compactly
supported L∞ function f and for any compact set K

lim
N→∞

∫
K

∣∣∣ N∑
j=−N

Tjf(x)− Tf(x)
∣∣∣dx = 0.

Suppose that there exists A > 0 such that for all x ∈ Rd, t > 0, N ∈ N,

(8.41)

∫
Bd(x,t)

∣∣∣ N∑
j=−N

Tjf(w)
∣∣∣ dw ≤ Atd‖f‖∞ if supp(f) ⊂ Bd(x, t).

Then the sum T =
∑

j∈Z
Tj converges in the strong operator topology as operators

L2 → L2 and and

‖T‖L2→L2 ≤ Cd,ε

(
A+ C0 log

(
1 +

Cε
C0
))

.

Proof. If a is an L∞ atom supported on a cube Q and Q∗ is the double

cube, we see that
∑N

j=−N Ta → Ta in L1(Q∗). Standard arguments using the
cancellation of a yield∫

Rd\Q∗
|Tja(x)| �

{
Int1ε[τj ] (2

jdiam(Q))−ε if 2jdiam(Q) ≥ 1,

Reg1ε,lt[τj ] (2
jdiam(Q))ε if 2jdiam(Q) ≤ 1.

Altogether we see that
∑N

j=−N Tja → Ta in L1. By Theorem 8.21 we also have the

uniform bounds ‖Ta‖1 ≤ Cd,ε

(
A + C0 log

(
1 + Cε

C0

))
for L∞ atoms. Now, writing
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f ∈ H1 as f =
∑

ν cνaν where the aν are ∞-atoms and
∑

ν |cν | < ∞, we easily

derive that
∑N

j=−N Tjf → Tf in L1. Thus we see that
∑

j Tj converges in the

strong operator topology as operators H1 → L1 and we have the uniform bound∥∥∥ N∑
j=−N

Tj

∥∥∥
H1→H1

�
(
A+ C0 log

(
1 +

Cε
C0
))

.

We apply parts (i) and (iii) of Theorem 8.22 to see that that
∑

j Tj converges in the

strong operator topology as operators L2 → L2, and obtain the asserted bounds on
the L2 → L2 operator norms. �

The following lemma allows us to apply Theorems 8.21, 8.22 and 8.23 to sums

of the form
∑

j PjSjPj where Pjf = f ∗ φ(2j), and Sj is an integral operator with

kernel Dil2jsj , with supj(Int
1
ε[sj ] + Int∞ε [sj ]) < ∞.

Lemma 8.24. Suppose that Int1ε[s] + Int∞ε [s] ≤ Cε and Int1[s] + Int∞[s] ≤ C0.
Let φ ∈ C∞

0 supported in {v : |v| ≤ 10}. Let

s̃(x, y) =

∫∫
φ(x− w)s(w, z)φ(z − y) dw dz.

Then ‖s̃‖Opε
� Cε and ‖s̃‖Op0

� C0.

Proof. Left to the reader. �
We also have

Lemma 8.25. Let s ∈ Opε, 0 ≤ ε ≤ 1. Let φ ∈ C1 supported in {v : |v| ≤ 10}
and let

s1(x, y) =

∫
φ(x− w)s(w, y) dw,

s2(x, y) =

∫
s(x, z)φ(z − y) dz.

Then ‖s1‖Opε
� ‖s‖Opε

‖φ‖C1 , ‖s2‖Opε
� ‖s‖Opε

‖φ‖C1 .

Proof. Immediate from the definition. �
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CHAPTER 9

Almost orthogonality

We shall repeatedly use a rather standard almost orthogonality lemma which
involves the Littlewood-Paley operators Qk introduced in (6.4).

Lemma 9.1. Let I be an index set. Suppose that for each j ∈ Z, ν ∈ I,
V ν
j : L2 → L2 is a bounded operator such that for k1, k2 ∈ Z,

(9.1)
∥∥Qk1

V ν
j+k1

Qj+k1+k2

∥∥
L2→L2 � Aj,k2

,

where ∑
j,k2

Aj,k2
< ∞.

Then the sum V ν :=
∑

j∈Z
V ν
j , converges in the strong operator topology (as oper-

ators on L2), with equiconvergence with respect to I, and we have

(9.2) sup
ν∈I

‖V ν‖L2→L2 �
∑
j,k2

Aj,k2
.

Proof. Recall, from Chapter 6,
∑

k Q̃kQk =
∑

k QkQ̃k = I. Let f, g ∈
L2(Rd) with ‖f‖2 = ‖g‖2 = 1. By (6.6), we have(∑

k

‖Q̃kf‖22
) 1

2

=
∥∥∥(∑

k

|Q̃kf |2
) 1

2
∥∥∥
2
≈ 1,

(∑
k

‖Q̃∗
kg‖22
) 1

2

=
∥∥∥(∑

k

|Q̃∗
kg|2
) 1

2
∥∥∥
2
≈ 1.

First observe, for integers J1 ≤ J2,∣∣∣ < g,

J2∑
j=J1

V ν
j f >L2

∣∣∣ = ∣∣∣ < g,
∑

k1,k2∈Z

J2∑
j=J1

Q̃k1
Qk1

V ν
j Qk2

Q̃k2
f >L2

∣∣∣
=
∣∣∣ < g,

J2∑
j=J1

∑
k1,k2∈Z

Q̃k1
Qk1

V ν
j Qk2

Q̃k2
f >L2

∣∣∣
≤
∑
k1∈Z

∣∣∣ < Q̃∗
k1
g,

J2−k1∑
j=J1−k1

∑
k2∈Z

Qk1
V ν
j+k1

Qj+k1+k2
Q̃j+k1+k2

f >L2

∣∣∣
≤
( ∑

k1∈Z

‖Q̃∗
k1
g‖22
) 1

2
( ∑

k1∈Z

∥∥∥ J2−k1∑
j=J1−k1

∑
k2∈Z

Qk1
V ν
j+k1

Qj+k1+k2
Q̃j+k1+k2

f
∥∥∥2
2

) 1
2

.
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Now ( ∑
k1∈Z

∥∥∥ J2−k1∑
j=J1−k1

∑
k2∈Z

Qk1
V ν
j+k1

Qj+k1+k2
Q̃j+k1+k2

f
∥∥∥2
2

) 1
2

�
∑
j∈Z

∑
k2∈Z

( J2−j∑
k1=J1−j

∥∥Qk1
V ν
j+k1

Qj+k1+k2
Q̃j+k1+k2

f
∥∥2
2

) 1
2

≤
∑
j∈Z

∑
k2∈Z

Aj,k2

( J2−j∑
k1=J1−j

‖Q̃j+k1+k2
f‖22
) 1

2

.

We take the sup over g with ‖g‖2 = 1 and obtain from the two previous displays
(9.3)∥∥∥ J2∑

j=J1

V ν
j f
∥∥∥
2
�
∑
j∈Z

∑
k2∈Z

Aj,k2

( J2−j∑
k1=J1−j

‖Q̃j+k1+k2
f‖22
) 1

2 �
∑
j∈Z

∑
k2∈Z

Aj,k2
‖f‖2.

The first inequality in (9.3) implies that for fixed f ∈ L2 the partial sums of

Σν
Nf =

∑N
j=−N V ν

j f form a Cauchy sequence, more precisely, for each ε > 0 there

is N(ε, f) ∈ N (independent of I) such that ‖ΣN1
f − ΣN2

f‖2 < ε for N1, N2 >
N(ε, f). By completeness of L2, Σν

Nf converge to a limit Σνf and Σν defines a
linear bounded operator on L2. Thus Σν

N → Σν in the strong operator topology,
and, by the above, we get equiconvergence with respect to I. �
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CHAPTER 10

Boundedness of Multilinear Singular Forms

In this chapter we give the proof of Theorem 5.1 which is devided into five
parts dealing with the five types of operators (I)–(V) listed in that theorem.

10.1. Proof of the main theorem: Part I

We are given a family �ς = {ςj} with supj ‖ςj‖Bε
< ∞. In this and the following

sections we use the notation

Γε =
supj ‖ςj‖Bε

supj ‖ςj‖L1

introduced in (5.6). Notice that always Γε ≥ 1.
Recall,

Λ1
n+1,n+2(b1, . . . , bn+2) =

∑
j∈Z

Λ[ς
(2j)
j ](b1, . . . , bn, (I − Pj)bn+1, (I − Pj)bn+2).

Given ε > 0 and �ς , it is our goal to prove Part I of Theorem 5.1, i.e. for 1 < p ≤ 2,
the estimate

(10.1) |Λ1
n+1,n+2(b1, . . . , bn+2)|

≤ Cd,p,ε(sup
j

‖ςj‖L1) log2(1 + nΓε)
( n∏

l=1

‖bl‖∞
)
‖bn+1‖p‖bn+2‖p′ .

We formulate a stronger result which will also be useful in other parts of the
paper. For this, we need some new notation. Let 1 ≤ l1 	= l2 ≤ n + 2 and let
{bjl : j ∈ Z, l 	= l1, l2} ⊂ L∞(Rd) be a bounded subset of L∞(Rd). Let k1, k2 ∈ N,
and fix u1, u2 ∈ U.

Define an operator Sl1,l2
k1,k2,j

(which implicitly depends on {bjl : j ∈ Z, l 	= l1, l2},
u1, and u2) by the formula∫

g(x)(Sl1,l2
k1,k2,j

f)(x) dx

:= Λ[ς
(2j)
j ](bj1, . . . , b

j
l1−1, Qj+k1

[u1]f, b
j
l1+1, . . . , b

j
l2−1, Qj+k2

[u2]g, b
j
l2+1, . . . , b

j
n2
).

Theorem 10.1. Let 0 < ε < 1 and suppose that supj ‖ςj‖Bε
< ∞. Then

Sl1,l2
k1,k2

=
∑
j∈Z

Sl1,l2
k1,k2,j

converges in the strong operator topology, as bounded operators on L2. Moreover
there is c > 0 such that

‖Sl1,l2
k1,k2

‖L2→L2 � ‖u1‖U‖u2‖U sup
j

‖ςj‖L1 min{1, n2−(k1+k2)ε
′
Γε}
( ∏
l �=l1,l2

sup
j

‖blj‖∞
)
.

89
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Proof that Theorem 10.1 implies inequality (10.1).
For this, fix L∞(Rd) functions b1,...,bn with

(10.2) ‖bj‖∞ = 1, j = 1, . . . , n.

For k1, k2 ∈ N, define operators V , Vk1
, and Vk1,k2

by the following formulas.∫
g(x)(Vf)(x) dx :=

∑
j

Λ[ς
(2j)
j ](b1, . . . , bn, (I − Pj)f, (I − Pj)g),

∫
g(x)(Vk1

f)(x) dx :=
∑
j

Λ[ς
(2j)
j ](b1, . . . , bn, Qj+k1

f, (I − Pj)g),

∫
g(x)(Vk1,k2

f)(x) dx :=
∑
j

Λ[ς
(2j)
j ](b1, . . . , bn, Qj+k1

f,Qj+k2
g).

The estimate (10.1) is equivalent to

(10.3) ‖V‖Lp→Lp � sup
j

‖ςj‖L1 log2(1 + nΓε).

In light of (6.2), we have the following identities,

V =
∑
k1>0

Vk1
, Vk1

=
∑
k2>0

Vk1,k2
.

To see (10.3) we first use Theorem 10.1 to deduce

‖Vk1,k2
‖L2→L2 � min{sup

j
‖ςj‖Bε

n2−(k1+k2)cε, sup
j

‖ςj‖L1}.

Thus, by Lemma 8.13,

‖Vk1
‖L2→L2 �

∑
k1>0

min
{
sup
j

‖ςj‖Bε
n2−(k1+k2)cε, sup

j
‖ςj‖L1

}
which implies

(10.4) ‖Vk1
‖L2→L2 � sup

j
‖ςj‖L1 min{nΓε2

−k2cε, log(1 + nΓε)} .

We turn to the proof of (10.3). Define an operator Wj by

Λ[ς
(2j)
j ](b1, . . . , bn, bn+1, bn+2) =

∫
Wjbn+1(x)bn+2(x) dx.

The Schwartz kernel of Wj is Dil2jwj(x, y) where

(10.5) wj(x, y) =

∫
ςj(α, x− y)

n∏
i=1

bi(2
−j(x− αi(x− y)) dα .

We observe that Vk1
=
∑

j(I − Pj)WjQj+k1
. If we set Sj = (I − Pj)Wj then the

Schwartz kernel of Sj is Dil2jsj where sj(x, y) = wj(x, y)−
∫
φ(x− x′)wl(x

′, y). It

is easy to see that Int1(sj) � ‖ς‖L1 =: A and Int1ε(sj) � ‖ς‖Bε
=: B.

We wish to apply Corollary 8.12, with Sk1 ≡
∑

SjQj+k1
= Vk1

. By Lemma

10.4, we have Dε′ � supj ‖ςj‖Bε
and D0 � (supj ‖ςj‖L1) log(1+n

supj ‖ςj‖Bε
supj ‖ςj‖L1

). Plug-

ging this into the conclusion of Corollary 8.12, (10.3) follows, and the proof is
complete. �
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Proof of Theorem 10.1. In light of Theorem 2.9, it suffices to prove Theorem
10.1 in the case l1 = n+ 1, l2 = n+ 2. We may also assume the normalizations

(10.6)
sup
j

‖blj‖∞ = 1, 1 ≤ l ≤ n,

‖u1‖U = 1 = ‖u2‖U.
With these reductions, our goal is to show

(10.7) ‖Sn+1,n+2
k1,k2

‖L2→L2 � max
{
sup
j

‖ςj‖Bε
n2−(k1+k2)cε, sup ‖ςj‖L1

}
.

To finish the proof we define, for j ∈ Z, k1, k2 ∈ N, an operator Sj,k1,k2
≡ Sn+1,n+2

j,k1,k2

by ∫
g(x)Sj,k1,k2

f(x) dx = Λ[ς
(2j)
j ](bj1, . . . , b

j
n, Qj+k1

[u1]f,Qj+k2
[u2]g),

so that Sn+1,n+2
k1,k2

=
∑

j∈Z
Sj,k1,k2

.

We claim that there is c > 0 such that for j, k′1, k
′
2 ∈ Z, k1, k2 ∈ N,

(10.8)
∥∥Qk′

1
Sj+k′

1,k1,k2
Qj+k′

1+k′
2

∥∥
L2→L2

� min
{
sup
j

‖ςj‖Bε
n2−(k1+k2)cε, 2−|k2−k′

2|−|k1+j| sup
j

‖ςj‖L1

}
.

To see this observe first that using∥∥Qk′
1

tQj+k′
1+k1

[u1]
∥∥
L2→L2 � 2−|k1+j|,

‖Qj+k′
1+k2

[u2]Qj+k′
1+k′

2
‖L2→L2 � 2−|k2−k′

2|,

it follows from the simple Lemma 2.7 that∥∥Qk′
1
Sj+k′

1,k1,k2
Qj+k′

1+k′
2

∥∥
L2→L2 � 2−|k2−k′

2|−|k1+j|‖ςj+k′
1
‖L1 .

Using ‖Qk′
1
‖L2→L2 , ‖Qj+k′

1+k′
2
‖L2→L2 � 1, it follows from the main L2-estimate,

Theorem 7.8, that∥∥Qk′
1
Sj+k′

1,k1,k2
Qj+k′

1+k′
2

∥∥
L2→L2 � ‖ςj+k′

1
‖Bε

n2−(k1+k2)cε

for some c > 0 (independent of n). Inequality (10.8) follows from a combination of
the two bounds.

To prove (10.7) we use Lemma 9.1 and inequality (10.8) to conclude

‖Sn+1,n+2
k1,k2

‖L2→L2

�
∑

j,k′
2∈Z

min
{
sup
j′

‖ςj′‖Bε
n2−(k1+k2)cε, 2−|k2−k′

2|−|k1+j| sup
j′

‖ςj′‖L1

}
� min

{
sup
j

‖ςj‖Bε
n1/22−(k1+k2)cε/2, sup

j
‖ςj‖L1

}
,

where we have used ‖ςj‖L1 ≤ ‖ςj‖Bε
. This completes the proof (with c replaced by

c/2). �

10.2. Proof of the main theorem: Part II

This section is devoted to the boundedness of the multilinear forms Λ1
l,n+2 and

Λ1
l,n+1. In §10.2.1 we shall formulate and prove a crucial L2 bound for a useful

generalization of the form of Λ1
l,n+2 and then deduce the asserted estimates for

Λ1
l,n+2, and Λ1

l,n+2. The proof of the main L2 bound will be given in §10.2.2.
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10.2.1. The main L2 estimate. For 2 ≤ l ≤ n, fix bounded sets

{bjl : j ∈ Z} ⊂ L∞(Rd), with sup
j

‖bjl ‖∞ ≤ 1, l = 2, . . . , n.

For b1 ∈ L∞(Rd), j ∈ Z define an operator

Wj [ςj , b1] ≡ Wj [ςj , b1, b
j
2, . . . , b

j
n]

by ∫
g(x)Wj [ςj , b1]f(x) dx = Λ[ς

(2j)
j ](b1, b

j
2, . . . , b

j
n, f, g),

and we denotes its transpose by tWj [b1]:∫
f(x) tWj [ςj , b1]g(x) dx = Λ[ς

(2j)
j ](b1, b

j
2, . . . , b

j
n, f, g),

Define an operator TN = TN [�ς, b1] by

TN =

N∑
j=−N

(I − Pj)Wj [ςj , (I − Pj)b1]Pj .

Using I − Pj =
∑

k>0Qj+k we decompose TN =
∑

k>0 T k
N where

T k
N =

N2∑
j=−N1

Qj+kWj [ςj , (I − Pj)b1]Pj .

We now state our main estimate and give the proof that it implies Part III of
Theorem 5.1 in §10.2.3 below.

Theorem 10.2. Let 0 < ε ≤ 1, and supj ‖ςj‖Bε
< ∞. Let Γε be as in (5.6).

Then T k
N converges to an operator T k, and TN converges to an operator T , in the

strong operator topology as operators L2 → L2. Moreover,

‖T k‖L2→L2 ≤ Cd,ε‖b1‖∞ sup
j

‖ςj‖L1 min{2−ε1knΓ2
ε, log

3/2(1 + nΓε)}.

and

‖T ‖L2→L2 ≤ Cd,ε‖b1‖∞ sup
j

‖ςj‖L1 log5/2(1 + nΓε).

10.2.2. Proof of Theorem 10.2. For fixed k > 0, in order to bound T k we
need to prove that for f ∈ L2 the limit

N∑
j=−N

Qj+kWj [ςj , (I − Pj)b1]Pjf

exists in L2 as N → ∞ and that the estimate

(10.9)
∥∥∥ N∑

j=−N

Qj+kWj [ςj , (I − Pj)b1]Pj

∥∥∥
L2→L2

� ‖b1‖∞ sup
j

‖ςj‖L1 min{2−ε1knΓ2
ε, log

3/2(1 + nΓε)}
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holds uniformly in N . By Proposition 6.5, both statements are a consequence of a
square-function estimate, namely, for k > 0

(10.10)
(∑

j∈Z

∥∥Qj+k[u]Wj [ςj , (I − Pj)b1]Pjf
∥∥2
2

)1/2
� ‖b1‖∞‖f‖2‖u‖U sup

j
‖ςj‖L1 min{2−ε1knΓ2

ε, log
3/2(1 + nΓε)}.

To show (10.10) one establishes the following two inequalities:(∑
j∈Z

∫ ∣∣Qj+k[u]Wj [ςj , (I − Pj)b1]Pjf(x)

−Qj+k[u]Wj [ςj , (I − Pj)b1]1(x) · Pjf(x)
∣∣2)1/2

� ‖f‖2‖b1‖∞‖u‖U sup
j

‖ςj‖L1 min{2−ε1knΓ2
ε, log(1 + nΓε)}.

(10.11)

and

(10.12)
(∑

j∈Z

∫ ∣∣Qj+k[u]Wj [ςj , (I − Pj)b1]1(x) · Pjf(x)
∣∣2)1/2

� ‖f‖2‖b1‖∞‖u‖U sup
j

‖ςj‖L1 min{2−ε1knΓ2
ε, log

3/2(1 + nΓε)}.

For the proof of (10.12) we need the notion of a Carleson function.

Definition 10.3. We say a measurable function w : Rd ×Z → C is a Carleson
function if there is a constant c such that for all k ∈ Z and balls B of radius 2−k

(k ∈ Z), ( 1

|B|

∫
B

∞∑
j=k

|w(x, j)|2 dx
) 1

2 ≤ c < ∞.

The smallest such c is denoted by ‖w‖carl .

Remark. w is a Carleson function if the measure

dμ(x, t) =
∑
j∈Z

|w(x, j)|2dx dδ2−j (t)

is a Carleson measure on the upper half plane (in the usual sense) and the norm
‖w‖carl is equivalent with the square root of the Carleson norm of μ.

Carleson measures or Carleson functions can be used to prove L2-boundedness
of nonconvolution operators. This idea goes back to Coifman and Meyer [11, ch. VI]
and was crucial in the proof of the David-Journé theorem [13]. One uses Carleson
functions via the following special case of the Carleson embedding theorem. A proof
can be found e.g. in [28, §6.III] or [36, §II.2].

Theorem. Let w be a Carleson function. Then,(∑
j∈Z

∫
|Pjf(x)|2|w(x, j)|2 dx

) 1
2 ≤ Cd‖w‖carl‖f‖2.

Note that (10.12) is an immediate consequence of this theorem and the following
proposition.
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Proposition 10.4. The function

wk(x, j) = Qj+k[u]Wj [ςj , (I − Pj)b1]1(x)

defines a Carleson function and there is C � 1 so that for 0 < ε′ ≤ C−1ε2 we have
the estimate

(10.13) ‖wk‖carl � Qj+k[u]‖b1‖∞‖u‖U sup
j

‖ςj‖L1 min{2−kε′nΓ2
ε, log

3/2(1+nΓε)}.

Our next proposition is a restatement of the other square-function estimate
(10.11), in a slightly more general form.

Proposition 10.5. Let 0 < ε ≤ 1. There exists C � 1 so that for 0 < ε′ ≤
C−1ε(∑

j∈Z

∫ ∣∣Qj+k[u]Wj [ςj , b
j
1]Pjf(x)−Qj+k[u]Wj [ςj , b

j
1]1(x) · Pjf(x)

∣∣2)1/2
� ‖f‖2 sup

j
‖bj1‖∞‖u‖U sup

j
‖ςj‖L1 min{2−kε′nΓ2

ε, log(1 + nΓε)}.

We emphasize that the implicit constants in the above propositions are inde-
pendent of n and independent of the choices of bji with ‖bji‖∞ = 1.

10.2.2.1. Proof of Proposition 10.4. We need to prove for x0 ∈ Rd, 
 ∈ Z,

(10.14)( ∑
j≥−�

1

|Bd(x0, 2�)|

∫
Bd(x0,2
)

∣∣Qj+k[u]Wj [ςj , (I − Pj)b1, b
j
2, . . . , b

j
n]1(x)

∣∣ dx)1/2
� ‖b1‖∞‖u‖U sup

j
‖ςj‖L1 min{2−kε′nΓ2

ε, log
3/2(1 + nΓε)}.

Now

1

|Bd(x0, 2�)|

∫
Bd(x0,2
)

∣∣Qj+k[u]Wj [ςj , (I − Pj)b1, b
j
2, . . . , b

j
n]f(x)

∣∣ dx
=

1

|Bd(0, 1)|

∫
Bd(0,1)

∣∣Qj+k[u]Wj [ςj , (I − Pj)b1, b
j
2, . . . , b

j
n]f(x0 + 2�x)

∣∣ dx
and we have by changes of variables

(10.15) Qj+k[u]Wj [ςj , (I − Pj)b1, b
j
2, . . . , b

j
n]f(x0 + 2�x)

= Qj+�+k[u]Wj+�[ςj , (I − Pj+�)b̃1, b̃
j
2, . . . , b̃

j
n]f̃(x)

where b̃1(x) = b1(x0 + 2�x), b̃ji (x) = bji (x0 + 2�x), f̃(x) = f(x0 + 2�x) . Applying
this with f = 1 we see that it suffices to prove (10.14) with x0 = 0, 
 = 0.

The somewhat lengthy proof will be given in a series of lemmata, partially re-
lying on the L2 boundedness results in Chapter 7. Our first lemma is a restatement
of such a result.

Lemma 10.6. Let 0 < ε < 1. There is C � 1 so that for all ε′ ≤ C−1ε we have
for all k ≥ 0, and for all u ∈ U,

‖Qj+k[u]Wj [ςj , b1]‖L2→L2 � min
{
n2−kε′‖ςj‖Bε

, ‖ςj‖L1

}
‖b1‖∞‖u‖U.
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Proof. For f, g ∈ L2, we have∫
g(x)(Qj+k[u]Wj [ςj , b1]f(x)) dx = Λ[ς

(2j)
j ](b1, b

j
2, . . . , b

j
n, f,

tQj+k[u]g).

From here, the result follows immediately from Theorem 7.8. �

We now give an estimate on Λ[ς(2
j)](b1, . . . , bn+2) under the assumptions that

the supports of b1 and bn+2 are separated.

Lemma 10.7. Let 0 < ε ≤ 1. For all j, k ≥ 0, ς ∈ Bε(R
n × Rd), u ∈ U, R ≥ 5,

b1, . . . , bn+1 ∈ L∞(Rd), bn+2 ∈ L1(Rd), with

supp(b1) ⊆ {|v| ≥ R}, supp(bn+2) ⊆ {|v| ≤ 1},

we have∣∣Λ[ς(2j)j ](b1, . . . , bn+1, Qj+k[u]bn+2)
∣∣

� ‖u‖U
( n+1∏

l=1

‖bl‖∞
)
‖bn+2‖L1 min

{
(2jR)−ε/4‖ς‖Bε

, ‖ς‖L1

}
.

Proof. Without loss of generality, we take ‖bl‖L∞ = 1, 1 ≤ l ≤ n + 1,
‖bn+2‖L1 = 1, and ‖u‖U = 1. The bound

|Λ[ς(2
j)

j ](b1, . . . , bn+1, Qj+k[u]bn+2)| � ‖ς‖L1

follows immediately from Lemma 2.7, so we prove only the estimate

(10.16) |Λ[ς(2
j)

j ](b1, . . . , bn+1, Qj+k[u]bn+2)| � ‖ς‖Bε
(2jR)−ε/4.

We estimate

|Λ[ς(2
j)

j ](b1, . . . , bn+1, Qj+k[u]bn+2)|

=
∣∣∣ ∫∫∫∫ ς(2

j)(α, v)×

( n∏
i=1

bi(x− αiv)
)
bn+1(x− v)u(2j+k)(x− x′)bn+2(x

′) dx dx′ dα dv
∣∣∣

≤ sup
|x′|≤1

∫∫∫
|ς(2j)(α, v)||b1(x− α1v)||u(2j+k)(x− x′)| dx dα dv.

Fix x′ ∈ Rd with |x′| ≤ 1. Then∫∫∫
|ς(2j)(α, v)||b1(x− α1v)||u(2j+k)(x− x′)| dx dα dv

≤
∫∫∫

|ς(α, v)||b1(x− α12
−jv)|2d(j+k)(1 + 2j+k|x− x′|)−d− 1

2 dx dα dv

=

∞∑
l1=0

∞∑
l2=0

I(l1, l2)
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where

I(l1, l2) =∫∫∫
2l1≤1+|v|≤2l1+1

2l2≤1+2j+k|x−x′|≤2l2+1

|ς(α, v)||b1(x− α12
−jv)| 2d(j+k)

(1 + 2j+k|x− x′|)d+ 1
2

dx dα dv

We further split

∞∑
l1=0

∞∑
l2=0

I(l1, l2)

=

∞∑
l1=0

∑
2l2≥R2j+k−2

I(l1, l2) +
∞∑

l1=0

∑
2l2<R2j+k−2

I(l1, l2) =: (I) + (II).

We begin with (I). We have, provided ε′ ≤ ε,

(I) ≤
∞∑

l1=0

∑
2l2≥R2j+k−2

2−l1ε
′−l2/4

∫∫∫
2l1≤1+|v|≤2l1+1

2l2≤1+2j+k|x−x′|≤2l2+1

(1 + |v|)ε′ |ς(α, v)|×

|b1(x− α12
−jv)| 2d(j+k)

(1 + 2j+k|x− x′|)d+ 1
4

dx dα dv

�
∞∑

l1=0

∑
2l2≥R2j+k−2

2−l1ε
′−l2/4‖ς‖Bε

� (2j+kR)−1/4‖ς‖Bε
� (2jR)−1/4‖ς‖Bε

.

We now turn to (II). We have

(II) =

∞∑
l1=0

∑
2l2<R2j+k−2

2−l1ε
′−l2/4 ×

∫∫∫
2l1≤1+|v|≤2l1+1

2l2≤1+2j+k|x−x′|≤2l2+1

(1+|v|)ε′ |ς(α, v)||b1(x−α12
−jv)| 2d(j+k)

(1 + 2j+k|x− x′|)d+ 1
4

dxdαdv .

On the support of the integral, |x − α12
−jv| ≥ R (by the support of b1). Since

1+2j+k|x−x′| ≤ 2l2+1, we have |x−x′| ≤ 2l2+1−j−k. Thus, |x| ≤ 2l2+1−j−k +1 ≤
R
2 + 1 ≤ R

2 + R
5 ≤ 3

4R. Thus, |α12
−jv| � R and therefore |α1| � 2j R

|v| � 2j−l1R.

Plugging this in, we have for ε′ = ε/2,

(II) �
∞∑

l1=0

∑
2l2<R2j+k−2

2−l1ε
′−l2/4(1 + 2j−l1R)−

ε′
2

∫∫∫
2l1≤1+|v|≤2l1+1

2l2≤1+2j+k|x−x′|≤2l2+1

(1 + |v|)ε′×

(1 + |α1|)
ε′
2 |ς(α, v)||b1(x− α12

−jv)| 2d(j+k)

(1 + 2j+k|x− x′|)d+ 1
4

dx dα dv

�
∞∑

l1=0

∑
2l2<R2j+k−2

2−l1ε
′−l2/4(1 + 2j−l1R)−

ε′
2 ‖ς‖Bε

� (2jR)−ε′/2 .
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Combine the estimates for (I) and (II) to obtain (10.16) and the proof of the lemma
is complete. �

Lemma 10.8. Let 0 < ε ≤ 1. Then for all j, k ≥ 0, u ∈ U, R ≥ 5, and
b1 ∈ L∞(Rd) with supp(b1) ⊆ {|v| ≥ R} we have(∫

|x|≤1

|(Qj+k[u]Wj [ςj , b1]1)(x)|2 dx
)1/2

� ‖u‖U‖b1‖∞ min
{
(2jR)−ε/4‖ςj‖Bε

, ‖ςj‖L1

}
.

Proof. Let B = {x : |x| ≤ 1}. We have, by the previous lemma,(∫
B

|(Qj+k[u]Wj [ςj , b1]1)(x)|2 dx
)1/2

≤ sup
‖bn+2‖1=1

supp(bn+2)⊆B

∣∣Λ[ς(2j)j ](b1, b
j
2, . . . , b

j
n, 1,

tQj+k[u]bn+2)
∣∣

� sup
‖bn+2‖1=1

supp(bn+2)⊆B

‖u‖U‖b1‖∞‖bn+2‖1 min
{
(2jR)−ε/4‖ςj‖Bε

, ‖ςj‖L1

}
and the assertion follows. �

For j, k1, k2 ≥ 0 and u ∈ U, define an operator Vj,k1,k2
≡ V

ςj ,u
j,k1,k2

by∫
f(x)Vj,k1,k2

g(x) dx =

∫
g(x) (Qj+k1

[u]Wj [ςj , Qj+k2
f ]1)(x) dx

= Λ[ς
(2j)
j ](Qj+k2

f, bj2, . . . , b
j
n, 1,

tQj+k1
[u]g).

Lemma 10.9. Let 0 < ε ≤ 1. There exists c > 0 (independent of n and ε) such
that for ε′ ≤ cε, k1, k2 ≥ 0, and for all f ∈ L2(Rd),(∫ ∑

j≥0

|tVj,k1,k2
f(x)|2 dx

)1/2
� ‖f‖L2‖u‖U sup

j
‖ςj‖

L1 min
{
1, n2−ε′(k1+k2)Γε

}
.

Proof. From Theorem 10.1 we get the bound

(10.17)
∥∥∥∑

j≥0

Vj,k1,k2

∥∥∥
L2→L2

� ‖u‖U min
{
1, n2−ε′(k1+k2)Γε

}
.

Let δj be any sequence of ±1. Note that δjVj,k1,k2
is of the same form as Vj,k1,k2

with ςj replaced by δjςj . Thus, by (10.17),∥∥∥∑
j≥0

δj
tVj,k1,k2

f
∥∥∥
2
� ‖f‖L2‖u‖U min

{
1, n2−ε′(k1+k2)Γε

}
,

where the implicit constant does not depend on the particular sequence δj . By
Khinchine’s inequality(∫ ∑

j≥0

|tVj,k1,k2
f(x)|2 dx

)1/2
� sup

∥∥∥∑
j≥0

δj
tVj,k1,k2

f
∥∥∥
2
,

where the sup is taken over all ±1-sequences {δj}. The result follows. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

98 10. BOUNDEDNESS OF MULTILINEAR SINGULAR FORMS

Lemma 10.10. Let 0 < ε < 1. There exists c > 0 (independent of n and ε) so
that for ε′ ≤ cε2, for all b1 ∈ L∞(Rd), for all u ∈ U,

(∑
j≥0

∫
|x|≤1

∣∣(Qj+k1
[u]Wj [ςj , (I − Pj)b1]1)(x)

∣∣2 dx) 1
2

≤ C(ε, d)‖u‖U‖b1‖∞ sup
j

‖ςj‖L1 min{2−k1ε
′
nΓ2

ε, log
3/2(1 + nΓε)}.

Proof. Fix b1 ∈ L∞(Rd) and u ∈ U. We may assume ‖b1‖L∞ = 1 and
‖u‖U = 1. Fix 0 < β ≤ 1 and δ > 0 to be chosen later, see (10.19) below. Given

k1, k2 ≥ 0 we decompose b1 = bk1,k2

1,∞ + bk1,k2

1,0 where

bk1,k2

1,∞ (y) :=

{
b1(y) if |y| ≥ max{10, β 21+δ(k1+k2)}
0 if |y| < max{10, β 21+δ(k1+k2)}

,

bk1,k2

1,0 (y) := b1(y)− bk1,k2

1,∞ (y).

We expand I − Pj =
∑

k2
Qj+k2

and then have

(∑
j≥0

∫
B

|(Qj+k1
[u]Wj [ςj , (I − Pj)b1]1)(x)|2 dx

)1/2
≤ (I) + (II)

where

(I) :=
∑
k2>0

(∑
j≥0

∫
B

|(Qj+k1
[u]Wj [ςj , Qj+k2

bk1,k2

1,∞ ]1)(x)|2 dx
)1/2

,

(II) :=
∑
k2>0

(∑
j≥0

∫
B

|(Qj+k1
[u]Wj [ςj , Qj+k2

bk1,k2

1,0 ]1)(x)|2 dx
)1/2

.

We begin by estimating (I). Because j, k2 ≥ 0,

supp(Qj+k2
bk1,k2

1,∞ ) ⊆ {y : |y| ≥ Rk1,k2
} where Rk1,k2

:= max{5, β2(k1+k2)δ},

we may apply Lemma 10.8 to see

(I) =
∑
k2>0

(∑
j≥0

∫
B

|(Qj+k1
[u]Wj [ςj , Qj+k2

bk1,k2

1,∞ ]1)(x)|2 dx
)1/2

�
∑
k2>0

(∑
j≥0

min
{
(2jRk1,k2

)−2ε/4‖ςj‖2Bε
, sup

j′
‖ςj′‖2L1

})1/2
≤ sup

j′
‖ςj′‖L1

∑
k2>0

(∑
j≥0

min{1, 2−jε/2−(k1+k2)εδ/2β−ε/2Γ2
ε

)1/2
� sup

j
‖ςj‖L1

∑
k2>0

min{1, 2−(k1+k2)εδ/4β−ε/4Γε} log1/2(1 + β−2ε/4Γ2
ε)

� sup
j

‖ςj‖L1 min{1, 2−k1εδ/4β−ε/4Γε} log3/2(1 + β−ε/4Γε).
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We now turn to (II). We have ‖bk1,k2

1,0 ‖2 � R
d/2
k1,k2

‖bk1,k2

1,0 ‖∞ � R
d/2
k1,k2

and use

Lemma 10.9 to estimate, for some c1 ∈ (0, 1),

(II) =
∑
k2>0

(∑
j≥0

∫
B

|(Qj+k1
[u]Wj [ςj , Qj+k2

bk1,k2

1,0 ]1)(x)|2 dx
) 1

2

=
∑
k2>0

(∑
j≥0

∫
B

|tVj,k1,k2
bk1,k2

1,0 (x)|2 dx
) 1

2

� sup
j

‖ςj‖L1

∑
k2>0

‖bk1,k2

1,0 ‖L2 min{1, n2−c1ε(k1+k2)Γε}

� sup
j

‖ςj‖L1

∑
k2>0

(
1 + β2k1δ+k2δ

)d/2
min{1, n2−c1ε(k1+k2)Γε}

=
∑
k2>0

1<β 2k1δ+k2δ

+
∑
k2>0

1≥β 2k1δ+k2δ

=: (II1) + (II2).

(10.18)

We take

(10.19) β = (nΓε)
−1/d, δ =

c1ε

2d
.

Notice that since β 2k1δ+k2δ ≥ 1 in the sum (II1) we may replace the power d/2 by
d and get, with the choice (10.19),

(β2k1δ+k2δ)d/2(n2−ε′k1−ε′k2Γε) ≤ βdnΓε2
(k1+k2)(δd−c1ε)

≤ 2−(k1+k2)c1ε/2

and thus

(II1) �
∑
k2>0

2−(k1+k2)c1ε/2 sup
j

‖ςj‖L1 � 2−k1c1ε/2 sup
j

‖ςj‖L1 .

Next,

(II2) � sup
j

‖ςj‖L1

∑
k2>0

min{1, n2−(k1+k2)c1εΓε}

� sup
j

‖ςj‖L1 ×
{
log(2 + 2−c1εk1Γεn) if 2−c1εk1Γεn ≥ 1

2−c1εk1Γεn if 2−c1εk1Γεn ≤ 1

� sup
j

‖ςj‖L1 min{2−c1εk1nΓε, log(1 + nΓε)}.

Finally we use the choice (10.19) in the above estimate for (I) and get

(I) � sup
j

‖ςj‖L1 min{1, 2−k1
c1ε2

8d n
ε
4dΓ

1+ ε
4d

ε } log3/2(1 + n
ε
4dΓ

1+ ε
4d

ε )

� sup
j

‖ςj‖L1 min{1, 2−k1cε
2

nΓ2
ε} log3/2(1 + nΓε)

with c = c1/8d. Combining this estimate with the above estimates for (II1) and
(II2) yields the assertion. �

Proof of Proposition 10.4, conclusion. The lemma is just a restatement
of (10.14) for x0 = 0 and 
 = 0 and by (10.15) we reduced the proof of (10.14) to
this special case. �
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10.2.2.2. Proof of Proposition 10.5. We start with an elementary observation
for f ∈ L∞.

Lemma 10.11. For all k ≥ 0, j ∈ Z, b1 ∈ L∞(Rd), and u ∈ U,

‖Qj+k[u]Wj [ςj , b1]f‖L∞ � ‖u‖U‖ςj‖L1‖b1‖∞‖f‖∞.

Proof. For g ∈ L1 with ‖g‖1 = 1 we have, using Lemma 2.7,∣∣∣ ∫ g(x)(Qj+k[u]Wj [b1]1)(x) dx
∣∣∣ = ∣∣Λ[ς(2j)j ](b1, b

j
2, . . . , b

j
n, f,

tQj+k[u]g)
∣∣

� ‖b1‖∞‖f‖∞‖tQj+k[u]g‖1‖ςj‖L1 � ‖b1‖∞‖u‖U‖ςj‖L1 ,

completing the proof. �

Lemma 10.12. There is c ∈ (0, 1) (independent of n and ε) so that for ε′ ≤ cε2,
and all k ≥ 0, j ∈ Z, u ∈ U, b1 ∈ L∞(Rd), f ∈ L2(Rd) we have(∫ ∣∣Qj+k[u]Wj [ςj , b1]1(x)Pjf(x)

∣∣2dx)1/2
� ‖f‖2‖u‖U‖b1‖L∞ min{‖ςj‖L1 , n2−kε′‖ςj‖Bε

}.

Proof. We may normalize and assume ‖b1‖∞ = 1. We may assume, by scale
invariance of the result, that j = 0 (see (10.15)). The assertion follows then from
the inequality

(10.20)
(∫ ∣∣Qk[u]W0[ς, b1]1(x)P0f(x)

∣∣2dx)1/2
� ‖u‖U‖b1‖∞‖f‖2 min{‖ς‖L1 , n2−kε′‖ς‖Bε

}.

Because the convolution kernel of P0 is supported in Bd(0, 1), it suffices to show
(10.20) for functions supported in a ball B of radius 1. We may assume (by trans-
lating the functions bi) that B is centered at the origin. Let B∗ be the ball of
double radius.

Now ‖P0f‖∞ � ‖f‖2 for f supported in B, and therefore it suffices to show

(10.21) ‖Qk[u]W0[ς, b1]1‖L2(B∗) � ‖u‖U min{n2−kε′‖ς‖Bε
, ‖ςj‖L1}.

To show (10.21) we split 1 = �Ωkδ
+ �Ω�

kδ
where Ωkδ = {x : |x| ≤ 5 · 2kδ}, with a

choice of δ � ε to be determined.
It follows from Lemma 10.6 (or directly from Theorem 7.8) that for some c > 0

(independent of n)

‖Qk[u]W0[ς, b1]�Ωkδ
‖L2(B∗) � ‖�Ωkδ

‖2‖u‖U min{n2−kcε‖ς‖Bε
, ‖ς‖L1}

� ‖u‖U min{n2−k(cε−dδ)‖ς‖Bε
, ‖ς‖L1}(10.22)

and thus we want to choose δ ≤ cε(2d)−1.
Next we estimate the L2(B∗) norm of Qk[u]W0[ς, b1]�Ω�

kδ
. Let

ς̃(α, v) = ς(1− α1, · · · , 1− αn, v)
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so that ‖ς̃‖Bε
� ‖ςj‖Bε

and ‖ς̃‖L1 = ‖ςj‖L1 . We have, for ‖g‖L2(B∗) = 1,

∣∣∣ ∫ g(x)(Qk[u]W0[ς, b1]�Ω�
δk
)(x) dx

∣∣∣
=
∣∣Λ[ς](b1, b02, . . . , b0n,�Ω�

kδ
, tQk[u]g)

∣∣ = ∣∣Λ[ς̃ ](b1, b02, . . . , b0n, tQk[u]g,�Ω�
kδ
)
∣∣

=
∣∣∣ ∫∫∫∫ ς̃(α, v)b1(x− α1v)×

( n∏
i=2

b0i (x− αiv)
)
�Ω�

δk
(x)u(2k)(y − x+ v)g(y) dx dy dv dα

∣∣∣

and this is estimated by

∫∫∫∫
|x|>5·2δk

|ς̃(α, v)||u(2k)(y − x+ v)g(y)| dx dv dα dy

≤
∑

2l1≥2·2kδ

∞∑
l2=0

∫∫∫∫
2l1≤|x|≤2l1+1

2l2≤1+|v|≤2l2+1

|ς̃(α, v)||u(2k)(y − x+ v)g(y)| dx dv dα dy

=
∑

2l1≥2·2kδ

∞∑
l2=(l1−3)∨0

+
∑

2l1≥2·2kδ

l1−3∑
l2=0

=: (I) + (II).

We estimate

(I) ≤
∑

2l1≥2·2kδ

∞∑
l2=(l1−3)∨0

2−εl2×

∫∫∫∫
2l1≤|x|≤2l1+1

2l2≤1+|v|≤2l2+1

(1 + |v|)ε|ς̃(α, v)||u(2k)(y − x+ v)g(y)| dx dv dα dy

�
∑

2l1≥2·2kδ

∞∑
l2=(l1−3)∨0

2−εl2‖ς̃‖Bε
‖u‖U‖g‖1

� ‖ς‖Bε
‖u‖U‖g‖12−kδε � ‖ς‖Bε

‖u‖U2−kδε,

where the last inequality uses the support of g to see ‖g‖1 � ‖g‖2 = 1.
For (II), we use the fact that l2 ≤ l1 − 3 to see that on the support of the

integral, since |y| ≤ 1 (due to the support of g), we have |y − x + v| ≈ 2l1 . Thus,
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we have

(II) �
∑

2l1≥2·2kδ

l1−3∑
l2=0

‖u‖U×

∫∫∫∫
2l1≤|x|≤2l1+1

2l2≤1+|v|≤2l2+1

|ς̃(α, v)| 2kd

(1 + 2k|x− v − y|)d+ 1
2

|g(y)| dx dv dy dα

�
∑

2l1≥2·2kδ

l1−3∑
l2=0

2(−k−l1)/4‖u‖U×

∫∫∫∫
2l1≤|x|≤2l1+1

2l2≤1+|v|≤2l2+1

|ς̃(α, v)| 2kd

(1 + 2k|x− v − y|)d+ 1
4

|g(y)| dx dv dy dα

�
∑

2l1≥2·2kδ

l1−3∑
l2=0

2(−k−l1)/4‖u‖U‖ς̃‖L1‖g‖1

� ‖u‖U‖ς‖L1‖g‖12−k/4 � 2−k/4‖u‖U‖ς‖L1 .

Finally, we have, by Lemma 10.11 applied to f = �Ω�
kδ
,∣∣∣ ∫ g(x)(Qk[u]W0[b1]�Ω�

kδ
(x) dx

∣∣∣ � ‖ς‖L1‖u‖U,

where the last inequality uses the support of g again to see ‖g‖1 � ‖g‖2 = 1. If we
take δ = cε/(4d) then a combination of the estimates for (I) and (II), and (10.22),
yields (10.21) for ε′ ≤ cε2/(4d). This completes the proof. �

In what follows we find it convenient to occasionally use the notation

(10.23) Mult{g}f = fg

for the operator of pointwise multiplication with g.

Lemma 10.13. Let 0 < ε ≤ 1/2. Then there is c > 0 (independent of n, ε) such
that for ε′ ≤ cε2, for all k ≥ 0, j, l ∈ Z, ςj ∈ Bε, u ∈ U, b1 ∈ L∞(Rd),∥∥Qj+k[u]Wj [ςj , b1]PjQj+l −Mult{Qj+k[u]Wj [ςj , b1]1}PjQj+l

∥∥
L2→L2

�
{
‖u‖U‖b1‖∞ min{n‖ςj‖Bε

2−kε′ , 2−l‖ς‖L1} if l ≥ 0,

‖u‖U‖b1‖∞ min{n‖ςj‖Bε
2lε/42−kε′ , ‖ς‖L1} if l ≤ 0.

Proof. We may assume ‖ς‖U = 1 and ‖b1‖L∞ = 1. We have

(10.24) ‖PjQj+l‖L2→L2 � min{2−l, 1} .

Now, by Lemma 10.6,

(10.25) ‖Qj+k[u]Wj [b1]‖L2→L2 � ‖ςj‖L1

and, by Lemma 10.11 and (10.24),

(10.26) ‖Mult{Qj+k[u]Wj [ςj , b1]1}PjQj+l‖L2→L2 � min{1, 2−l}‖ς‖L1 ;
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moreover, by Lemma 10.12,

(10.27) ‖Mult{Qj+k[u]Wj [ςj , b1]1}PjQj+l‖L2→L2 � n2−kε′‖ς‖Bε
.

A combination of (10.25), (10.26), and (10.26) immediately gives the assertion for
l ≥ 0, and also the second estimate for l < 0. It remains to show that

(10.28) ‖(Qj+k[u]Wj [ςj , b1]PjQj+l −Mult{Qj+k[u]Wj [ςj , b1]1}PjQj+l‖L2→L2

� n‖ςj‖Bε
max{2lε/2, 2l/4} if l ≤ 0;

indeed the assertion follows by taking a geometric mean of the bounds in (10.27)
and (10.28).

By scale invariance (see (10.15)) it suffices to show (10.28) for j = 0, i.e.

(10.29)
∥∥(R1 −R2)Ql

∥∥
L2→L2 � n‖ςj‖Bε

max{2lε/2, 2l/4} if l ≤ 0;

for R1 = Qk[u]W0[ς, b1]P0 and R2 = Mult{Qk[u]W0[ς, b1]1}P0. Let ρ1, ρ2, ρ be
the Schwartz kernels of R1, R2, R1 − R2, and let σ−l be the Schwartz kernel of
Ql. We wish to apply Lemma 8.6 (note the notation l = −
 in that lemma). It is

immediate that σ� satisfies assumptions (8.23b) and (8.23c) with B1, B∞, B̃∞ � 1.
The function ρ satisfies the crucial cancellation condition (8.24) since

(Qk[u]W0[ς, b1]P0 −Mult{Qk[u]W0[ς, b1]1}P0)1 = 0 .

It remains to check the size conditions (8.23a). We have

|ρ1(x, y)| ≤
∫∫∫

|u(2k)(x− x′)||ς(α, x′ − y′)||φ(y′ − y)| dx′ dα dy′

and thus clearly

sup
y

∫
|ρ1(x, y)|dx ≤ ‖u‖1‖ς‖L1‖φ‖1 � 1

since ‖u‖1 ≤ ‖u‖U. Also for some M > d+ 1,∫
|ρ1(x, y)|(1 + |x− y|)εdy

�
∫
(1 + |x− y|)ε

∫∫∫ ∣∣∣ 2kd

(1 + 2k|x− x′|)d+ 1
2

|ς(α, x′ − y′)|
(1 + |y′ − y|)M dx′ dα dy′ dy

�
∫∫∫

|ς(α, x′ − y′)|(1 + |x′ − y′|)εω(x, x′, y′) dα dy′ dx′ ,

where

ω(x, x′, y′) =
2kd

(1 + 2k|x− x′|)d+ 1
2

∫
1

(1 + |y′ − y|)M
(1 + |x− y|)ε
(1 + |x′ − y′|)ε dy .

We have

sup
x′

∫
|ς(α, x′ − y′)|(1 + |x′ − y′|)ε dα dy′ ≤ ‖ς‖Bε

and thus it suffices to show that

(10.30) sup
x,y

∫
ω(x, x′, y)dx′ � 1.
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Now by the triangle inequality (1+|x−y|)ε ≤ (1+|x−x′|)ε(1+|x′−y′|)ε(1+|y′−y|)ε
and hence∫

ω(x, x′, y)dx′ ≤
∫

2kd(1 + |x− x′|)ε

(1 + 2k|x− x′|)d+ 1
2

∫
1

(1 + |y′ − y|)M−ε
dy dx′

�
∫

2kd(1 + |x− x′|)ε

(1 + 2k|x− x′|)d+ 1
2

dx′

and (10.30) follows easily, provided that ε < 1/2. Thus condition (8.23a) is satisfied
for ρ1. By Lemma 10.11 it is immediate that condition (8.23a) is satisfied for ρ2
as well. Thus we have verified the assumptions of Lemma 8.6 and (10.29) follows.
This completes the proof of the lemma. �

Proof of Proposition 10.5, conclusion. We may assume that ‖u‖U = 1,

‖f‖2 = 1, and supj ‖b
j
1‖∞ = 1. For k ≥ 0, define

Rk,j := Qj+k[u]Wj [ςj , b
j
1]Pj −Mult{Qj+k[u]Wj [ςj , b

j
1]1}Pj .

The proof is complete if we can show, for k ≥ 0,

(10.31)
(∑

j

‖Rj,kf‖22
)1/2

� sup
j

‖ςj‖L1 min
{
2−ε1knΓε, log(1 + nΓε)

}
.

Lemma 10.13 implies

‖Rk,jQj+l‖L2→L2 �
{
supj ‖ς‖L1 min{nΓε2

−kε′ , 2−l}, if l ≥ 0,

supj ‖ς‖L1 min{nΓε2
lε/42−kε′ , 1} if l < 0.

Now(∑
j

‖Rk,jf‖22
)1/2

=
(∑

j

∥∥∥Rk,j

∑
l∈Z

Qj+lQ̃j+lf
∥∥∥2
2

) 1
2

�
∑
l∈Z

(∑
j

∥∥∥Rk,jQj+lQ̃j+lf
∥∥∥2
2

) 1
2 �
∑
l∈Z

sup
j′

‖Rk,j′Qj′+l‖L2→L2

(∑
j

‖Q̃j+lf‖22
)1/2

� sup
j

‖ςj‖L1

[∑
l≥0

min{nΓε2
−kε′ , 2−l}+

∑
l<0

min{nΓε2
lε/42−kε′ , 1}

]
� sup

j
‖ςj‖L1 min

{
2−ε1knΓε, log(1 + nΓε)

}
for some sufficiently small ε1 > 0, and the proof is complete. �

10.2.3. Proof that Theorem 10.2 implies Part II of Theorem 5.1. Let
1 < p ≤ 2. The asserted result follows from

(10.32)
∣∣∣∑
j∈Z

Λ[ς
(2j)
j ](bj1, . . . , b

j
l−1, (I − Pj)bl, b

j
l+1, . . . , b

j
n, (I − Pj)bn+1, Pjbn+2)

∣∣∣
� sup

j
‖ςj‖L1 log5/2(1 + nΓε)

( ∏
i=1,...,n

i �=l

sup
j

‖bji‖∞
)
‖bl‖∞‖bn+1‖p‖bn+2‖p′
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and

(10.33)
∣∣∣∑
j∈Z

Λ[ς
(2j)
j ](bj1, . . . , b

j
l−1, (I − Pj)bl, b

j
l+1, . . . , b

j
n, Pjbn+1, (I − Pj)bn+2)

∣∣∣
� sup

j
‖ςj‖L1 log5/2(1 + nΓε)

( ∏
i=1,...,n

i �=l

sup
j

‖bji‖∞
)
‖bl‖∞‖bn+1‖p‖bn+2‖p′ .

Once (10.32) and (10.33) are established we use them for the choices bji = bi, if

i < l, bji = Pjbi, if l < i ≤ n. Now it is crucial that ‖Pj‖L∞→L∞ ≤ 1 (here φj ≥ 0,
and
∫
φj = 1 are used). Hence the two inequalities for Λ1

l,n+1 and Λ1
l,n+2 claimed

in Theorem 5.1 are an immediate consequence of (10.32) and (10.33).
In order to establish (10.32) and (10.33) we may assume without loss of gener-

ality that l = 1. This is because we can permute the first n entries of the multilinear
form and replace ςj by 
�ςj as in (4.1). We may also assume that

‖b1‖∞ ≤ 1, ‖bji‖∞ = 1, 2 ≤ i ≤ n.

Now, in what follows let

ς̃j(α, v) = ς(1− α1, . . . , 1− αn, v)

(as in (4.2)). To prove (10.32) for l = 1 we observe∑
j

Λ[ς
(2j)
j ]((I − Pj)b1, b

j
2, . . . , b

j
n, (I − Pj)bn+1, Pjbn+2) =

∫
bn+2(x)

tT bn+1(x)dx

where

tT =
∑
j

Pj
tWj [ςj , (I − Pj)b1](I − Pj) =

∑
j

PjWj [ς̃j , (I − Pj)b1](I − Pj).

Now we expand I − Pj =
∑

k>0Qj+k and we get tT =
∑

k>0
tT k where

tT k =
∑
j

SjQj+k, with Sj = PjWj [ς̃j , (I − Pj)b1].

The Schwartz kernel of Sj is equal to Dil2jsj where

sj(x, y) =

∫
φ(x− x′)σj(x

′, y)dy

with
(10.34)

σj(x, y) =

∫
ςj(α, x− y)(I −P0)b1(2

−j(x− αi(x− y))

n∏
i=2

bi(2
−j(x−αi(x− y)) dα.

We wish to apply Corollary 8.12. It is easy to check that

Int1[sj ] � sup
j

‖ςj‖L1 =: A, Int1ε[sj ] � sup
j

‖ςj‖Bε
=: B.

Now ‖
∑

j SjQj+k‖L2→L2 = ‖T k‖L2→L2 and by Theorem 10.2∥∥∥∑
j

SjQj+k

∥∥∥
L2→L2

� sup
j

‖ςj‖L1 log3/2(1 + nΓε) := D0 ,

2ε1k‖
∑
j

SjQj+k‖L2→L2 � sup
j

‖ςj‖L1nΓ2
ε := Dε1 .
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Now we easily obtain from Corollary 8.12 that∥∥∥∑
k>0

∑
j

SjQj+k

∥∥∥
Lp→Lp

� Cp sup
j

‖ςj‖L1 log5/2(1 + nΓε)

and (10.32) is proved.
Finally we turn to (10.33), for l = 1. The case p = 2 follows immediately from

(10.32), by duality replacing ςj with ς̃j . For p < 2 we observe that∑
j∈Z

Λ[ς
(2j)
j ]((I−Pj)b1, b

j
2, . . . , b

j
n, Pjbn+1, (I−Pj)bn+2) =

∫
bn+2(x)SjPjbn+1(x)dx

with Sj = (I − Pj)Wj [ςj , b1]. The Schwartz kernel of Sj is equal to Dil2jsj where

sj(x, y) = σj(x, y)−
∫

φ(x− x′)σj(x
′, y)dy

with σj as in (10.34). Then sj satisfies Int1[sj ] � ‖ςj‖L1 and Int1ε[sj ] � ‖ςj‖Bε
and

(10.33) for p < 2 follows immediately from the case p = 2 and Corollary 8.10.

10.3. Proof of the main theorem: Part III

Let n ≥ 2 and 1 ≤ l1 < l2 ≤ n. In this section, we consider the multilinear
functional

Λ1
l1,l2(b1, . . . , bn+2) :=∑

j∈Z

Λ[ς
(2j)
j ](b1, . . . , bl1−1, (I − Pj)bl1 , Pjbl1+1, . . . ,

Pjbl2−1, (I − Pj)bl2 , Pjbl2+1, . . . , Pjbn+2),

(10.35)

where, for some fixed ε > 0, �ς = {ςj : j ∈ Z} ⊂ Bε(R
n ×Rd) is a bounded set. The

goal of this section is to prove, for p ∈ (1, 2], b1, . . . , bn ∈ L∞(Rd), bn+1 ∈ Lp(Rd),

bn+2 ∈ Lp′
(Rd), the inequality

(10.36)
∣∣Λ1

l1,l2(b1, . . . , bn+2)
∣∣

≤ Cd,p,ε sup
j

‖ςj‖L1 log3(1 + nΓε)
( n∏
l=1

‖bl‖∞
)
‖bn+1‖p‖bn+2‖p′ ,

together with convergence of the sum (10.35) in the operator topology of multilinear
functionals. Moreover the operator sum T 1

l1,l2
associated to Λ1

l1,l2
converges in the

strong operator topology.
It will be convenient to prove a slightly more general theorem. Let {bjl : 3 ≤

l ≤ n, j ∈ Z} ⊂ L∞(Rd) be a bounded set, with supj∈Z ‖b
j
l ‖L∞ = 1, for 3 ≤ l ≤ n.

For b1, b2 ∈ L∞(Rd) define an operator Sj [b1, b2] by∫
g(x)(Sj[b1, b2]f)(x) dx := Λ[ς

(2j)
j ]((I − Pj)b1, (I − Pj)b2, b

j
3, . . . , b

j
n, f, g).

Theorem 10.14. With the above assumptions, for 1 < p ≤ 2, the sums

∞∑
j=−∞

PjSj [b1, b2]Pj
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converge to S[b1, b2], in the strong operator topology as operators Lp → Lp, and
S[b1, b2] satisfies the estimate

(10.37) ‖S[b1, b2]‖Lp→Lp ≤ Cd,p,ε sup
j

‖ςj‖L1 log3(1 + nΓε)‖b1‖∞‖b2‖∞.

Proof of (10.36) given Theorem 10.14. Using Theorem 2.9 we see that
Theorem 10.14 also implies the inequality∣∣∣∑

j

Λ[ς
(2j)
j ](bj1, . . . , b

j
l1−1, (I − Pj)bl1 , b

j
l1+1,

. . . , bjl2−1, (I − Pj)b
j
l2
, bjl2+1, . . . , b

j
n, bn+1, bn+2)

∣∣∣
� sup

j
‖ςj‖L1 log3(1 + nΓε)‖bl1‖∞‖bl2‖∞

( ∏
1≤i≤n
i �=l1,l2

‖bji‖∞
)
‖bn+1‖p‖bn+2‖p′ .

Since ‖Pjbl‖q ≤ ‖bl‖q we may replace bi by Pjbi for l1 + 1 ≤ i ≤ l2 − 1, i ≥ l2 + 1,
and if we use also Pj =

tPj then (10.36) follows. �

The rest of this section is devoted to the proof of Theorem 10.14. Thus, we
consider sequences bjl ∈ L∞(Rd) fixed (3 ≤ l ≤ n) with supj ‖b

j
l ‖L∞ = 1. The L2

estimates in §10.1 will be crucial. We restate them as

Proposition 10.15. There is C � 1 such that for ε′ ≤ ε/C, and for all
collections

{bjn+1 : j ∈ Z}, {bjn+2 : j ∈ Z} ⊂ L∞(Rd), with sup
j

‖bjn+1‖∞=1, sup
j

‖bjn+2‖∞=1,

we have for f, g ∈ L2(Rd) and k1, k2 ∈ N,∣∣∣∑
j∈Z

Λ[ς
(2j)
j ](Qj+k1

f,Qj+k2
g, bj3, . . . , b

j
n+2)
∣∣∣

� ‖f‖2‖g‖2 min
{
2−ε′k1−ε′k2n sup

j
‖ςj‖Bε

, sup
j

‖ςj‖L1

}
.

Let Tk1,k2
be defined by

(10.38) Λ[ς
(2j)
j ](Qj+k1

f,Qj+k2
g, bj3, . . . , b

j
n+2) =

∫
g(x) Tk1,k2,jf(x) dx.

Then
∑

j Tk1,k2,j and
∑

j
tTk1,k2,j converge in the strong operator topology as oper-

ators L2 → L2, with equiconvergence with respect to bj3, . . . , b
j
n+2.

Proof. This follows from Theorem 10.1. �

Proposition 10.16. Let {bj1, b
j
2 : j ≤ −1} ⊂ L∞(Rd) be a bounded set with

supj≤−1 ‖b
j
l ‖L∞ = 1, l = 1, 2, and let bn+1, bn+2 be L∞ functions supported in

{y : |y| ≤ 1}.
−1∑

j=−∞

∣∣Λ[ς(2j)j ](bj1, . . . , b
j
n, Pjbn+1, Pjbn+2)

∣∣ � ‖bn+1‖L∞‖bn+2‖L∞ sup
j

‖ςj‖L1 .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

108 10. BOUNDEDNESS OF MULTILINEAR SINGULAR FORMS

Proof. We may assume ‖bn+1‖L∞ = ‖bn+2‖L∞ = 1. Then by Lemma 2.7∣∣Λ[ς(2j)j ](bj1, . . . , b
j
n, Pjbn+1, Pjbn+2)

∣∣ � sup
j

‖ςj‖L1‖Pjbn+1‖2‖Pjbn+2‖2

� sup
j

‖ςj‖L12jd‖bn+1‖1‖Pjbn+2‖1 � sup
j

‖ςj‖L12jd

where we have used ‖Pj‖L1→L2 � 2jd/2 and then the support assumption on bn+1,
bn+2. Now sum over j ≤ −1 and the proof is complete. �

Lemma 10.17. Let 0 < ε ≤ 1. For all R ≥ 5, all j ≥ 0, bn+1, bn+2 ∈ L∞

supported in {x : |x| ≤ 4}, b1, b2 ∈ L∞(Rd) with supp(b1) ⊆ {v : |v| ≥ R}, we have

|Λ[ς(2
j)

j ](b1, b2, b
j
3, . . . , b

j
n, bn+1, bn+2)|

� min
{
(2jR)−ε/2‖ςj‖Bε

, ‖ςj‖L1

} ∏
l∈{1,2,n+1,n+2}

‖bl‖∞.

Proof. We may assume ‖bl‖L∞ = 1, l = 1, 2, n+ 1, n+ 2. The bound

(10.39) |Λ[ς(2
j)

j ](b1, b2, b
j
3, . . . , b

j
n, bn+1, bn+2)| � ‖ςj‖L1

follows immediately from Lemma 2.7 and the assumptions on the supports of bn+1

and bn+2.
In order to establish the bound (2jR)−ε/2‖ςj‖Bε

we estimate, using the as-
sumption on supp(b1),∣∣Λ[ς(2j)j ](b1, b2, b

j
3, . . . , b

j
n, bn+1, bn+2)

∣∣
=
∣∣∣ ∫∫∫ ς

(2j)
j (α, v)b1(x− α1v)b2(x− α2v)×

( n∏
i=3

bji (x− α3v)
)
bn+1(x− v)bn+2(x) dx dα dv

∣∣∣
≤
∫
|x|≤4

∫
|v|≤8

∫
|α1|≥R−|x|

|v|

|ς(2
j)

j (α, v)||b1(x− α1v)| dα dv dx

�
∫
|w|≤2j+3

∫
|α1|≥ R−|4|

2−j |w|

|ςj(α,w)| dα dw ;

here we have used R ≥ 5. Let m ≤ j + 3. Clearly

(10.40)

∫
2m−1≤|w|≤2m

∫
|α1|≥ R−|4|

2−j |w|

|ςj(α,w)| dαdw

� (2j−mR)−ε‖ςj‖Bε,1
� 2mε(2jR)−ε‖ςj‖Bε

.

Also

(10.41)

∫
2m−1≤|w|≤2m

∫
|α1|≥ R−|4|

2−j |w|

|ςj(α,w)| dαdw � 2−mε‖ςj‖Bε,4
� 2−mε‖ςj‖Bε

.

We use (10.40) for 2m < (2jR)1/2 and (10.41) for 2m ≥ (2jR)1/2, and sum. The
assertion follows. �
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Lemma 10.18. For l = 1, 2, n+ 1, n+ 2, let {bj,k1,k2

l : j, k1, k2 ∈ N} ⊂ L∞(Rd)

be bounded sets with supj,k1,k2
‖bj,k1,k2

l ‖L∞ = 1. Let β > 0, δ > 0 and assume

(10.42) supp(bj,k1,k2

1 ) ⊆
{
v : |v| ≥ max{5, β2k1δ+k2δ}

}
, ∀j, k1, k2 ∈ N

and for l = n+ 1, n+ 2,

supp(bj,k1,k2

l ) ⊆ {v : |v| ≤ 4}, ∀j, k1, k2 ∈ N.

Then∑
j,k1,k2∈N

|Λ[ς(2
j)

j ](bj,k1,k2

1 , bj,k1,k2

2 , bj3, . . . , b
j
n, b

j,k1,k2

n+1 , bj,k1,k2

n+2 )|

� sup
j

‖ςj‖L1 log3(1 + β−1Γε).

Here the implicit constant depends on δ, but not on β. The same result holds if
instead of (10.42) we have

(10.43) supp(bj,k1,k2

2 ) ⊆
{
|v| ≥ max{5, β2k1δ+k2δ}

}
, ∀j, k1, k2 ∈ N.

Proof. Because our definitions are symmetric in b1 and b2, the result with
(10.43) in place of (10.42) follows from the result with (10.42). Thus, we may focus
only on the proof with the assumption (10.42). Applying the previous lemma, we
have ∑

j,k1,k2∈N

∣∣Λ[ς(2j)j ](bj,k1,k2

1 , bj,k1,k2

2 , bj3, . . . , b
j
n, b

j,k1,k2

n+1 , bj,k1,k2

n+2 )
∣∣

�
∑

j,k1,k2∈N

min
{
2−jε/2

(
max{5, β2k1δ+k2δ}

)−ε/2
sup
j

‖ςj‖Bε
, sup

j
‖ςj‖L1

}
� sup

j
‖ςj‖L1 log3(1 + β−1Γε),

completing the proof. �

Proposition 10.19. Let b1, b2, bn+1, bn+2 ∈ L∞(Rd). Let Sj be defined by

(10.44) Λ[ς
(2j)
j ]((I − Pj)b1, (I − Pj)b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2)

=

∫
bn+2(x)Sjbn+1(x) dx.

Consider Sj as a bounded operator mapping L∞ functions supported in Bd(0, 1)
to L1(Bd(0, 1)). Then the sum

∑
Sj converges in the strong operator topology as

bounded operators L∞(Bd(0, 1)) to L1(Bd(0, 1)) and we have for bn+1, bn+2 with
supp(bn+1), supp(bn+2) ⊆ {y : |y| ≤ 1},∣∣∣∑

j∈Z

Λ[ς
(2j)
j ]((I − Pj)b1, (I − Pj)b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2)

∣∣∣
� sup

j
‖ςj‖L1 log3(1 + nΓε)

∏
l∈{1,2,n+1,n+2}

‖bl‖∞.

Proof. We may assume ‖bl‖L∞ = 1, l = 1, 2, n+ 1, n+ 2.
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By Proposition 10.16 the required estimate holds for the sum over negative j
and thus we only bound

(10.45)
∣∣∣∑
j≥0

Λ[ς
(2j)
j ]((I − Pj)b1, (I − Pj)b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2)

∣∣∣
� sup

j
‖ςj‖L1 log3(1 + nΓε).

Let 0 < β ≤ 1, 0 < δ < 1 be constants, to be chosen later (see (10.48)). Implicit
constants below are allowed to depend on δ, but do not depend on β. For l = 1, 2
and k1, k2 > 0 define

bk1,k2

l,∞ (v) :=

{
bl(v) if |v| > max{10, β · 2k1δ+k2δ+1}
0 otherwise

and

bk1,k2

l,0 (v) := bl(v)− bk1,k2

l,∞ (v).

We have, by (6.2) and Remark 6.1,∣∣∣∑
j≥0

Λ[ς
(2j)
j ](I − Pj)b1, (I − Pj)b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2

∣∣∣
=
∣∣∣ ∑
k1,k2>0

∑
j≥0

Λ[ς
(2j)
j ](Qj+k1

b1, Qj+k2
b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2)

∣∣∣
≤ (I) + (II) + (III)

where

(I) :=
∑

k1,k2>0

∑
j≥0

∣∣Λ[ς(2j)j ](Qj+k1
bk1,k2

1,∞ , Qj+k2
b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2)

∣∣ ,
(II) :=

∑
k1,k2>0

∑
j≥0

∣∣Λ[ς(2j)j ](Qj+k1
bk1,k2

1,0 , Qj+k2
bk1,k2

2,∞ , bj3, . . . , b
j
n, Pjbn+1, Pjbn+2)

∣∣ ,
(III) :=

∑
k1,k2>0

∣∣∣∑
j≥0

Λ[ς
(2j)
j ](Qj+k1

bk1,k2

1,0 , Qj+k2
bk1,k2

2,0 , bj3, . . . , b
j
n, Pjbn+1, Pjbn+2)

∣∣∣ .
Because j, k1, k2 ≥ 0, and by the supports of the functions in question, we have

supp(Qj+k1
bk1,k2

1,∞ ), supp(Qj+k2
bk1,k2

2,∞ ) ⊆
{
v : |v| > max{5, β · 2k1δ+k2δ}

}
,

and

supp(Pjbn+1), supp(Pjbn+2) ⊆ {v : |v| ≤ 4} .
Lemma 10.18 applies to show

(10.46) |(I)|+ |(II)| � sup
j

‖ςj‖L1 log3(1 + β−1Γε).

We now apply the L2 result in Proposition 10.15. Let Tk1,k2,j be as in (10.38).
Then

∑
j≥0 Tk1,k2,j converges in the strong operator topology as operators L2 → L2,

with equiconvergence with respect to bounded choices of bn+1, bn+2 ∈ L∞(Bd(0, 1)),
moreover the operator norms involve some exponential deacy in k1, k2. If we apply
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this to bk1,k2

1,0 , bk1,k2

2,0 , we may replace the L2 norms with L∞-norms. Hence if we
define operators Sk1,k2,j by∫

bn+2(x)Sk1,k2,jbn+1(x) dx

= Λ[ς
(2j)
j ](Qj+k1

b1, Qj+k2
b2, b

j
3, . . . , b

j
n, Pjbn+1, Pjbn+2)

we see that
∫ ∑

j bn+2(x)Sk1,k2,jbn+1(x)dx converges with equiconvergence in the

choice of bn+2 with ‖bn+2‖∞ ≤ 1 and supp(bn+2) ⊂ Bd(0, 1). Thus we get conver-
gence of

∑∞
j=0 Sk1,k2,j in the strong operator topology as operators L∞(Bd(0, 1)) →

L1(Bd(0, 1)). For the quantitative estimates we apply the L2 result in Proposition

10.15 and use the supports of bk1,k2

1,0 , bk1,k2

2,0 to get for ε′ < cε2

(III) �
∑

k1,k2>0

max
{
2−ε′k1−ε′k2n sup

j
‖ςj‖Bε

, sup
j

‖ςj‖L1

}
‖bk1,k2

1,0 ‖2‖bk1,k2

2,0 ‖2

�
∑

k1,k2>0

max
{
2−ε′k1−ε′k2n sup

j
‖ςj‖Bε

, sup
j

‖ςj‖L1

}
(max{5, β · 2k1δ+k2δ})2d.

(10.47)

Set

(10.48) δ =
ε′

4d
, β = (nΓε)

− 1
2d .

Note that

(β · 2k1δ+k2δ)2d(2−ε′k1−ε′k2n sup
j

‖ςj‖Bε
) = 2−ε′k1/2−ε′k2/2 sup

j
‖ςj‖L1 .

Using this in (10.47), we obtain

(III) � sup ‖ςj‖L1

∑
k1,k2>0

max{2−ε′k1−ε′k2nΓε, 1}(1 + β · 2k1δ+k2δ)2d

� sup
j

‖ςj‖L1 log2(1 + nΓε).

Plugging the choice of β into (10.46) completes the proof of (10.45).
Finally, we reexamine the proof to get the asserted convergence in the strong

operator topology. This is immediate for the sums corresponding to the terms (I),
(II) in view of the decay estimates in the proof of Lemma 10.18. For (III) we easily
get the assertion from the above statements about convergence of

∑
j≥0 Sk1,k2,j

and the exponential decay estimates in k1, k2. �

Proof of Theorem 10.14, conclusion. We shall apply Theorem 8.23. We need
to verify that for every ball Bd(x0, r), bn+1 ∈ L∞(Bd(x0, r)), ‖bn+1‖∞ = 1,∫

Bd(x0,r)

∣∣∣ ∑
|j|>N

PjSj [b1, b2]Pjbn+1(x)
∣∣∣dx → 0

as N → ∞ and

(10.49) sup
N

r−d

∫
Bd(x0,r)

∣∣∣ ∑
|j|≤N

PjSj [b1, b2]Pjbn+1(x)
∣∣∣ dx

� sup
j

‖ςj‖L1 log3(1 + nΓε)‖b1‖∞‖b2‖∞ .
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For x0 = 0 and r = 1 these statements follow from Proposition 10.19. We argue by
rescaling to obtain the same statement for other balls. Let 
 be such that 2�−1 ≤
r ≤ 2�. Let b̃i(x) = bi(x0 + 2�x), i = 1, 2, n+ 1, n+ 2 and b̃ji (x) = bj−�

i (x0 + 2�x),
3 ≤ i ≤ n. Then by changes of variables∫

bn+2(x)Sj[b1, b2]bn+1(x) dx

= 2�dΛ[ς(2
j+
)]
(
(I − Pj+�)b̃1, (I − Pj+�)b̃2, b̃

j+�
3 , . . . , b̃j+�

n , b̃n+1, b̃n+2

)
.

We use the fact that the functions b̃n+1, b̃n+2 are supported in the unit ball centered
at the origin. Then the result follows immediately from the statement for x0 = 0,
r = 1.

In order to verify the Opε-assumptions in Theorem 8.23 we use Lemma 8.24
with C0 � supj ‖ςj‖L1 and Cε � supj ‖ςj‖Bε

. Now Theorem 8.23 yields

‖S[b1, b2]‖L2→L2 � ‖b1‖L∞‖b2‖L∞(sup
j

‖ςj‖L1) log3(1 + nΓε).

Finally we combine this inequality with Corollary 8.10, with the choices A �
supj ‖ςj‖L1 and B � supj ‖ςj‖Bε

. This yields the asserted Lp bound. �

10.4. Proof of the main theorem: Part IV

Let 1 ≤ l ≤ n+ 2. In this section, we consider the multilinear form

Λ2
l (b1, . . . , bn+2) :=

∑
j∈J

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbl−1, (I − Pj)bl, Pjbl+1, . . . , Pjbn+2),

where J ⊂ Z is a finite set, and, given some fixed ε > 0, �ς = {ςj : j ∈ Z} ⊂
Bε(R

n × Rd) is a bounded set with
∫
ςj(α, v) dv = 0, ∀α, j. Our task is to show

that for p ∈ (1, 2],
(10.50)

|Λ2
l (b1, . . . , bn+2)| ≤ Cd,p,εn sup

j
‖ςj‖L1 log3(1 + nΓε)

[ n∏
i=1

‖bi‖∞
]
‖bn+1‖p‖bn+2‖p′

where the implicit constant is independent of J . Moreover we wish to show that
the sum defining the operator T 2

l associated to Λ2
l via (5.12) converges in the strong

operator topology as operators bounded on Lp. The heart of the proof lies in the
next theorem which we shall prove first. Let Γε ≡ Γε(�ς) be as in (5.6).

Theorem 10.20. Let b1, . . . , bn ∈ L∞(Rd), bn+1, bn+2 ∈ L2(Rd). Then,

lim
N→∞

N∑
j=−N

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbl−1, (I − Pj)bl, Pjbl+1, . . . , Pjbn+2)

= Λ2
n+2(b1, . . . , bn+2)

and Λ2
n+2 satisfies

|Λ2
n+2(b1, . . . , bn+2)|

≤ Cd,εn(sup
j

‖ςj‖L1) log3(1 + nΓε)
[ n∏
m=1

‖bm‖L∞
]
‖bn+1‖L2‖bn+2‖L2 .
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Moreover the sums defining the operator T 2
n+2 associated with Λ2

n+2 converge in the
strong operator topology as operators L2 → L2.

The full proof of (10.50) will be given in §10.4.3 below.

10.4.1. Outline of the proof of Theorem 10.20. We give an outline of
the steps and refer to §10.4.2 for some technical details.

We first describe the basic decomposition of Λ2
n+2(b1, . . . , bn+2) which is derived

from a decomposition of Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2, for fixed j. Write

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2)

= lim
M→∞

(
Λ[ς

(2j)
j ](Pj+MPjb1, . . . , Pj+MPjbn+1, (I − Pj)bn+2)

− Λ[ς
(2j)
j ](Pj−MPjb1, . . . , Pj−MPjbn+1, (I − Pj)bn+2)

)
= lim

M→∞

M∑
m=−M+1

(
Λ[ς

(2j)
j ](Pj+mPjb1, . . . , Pj+mPjbn+1, (I − Pj)bn+2)

− Λ[ς
(2j)
j ](Pj+m−1Pjb1, . . . , Pj+m−1Pjbn+1, (I − Pj)bn+2)

)
and use the multilinearity to obtain the decomposition

(10.51)

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+1,(I − Pj)bn+2)

=
n+1∑
l=1

∞∑
m=−∞

Λ[ς
(2j)
j ]
(
Pj+m−1Pjb1, . . . , Pj+m−1Pjbl−1, Qj+mPjbl,

Pj+mPjbl+1, . . . , Pj+mPjbn+1, (I − Pj)bn+2

)
.

The terms for l = 1, . . . , n are handled in a similar fashion, in fact the estimates
can be reduced to the case l = 1 by using Theorem 2.9, permuting the first and the
lth entry, and accordingly changing the family {ςj}.

Now let

(10.52) Xi
k ∈ {Pk, Pk−1}.

Then we need to show

(10.53)∣∣∣ N∑
j=−N

∞∑
m=−∞

Λ[ς
(2j)
j ](X1

j+mPjb1, X
2
j+mPjb2, . . . , Qj+mPjbn+1, (I − Pj)bn+2)

∣∣∣
� sup

j
‖ςj‖L1 log2(1 + nΓε)

( n∏
i=1

‖bi‖∞
)
‖bn+1‖2‖bn+2‖2

and

(10.54)∣∣∣ N∑
j=−N

∞∑
m=−∞

Λ[ς
(2j)
j ](Qj+mPjb1, X

2
j+mPjb2, . . . , X

n+1
j+mPjbn+1, (I − Pj)bn+2)

∣∣∣
� sup

j
‖ςj‖L1 log2(1 + nΓε)

( n∏
i=1

‖bi‖∞
)
‖bn+1‖2‖bn+2‖2
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with implicit constants uniform in N ; moreover we need to show the existence of
the limits as N → ∞, for the corresponding operator sums in the strong operator
topology. By another application of Theorem 2.9 (this time permuting the entries
(1, n+ 1)), with the corresponding change of the family {ςj}), we see that (10.53)
can be deduced from

(10.55)∣∣∣ N∑
j=−N

∞∑
m=−∞

Λ[ς
(2j)
j ](Qj+mPjb1, X

2
j+mPjb2, . . . , X

n+1
j+mPjbn+1, (I − Pj)bn+2)

∣∣∣
� sup

j
‖ς‖L1 log2(1 + nΓε)

( n+1∏
i=2

‖bi‖∞
)
‖b1‖2‖bn+2‖2.

It remains to prove (10.54), (10.55). We shall also decompose further using (I −
Pj)bn+2 =

∑
m2∈N

Qj+m2
bn+2. This leads to the following definition.

Definition 10.21. Let m,m1 ∈ Z, m2 > 0.
For bn+1 ∈ L∞(Rd) the operators Sm1,m2

j [bn+1] are defined by

(10.56)

∫
g(x)Sm1,m2

j [bn+1]f(x) dx

:= Λ[ς
(2j)
j ](Qj+m1

Pjg,X
2
j+m1

Pjb2, · · · , Xn
j+m1

Pjbn, X
n+1
j+m1

Pjbn+1, Qj+m2
f).

For b1 ∈ L∞(Rd) the operators Tm1,m2

j [b1] are defined by

(10.57)

∫
g(x)Tm1,m2

j [b1]f(x) dx

:= Λ[ς
(2j)
j ](Qj+m1

Pjb1, X
2
j+m1

Pjb2, · · · , Xn
j+m1

Pjbn, X
n+1
j+m1

Pjg,Qj+m2
f).

We formulate an auxiliary result. It gives bounds in the Op(ε)-classes defined
in (8.36) for suitable normalizing dilates of the operators Sm1,m2

j [bn+1], T
m1,m2

j [b1].
We use the same notation for these operators and their Schwartz kernels.

Proposition 10.22. Let

(10.58) σm1,m2

j =

{
Dil2−j (Sm1,m2

j [bn+1]) if m1 ≥ 0,

Dil2−j−m1 (S
m1,m2

j [bn+1]) if m1 < 0,

and

(10.59) τm1,m2

j =

{
Dil2−j (Tm1,m2

j [b1]) if m1 ≥ 0,

Dil2−j−m1 (T
m1,m2

j [b1]) if m1 < 0.

There exists ε′ > c(ε) (independent of n) such that, for m2 > 0,

(10.60)

∥∥σm1,m2

j

∥∥
Opε

� 2−ε′(|m1|+m2)n2‖ςj‖Bε
‖bn+1‖∞,∥∥σm1,m2

j

∥∥
Op0

� ‖ςj‖L1‖bn+1‖∞,

and

(10.61)

∥∥τm1,m2

j

∥∥
Opε

� 2−ε′(|m1|+m2)n2‖ςj‖Bε
‖b1‖∞,∥∥τm1,m2

j

∥∥
Op0

� ‖ςj‖L1‖b1‖∞ .
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The proof will be given in §10.4.2 below. Note that we have the trivial estimate
‖ · ‖Op0

≤ ‖ · ‖Opε
, and therefore the Op0 bounds stated in Proposition 10.22 will

only be used for 2ε(|m1|+m2) � n2Γε.
The estimates (10.54), (10.55) and the asserted existence of the limits follow

easily from the following Proposition.

Proposition 10.23. Let b2, . . . , bn ∈ L∞(Rd), with ‖bi‖∞ ≤ 1, i = 2, . . . , n.
Let �ς = {ςj} be a bounded family in Bε, J ⊂ Zd with #J < ∞ and let m1 ∈ Z,
m2 ∈ N.

Then there exist ε′ > 0 so that the following estimates hold, uniformly in J .
(i) If bn+1 ∈ L∞(Rd),

(10.62)
∥∥∥∑

j∈J
Sm1,m2

j [bn+1]
∥∥∥
L2→L2

� min
{
2−ε′(|m1|+m2)n2 sup

j
‖ςj‖Bε

, sup
j

‖ςj‖L1

}
‖bn+1‖∞.

(ii) We have limN→∞
∑N

j=−N Sm1,m2

j [bn+1] = Sm1,m2 [bn+1] in the strong op-

erator topology (as operators L2 → L2) and the bound (10.62) remains true for the
limit Sm1,m2 .

(iii) We have
∑

m1∈Z

∑
m2>0 S

m1,m2 [bn+1] → S[bn+1] with absolute conver-

gence in L(L2, L2). Also
∑N

j=−N Sj [bn+1] converges to an operator S[bn+1] in the

strong operator topology as operators L2 → L2 and

‖S[bn+1]‖L2→L2 � sup
j

‖ςj‖L1 log2(1 + nΓε) ‖bn+1‖∞.

(iv) In (ii), (iii) the convergence in the strong operator topology is equicontin-
uous with respect to {bn+1 : ‖bn+1‖∞ ≤ 1}.

Proof of Proposition 10.23, given Proposition 10.22. For the proof of
(i) we apply the almost orthogonality Lemma 9.1. To this end we need to derive
the estimate

(10.63)
∥∥Qk1

Sm1,m2

j+k1
[bn+1]Qj+k1+k2

∥∥
L2→L2 � Am1,m2

j,k2
:=

min ‖bn+1‖∞
{
2−ε1(|m1|+m2)n2 sup

j
‖ςj‖Bε

, 2−|j+m1|−|m2+k2| sup
j

‖ςj‖L1

}
for some ε1 > 0. To see this we note that the bound∥∥Sm1,m2

j+k1
[bn+1]

∥∥
L2→L2 � min ‖bn+1‖∞

{
2−ε1(|m1|+m2)n2 sup

j
‖ςj‖Bε

}
(and hence the corresponding estimate for Qk1

Sm1,m2

j+k1
[bn+1]Qj+k1+k2

) follows from
Proposition 10.22. The bound∥∥Qk1

Sm1,m2

j+k1
[bn+1]Qj+k1+k2

∥∥
L2→L2 � 2−|j+m1|−|m2+k2| sup

j
‖ςj‖L1

follows from the fact that ‖QkQl‖L2→L2 , ‖QlQk‖L2→L2 � 2−|k−l|, the definition of
Sm1,m2

j+k , and Lemma 2.7.

We now observe that for Am1,m2

j,k2
as in (10.63) we have∑

j,k2

Am1,m2

j,k2
� ‖bn+1‖∞ min

{
sup
j

‖ςj‖L1 , 2−ε1(|m1|+m2)(|m1|+m2)
2n2 sup

j
‖ςj‖Bε

}
.
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By an application of Lemma 9.1 this yields (10.62) and the convergence result in (ii),
with equiconvergence with respect to bn+1 in the unit ball of L∞(Rd). Summing in
m1,m2 yields (iii). �

Proposition 10.24. Let b2, . . . , bn ∈ L∞(Rd), with ‖bi‖∞ ≤ 1, i = 2, . . . , n.
Let �ς = {ςj} be a bounded family in Bε, J ⊂ Zd with #J < ∞ and let m1 ∈ Z,
m2 ∈ N.

(i) If b1 ∈ L∞(Rd),

(10.64)
∥∥∥∑

j∈J
Tm1,m2

j [b1]
∥∥∥
L2→L2

� min
{
2−ε′|m1|−ε′m2n2 sup

j
‖ςj‖Bε

, sup
j

‖ςj‖L1 log(1 + n2Γε)
}
‖b1‖∞.

(ii) We have limN→∞
∑N

j=−N Tm1,m2

j [b1] = Tm1,m2 [b1] in the strong operator

topology (as operators L2 → L2) and the bound (10.64) remains true for the limit
Tm1,m2 .

(iii) We have
∑

m1∈Z

∑
m2>0 T

m1,m2 [b1] → T [b1] with absolute convergence in

L(L2, L2). Moreover
∑N

j=−N Tj [b1] converges to an operator T [b1] in the strong

operator topology as operators L2 → L2 and

‖T [b1]‖L2→L2 � sup
j

‖ςj‖L1 log3(1 + nΓε) ‖b1‖∞.

Proof. Use Propositions 10.23 and 10.22, together with Theorem 8.22 to de-
duce that Sm1,m2 [bn+1] =

∑
j S

m1,m2

j [bn+1] converges in the strong operator topol-

ogy as operators H1 → L1, with uniformity in bn+1, ‖bn+1‖∞ ≤ 1, and we get the
estimate∥∥Sm1,m2 [bn+1]

∥∥
H1→L1

� sup ‖ςj‖L1 min
{
log(1 + n2Γε), 2

−ε′(|m1|+m2)n2Γε

}
‖bn+1‖∞

Now for b1 ∈ L∞, bn+1 ∈ L∞ we have by (10.56), (10.57)∫
b1(x)S

m1,m2

j [bn+1]f(x) dx =

∫
bn+1(x)T

m1,m2

j [b1]f(x) dx .

Since in the strong operator convergence of
∑

j S
m1,m2

j [bn+1] we have uniformity

with respect to bn+1 we obtain that Tm1,m2 [b1] =
∑

j T
m1,m2

j [b1] converges in the

strong operator topology as operators H1 → L1, and we have the estimate∥∥Tm1,m2 [b1]
∥∥
H1→L1 � ‖b1‖∞ sup ‖ςj‖L1 min

{
log(1 + n2Γε), 2

−ε′(|m1|+m2)n2Γε

}
.

From Theorem 8.22 we then get∥∥Tm1,m2 [b1]
∥∥
L2→L2 � ‖b1‖∞ sup ‖ςj‖L1 min

{
log(1 + n2Γε), 2

−ε′(|m1|+m2)n2Γε

}
which is (ii). Statement (iii) follows after summing in m1,m2. �

10.4.2. Opε-bounds and the proof of Proposition 10.22.

Lemma 10.25. Let ε > 0, φ0 ∈ C1, supported in {y : |y| ≤ 10}, ς ∈ Bε(R
n×Rd).

For 
 ≥ 0 define

F�(x, y) :=

∫∫∫
|x−v−y|≤100

|ς(2
)(α, v)||φ0(y − α1v − y′)− φ0(y − y′)| dv dα dy′.
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Then,

sup
x

∫
(1 + |x− y|)ε/2|F�(x, y)| dy + sup

y

∫
(1 + |x− y|)ε/2|F�(x, y)| dx

� 2−�ε/2‖φ0‖C1‖ς‖Bε
.

Proof. We may assume ‖φ‖C1 = 1. We estimate, for each y,∫
(1 + |x− y|)ε/2|F�(x, y)| dx

=

∫∫∫∫
|x−v−y|≤100

(1 + |x− y|)ε/2|ς(2
)(α, v)||φ0(y − α1v − y′)− φ0(y − y′)| dv dα dy′ dx

�
∫∫∫

(1 + |v|)ε/2|ς(2
)(α, v)||φ0(y − α1v − y′)− φ0(y − y′)| dv dα dy′

�
∫∫

(1 + |v|)ε/2|ς(2
)(α, v)|min{1, |α1v|ε/2} dv dα

�
∫∫

|v|ε/2|ς(2
)(α, v)| dv dα +

∫∫
|α1v|ε/2|ς(2


)(α, v)| dv dα .

Now ∫∫
|v|ε/2|ς(2
)(α, v)| dα dv = 2−�ε/2

∫∫
|v|ε/2|ς(α, v)| dα dv

� 2−�ε/2‖ς‖Bε/2
� 2−�ε/2‖ς‖Bε

,

and ∫∫
|α1v|ε/2|ς(2


)(α, v)| dα dv = 2−�ε/2

∫∫
|α1v|ε/2|ς(α, v)| dα dv

≤ 2−�ε/2

∫∫
(|α1|+ |v|)ε|ς(α, v)| dα dv � 2−�ε/2‖ς‖Bε

.

This completes the proof that supy
∫
(1 + |x− y|)ε/2|F�(x, y)| dx � 2−�ε/2‖ς‖Bε

.

Next we estimate for x ∈ Rd,∫
(1 + |x− y|)ε/2|F�(x, y)| dy

=

∫∫∫∫
|x−v−y|≤100

(1 + |x− y|)ε/2|ς(2
)(α, v)||φ0(y − α1v − y′)− φ0(y − y′)| dv dα dy′ dy

�
∫∫∫∫

|x−v−y|≤100

(1 + |v|)ε/2|ς(2
)(α, v)|min{1, |α1v|ε/2}�{|y−α1v−y′|≤10
or |y−y′|≤10}

dv dα dy′ dy

�
∫∫∫

|x−v−y|≤100

(1 + |v|)ε/2|ς(2
)(α, v)|min{1, |α1v|ε/2} dv dα dx

�
∫∫

(1 + |v|)ε/2|ς(2
)(α, v)|min{1, |α1v|ε/2} dv dα

and above the last quantity has already been shown to be � 2−�ε/2‖ς‖Bε
. This

completes the proof of the lemma. �
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Lemma 10.26. Let ε > 0. For φ ∈ C1, supported in {y : |y| ≤ 10}, ς ∈
Bε(R

d × Rn), j ≥ 0, let

gj(x, y) =

∫
|ς(2j)(α, v)||φ(x− v − y)− φ(x− y)| dα dv.

Then

sup
x

∫
gj(x, y) dy + sup

y

∫
gj(x, y) dx � 2−εj‖ς‖Bε

‖φ‖C1 .

Proof. We may assume ‖φ‖C1 = 1. For any x, we have∫∫∫
(1 + |x− y|)ε|ς(2j)(α, v)||φ(x− v − y)− φ(x− y)| dα dv dy

�
∫∫∫

(1 + |x− y|)ε|ς(2j)(α, v)|min{1, |v|ε}χ{|x−v−y|≤10 or |x−y|≤10} dα dv dy

�
∫∫

(1 + |v|)ε|ς(2j)(α, v)|min{1, |v|ε} dα dv

�
∫∫

|v|ε|ς(2j)(α, v)| dα dv � 2−jε‖ς‖Bε
,

where the last inequality has already been used in the proof of Lemma 10.25. By
symmetry we also get the corresponding second inequality with the roles of x and
y reversed. �

Lemma 10.27. For ε > 0 there is ε′ > 0 such that the following holds. Let
φ1, . . . , φn+1 ∈ C2 supported in {y : |y| ≤ 10} and such that for all but at most two

l, φl ≥ 0 and
∫
φl = 1. For k ∈ Z set Y l

kf = f ∗ φ(2k)
l . For b1, . . . , bn ∈ L∞(Rd),

ς ∈ Bε(R
n × Rd) with

(10.65)

∫
ς(α, v) dv = 0,

and define a kernel Kj,k ≡ Kj,k[b1, . . . , bn] by∫
g(x)

∫
Kj,k(x, y)f(y) dy dx = Λ[ς(2

j)](Y 1
k b1, . . . , Y

n
k bn, Y

n+1
k g, f).

Then, for j ≥ k,

‖Dil2−kKj,k‖Opε′ � 2−ε′(j−k)n‖ς‖Bε

n∏
i=1

‖bi‖∞,

‖Dil2−kKj,k‖Op0
� ‖ς‖L1

n∏
i=1

‖bi‖∞.

Here, the implicit constants may depend on

max
i1,i2,i3,i4∈{1,...,n+1}

‖φi1‖C2‖φi2‖C2‖φi3‖C2‖φl4‖C2 .

Proof. The bound for the Op0 norm is immediate so we focus only on the
bound for the Opε-norms. Note that by scaling (see Lemma 4.16)

Λ[ς(2
j)](Y 1

k b1, . . . , Y
n
k bn, Y

n+1
k g, f) = 2−kdΛ[ς(2

j−k)](Y0b
k
1 , . . . , Y0b

k
n, Y0g

k, fk)

where bki = bi(2
−k·), fk = f(2−k·), gk = g(2−k·). This leads to

Kj,k[b1, . . . , bn](x, y) = 2kdKj−k,0[b
k
1 , . . . , b

k
n](2

kx, 2ky).
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Now ‖bki ‖∞ = ‖bi‖∞, i = 1, . . . , n, and hence after replacing the functions bi
by bki , i = 1, . . . , n, it suffices to check the case k = 0. That is, we need to prove,
for 
 ≥ 0,

(10.66) ‖K�,0[b1, . . . , bn]‖Opε
� 2−ε′�n‖ς‖Bε

n∏
i=1

‖bi‖∞.

In what follows we may assume ‖bi‖L∞ = 1, i = 1, . . . , n. We will prove, under
the assumption that all but at most three of the φi satisfy φi ≥ 0,

∫
φi = 1 we have

(10.67)

sup
x

∫
(1+ |x−y|)ε′ |K�,0(x, y)|dy+sup

y

∫
(1+ |x−y|)ε′ |K�,0(x, y)|dx � 2−ε′�n‖ς‖Bε

,

where the implicit constant is allowed to depend on the C1 norms of up to three of
φi (instead of the C2 norms).

First we see why (10.67) yields the result. The explicit formula for the kernel
is

(10.68) K�,0(x, y) =

∫
φn+1(y − v − x)

∫
ς(2


)(α, v)
n∏

i=1

Y i
0 bi(y − αiv) dα dv.

It implies that ∂xm
K�,0(x, y) is a term of the form covered by (10.67) (with φn+1

replaced by −∂xm
φn+1). Moreover, ∂ym

K�,0(x, y) is a sum of n + 1 terms of the
form covered by (10.67), indeed differentiating (10.68) yields (setting bn+1 := g)

∫
bn+1(x)

∫
∂ym

K�,0(x, y)f(y) dy dx

=

n+1∑
i=1

Λ[ς(2

)](Y 1

0 b1, . . . , Y
i−1
0 bi−1, ∂xm

Y l
0 bi, Y

i+1
0 bi+1, . . . , Y

n+1
0 bn+1, f).

Thus, ∂xm
K�,0(x, y) is a sum of n+ 1 terms of the form covered by (10.67). From

these remarks, it follows, given (10.67), that the expressions

sup
y

0<|h|≤1

|h|−1

∫
|K�,0(x, y + h)−K�,0(x, y)| dx,

sup
x

0<|h|≤1

|h|−1

∫
|K�,0(x, y + h)−K�,0(x, y)| dy,

sup
y

0<|h|≤1

|h|−1

∫
|K�,0(x+ h, y)−K�,0(x, y)| dx,

sup
x

0<|h|≤1

|h|−1

∫
|K�,0(x+ h, y)−K�,0(x, y)| dy

are all bounded by a constant times 2−�ε′n‖ς‖Bε
.
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It remains to prove (10.67). We first compute, with ς̃(α, v) = ς(1− α1, . . . , 1−
αn, v),

Λ[ς(2

)](Y 1

0 b1, . . . , Y
n
0 , Y n+1

0 g, f) = Λ[ς(2

)](Y 1

0 b1, . . . , Y
n
0 , f, Y n+1

0 g)

=

∫∫∫
ς̃(2


)(α,w − y)f(y)

∫
φn+1(w − x)g(x)dx

n∏
i=1

Y i
0 bi(w(1− αi) + αiy) dα dw dy

=

∫∫
g(x)f(y)

∫∫
ς̃(2


)(α, v)φn+1(y + v − x)
n∏

i=1

Y i
0 bi(y + (1− αi)v) dv dα dx dy

and changing variable in α again we get

K�,0(x, y) =

∫∫
ς(2


)(α, v)φn+1(y + v − x)

n∏
i=1

Y i
0 bi(y + αiv) dv dα

=

∫∫
ς(2


)(α, v)
[
φn+1(y + v − x)

n∏
i=1

Y i
0 bi(y + αiv)− φn+1(y − x)

n∏
i=1

Y i
0 bi(y)

]
dv dα;

here we have used the cancellation condition (10.65). Now

|K�,0(x, y)| ≤ I(x, y) +
n∑

i=1

IIi(x, y)

where

I(x, y) =

∫∫
|ς(2
)(α, v)||φn+1(y + v − x)− φn+1(y − x)| dv dα ,

IIi(x, y) =

∫∫
|ς(2
)(α, v)||φn+1(y − x)|

∫
|φi(y + αiv − w)− φi(y − w)|dw dv dα .

Now apply Lemma 10.25 to the expessions IIi and Lemma 10.26 to I, and (10.67)
follows. This completes the proof. �

Proof of Proposition 10.22, conclusion. We focus on the estimates for
Sm1,m2

j [bn+1] as the estimates for Tm1,m2

j [b1] are analogous (switch the roles of b1
and bn+1). We may assume ‖bn+1‖∞ = 1.

In what follows we identify operators with their Schwartz kernels. For an
operator R we denote by ∂xμ

R the operator with Schwartz kernel ∂xμ
R(x, y).

We use Lemma 6.8 to write

Qj+m2
=

d∑
μ=1

2−(j+m2)∂xμ
Rμ

j+m2
,

where Rμ
j+m2

= f ∗ φ̃(2j+m2 )
μ , and φ̃l ∈ C∞

0 supported in {x : |x| ≤ 2}. Now

Λ[ς
(2j)
j ](Qj+m1

Pjb1, X
2
j+m1

Pjb2, . . . , X
n+1
j+m1

Pjbn+1, Qj+m2
f)

= 2−(j+m2)
d∑

μ=1

∫∫
ς
(2j)
j (α, v)

∫
∂xμ

Rμ
j+m2

f(x)Xn+1
j+m1

Pjbn+1(x− v)×

Qj+m1
Pjb1(x− α1v)

n∏
i=2

Qj+m1
Pjbi(x− αiv) dx dv dα .
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Integrating by parts we see that this expression equals
(10.69)

−2−(j+m2)
d∑

μ=1

(
Λ[ς

(2j)
j ](∂xμ

Qj+m1
Pjb1, X

2
j+m1

Pjb2, . . . , X
n+1
j+m1

Pjbn+1, R
μ
j+m2

f)

+

n+1∑
ν=2

Λ[ς
(2j)
j ](Qj+m1

Pjb1, X
2
j+m1

Pjb2, . . . ,

∂xμ
Xν

j+m1
Pjbν . . . , X

n+1
j+m1

Pjbn+1, R
μ
j+m2

f)

)
.

We distinguish the cases m1 ≤ 0 and m1 ≥ 0.
For m1 ≤ 0 we write (10.69) as

Λ[ς
(2j)
j ](Qj+m1

Pjb1, X
2
j+m1

Pjb2, . . . , X
n+1
j+m1

Pjbn+1, Qj+m2
f)

= − 2−m2+m1

d∑
μ=1

n+1∑
ν=1

Λ[ς
(2j)
j ](Y 1,μ,ν

j+m1,j
b1, . . . , Y

n+1,μ,ν
j+m1,j

bn+1, R
μ
j+m2

f)

where, for m1 ≤ 0, the operators Y i,μ,ν
j+m1,j

are given by

Y 1,μ,ν
j+m1,j

=

{
2−j−m1∂xμ

(Qj+m1
Pj) if ν = 1,

Qj+m1
Pj if ν ∈ {2, . . . , n+ 1}

if i = 1, and by

Y i,μ,ν
j+m1,j

=

{
2−j−m1∂xμ

(Pj+m1
Pj) if ν = i,

Pj+m1
Pj if ν ∈ {1, . . . , n+ 1} \ {i}

if 2 ≤ i ≤ n+ 1.
Hence for m1 ≤ 0

Λ[ς
(2j)
j ](Qj+m1

Pjb1, X
2
j+m1

Pjb2, . . . , X
n+1
j+m1

Pjbn+1, Qj+m2
f)

= 2−m2+m1

d∑
μ=1

n∑
ν=1

∫
bn+1(x)K

μ,ν
j+m1,j

(x, y)Rμ
j+m2

f(y)dy

and by Lemma 10.27

‖Dil2−j−m1K
μ,ν
j+m1,j

‖Opε′ � ‖ςj‖Bε

for some ε′ ≤ ε. This, together with Lemma 8.25, implies the asserted bound
(10.60), for m1 ≤ 0.

We now consider the case m1 > 0. Now use the cancellation and support
properties of Qj+m1

to write

Qj+m1
Pj = 2−m1Zj,m1

where Zj,m1
= f ∗ υ

(2j)
j,m and {υj,m : j ∈ Z,m1 ∈ N} is a bounded family of C∞

c

functions supported in {y : |y| ≤ 2}.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

122 10. BOUNDEDNESS OF MULTILINEAR SINGULAR FORMS

We now write (10.69) as

Λ[ς
(2j)
j ](Qj+m1

Pjb1, X
2
j+m1

Pjb2, . . . , X
n+1
j+m1

Pjbn+1, Qj+m2
f)

= − 2−m2−m1

d∑
μ=1

n+1∑
ν=1

Λ[ς
(2j)
j ](Y 1,μ,ν

j+m1,j
b1, . . . , Y

n+1,μ,ν
j+m1,j

bn+1, R
μ
j+m2

f)

where (now for m1 > 0)

Y 1,μ,ν
j+m1,j

=

{
2−j∂xμ

Zj,m1
if ν = 1,

Zj,m1
if ν ∈ {2, . . . , n+ 1},

and for 2 ≤ i ≤ n+ 1

Y i,μ,ν
j+m1,j

=

{
2−j∂xμ

(Pj+m1
Pj) if ν = i,

Pj+m1
Pj if ν ∈ {1, . . . , n+ 1} \ {i} .

We see, using Lemma 10.27, that for m1 > 0

Λ[ς
(2j)
j ](Qj+m1

Pjb1, X
2
j+m1

Pjb2, . . . , X
n+1
j+m1

Pjbn+1, Qj+m2
f)

= 2−m2−m1

d∑
μ=1

n∑
ν=1

∫
bn+1(x)K

μ,ν,m1

j (x, y)Rμ
j+m2

f(y) dy

with ∥∥Dil2−jKμ,ν,m1

j

∥∥
Opε

� ‖ςj‖Bε
.

Using also Lemma 8.25 we obtain the asserted bound (10.60), for m1 > 0. �
10.4.3. Proof of the bound (10.50), concluded. The following proposition

will conclude the proof of part IV in Theorem 5.1.

Proposition 10.28. Let 1 ≤ l1 	= l2 ≤ n + 2. Then, for p ∈ (1, 2] and
p′ = p/(p− 1)

|
∑
j∈Z

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2)|

≤ Cd,p,εn(sup
j

‖ςj‖L1) log3(1 + nΓε)
( ∏
l �=l1,l2

‖bl‖∞
)
‖bl1‖p‖bl2‖p′ .

Proof. By symmetry of the roles of b1, . . . , bn+1, via Theorem 2.9, it suffices
to prove the result for three cases: (l1, l2) = (n+ 1, n+ 2), (l1, l2) = (n+ 2, n+ 1),
and (l1, l2) = (1, n+ 1).

We begin with the case (l1, l2) = (n+ 1, n+ 2). For this we define an operator
S1,j ≡ S1,j [b1, . . . , bn] by∫

g(x)(S1,j [b1, . . . , bn]f)(x) dx := Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2).

It is straightforward to verify the inequalities

‖Dil2−jS1,j‖Opε
� n(sup

j∈Z

‖ςj‖Bε

n∏
i=1

‖bi‖∞,

‖Dil2−jS1,j‖Op0
� (sup

j∈Z

‖ςj‖L1)
n∏

i=1

‖bi‖∞;

here ε ≤ 1 and the Opε, Op0 norms are as in (8.36), (8.37).
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Theorem 10.20 shows∥∥∥∑
j∈Z

S1,j [b1, . . . , bn]
∥∥∥
L2→L2

� n(sup
j

‖ςj‖L1) log3(1 + nΓε)
n∏

i=1

‖bi‖∞.

with convergence in the strong operator topology. By Proposition 8.9 we get, for
1 < p ≤ 2,∥∥∥∑

j∈Z

S1,j [b1, . . . , bn]
∥∥∥
Lp→Lp

≤ Cd,p,εn(sup
j

‖ςj‖L1) log3(1 + nΓε)

n∏
i=1

‖bi‖∞,

and ∥∥∥∑
j∈Z

tS1,j [b1, . . . , bn]
∥∥∥
Lp→Lp

≤ Cd,p,εn(sup
j

‖ςj‖L1) log3(1 + nΓε)
n∏

i=1

‖bi‖∞,

which are equivalent to the statement of the proposition in the cases (l1, l2) =
(n+ 1, n + 2) and (l1, l2) = (n + 2, n + 1), respectively. The convergence is in the
sense of the strong operator topology (as operators bounded on Lp).

We now turn to the case (l1, l2) = (1, n + 1). If we apply Theorem 8.22 to∑
tS1,j we also get an H1 → L1 bound∥∥∥∑

j∈Z

tS1,j [b1, . . . , bn]
∥∥∥
H1→L1

� n(sup
j

‖ςj‖L1) log3(1 + nΓε)
n∏

i=1

‖bi‖L∞ .

This means that for b1, . . . , bn ∈ L∞(Rd), bn+2 ∈ L∞(Rd), bn+1 ∈ H1(Rd), we have

(10.70)
∣∣∣∑
j∈Z

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2)

∣∣∣
� n(sup

j
‖ςj‖L1) log3(1 + nΓε)

( n∏
i=1

‖bi‖∞
)
‖bn+1‖H1‖bn+1‖∞.

For j ∈ Z, define an operator S2,j [b2, . . . , bn, bn+2] by∫
g(x)(S2,j [b2, . . . , bn, bn+2]f)(x) dx := Λ[ς

(2j)
j ](g, Pjb2, . . . , Pjbn, f, (I − Pj)bn+2).

Since tPj = Pj the case (l1, l2) = (1, n+ 1) is equivalent to the inequality

(10.71)
∥∥∥∑

j∈Z

PjS2,j [b2, . . . , bn, bn+2]Pj

∥∥∥
Lp→Lp

� n sup
j

‖ς‖L1(1 + nΓε)
∏

l∈{2,...,n,n+2}
‖bl‖∞.

To show (10.71) we first observe that by Theorem 2.9, there is a c > 0 (independent
of n) such that for ε′ < cε there are ς̃j ∈ Bε′(R

n × Rd) with ‖ς̃j‖Bε′ � n‖ς‖Bε
and

‖ς̃j‖L1 = ‖ςj‖L1 such that∫
b1(x)(S2,j [b2, . . . , bn, bn+2]bn+1)(x) dx

= Λ[ς̃
(2j)
j ](Pjb2, . . . , Pjbn, (I − Pj)bn+2, b1, bn+1).
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If we apply (10.70) with the family {ς̃j} in place of {ςj} and ε′ in place of ε) we get∣∣∣∑
j∈Z

Λ[ς̃
(2j)
j ](Pjb1, . . . , Pjbn+1, (I − Pj)bn+2)

∣∣∣
� n(sup

j
‖ςj‖L1) log3

(
1 + n

supj ‖ς̃j‖Bε

supj ‖ς̃j‖L1

)( n∏
i=1

‖bi‖∞
)
‖bn+1‖H1‖bn+1‖∞

� n(sup
j

‖ςj‖L1) log3(1 + nΓε)
( n∏
i=1

‖bi‖∞
)
‖bn+1‖H1‖bn+1‖∞

which (in view of tPj = Pj) can be rephrased as∥∥∥∑
j

PjS2,j [b2, . . . , bn, bn+2]Pj

∥∥∥
H1→L1

� n(sup
j

‖ςj‖L1) log3(1 + nΓε)
∏

l∈{2,...,n,n+2}
‖bl‖∞.

We wish to apply Lemma 8.24 to the kernels σj = Dil2−jS2,j . Observe that the
Schur integrability norms for these kernels satisfy the uniform estimates

Int1ε[σj ] + Int∞ε [σj ] � ‖ς̃j‖B
ε′

∏
l∈{2,...,n,n+2}

‖bl‖L∞ � n sup
j

‖ςj‖Bε

∏
l∈{2,...,n,n+2}

‖bl‖∞,

and

Int1ε[σj ] + Int∞ε [σj ] � ‖ς̃j‖L1

∏
l∈{2,...,n,n+2}

‖bl‖∞ ≤ sup
j

‖ςj‖L1

∏
l∈{2,...,n,n+2}

‖bl‖∞.

Now Theorem 8.22 in conjunction with Lemma 8.24 applies to show∥∥∥∑
j

PjS2,j [b2, . . . , bn, bn+2]Pj

∥∥∥
L2→L2

� n(sup
j

‖ςj‖L1) log3(1 + nΓε)
∏

l∈{2,...,n,n+2}
‖bl‖∞,

with convergence in the strong operator topology. Finally (10.71) follows by inter-
polation (see Corollary 8.10). This completes the proof. �

10.5. Proof of the main theorem: Part V

In this section, we consider the multilinear form

Λ3(b1, . . . , bn+2) :=
∑
j

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+2),

where the summation is a priori extended over a finite subset of Z, and where, for
some fixed ε > 0, {ςj : j ∈ Z} ⊂ Bε(R

n×Rd) is a bounded set with
∫
ςj(α, v)dv = 0,

for all j and almost every α. To prove part V of Theorem 5.1 we need to establish
for 1 < p ≤ 2 the inequality
(10.72)

|Λ3(b1, . . . , bn+2)| ≤ Cd,p,εn
2(sup

j
‖ςj‖L1) log3(1+nΓε)

( n∏
i=1

‖bi‖∞
)
‖bn+1‖p′‖bn+2‖p.

As in the previous section the heart of the proof lies in the case p = 2 which
we state as a theorem.
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Theorem 10.29. Let b1, . . . , bn ∈ L∞(Rd) and bn+1, bn+2 ∈ L2(Rd). Then,

lim
N→∞

N∑
j=−N

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+2) = Λ3(b1, . . . , bn+2)

and Λ3 satisfies

|Λ3(b1, . . . , bn+2)| ≤ Cd,εn
2 sup

j
‖ςj‖L1 log3(1 + nΓε)

( n∏
i=1

‖bi‖∞
)
‖bn+1‖2‖bn+1‖2.

The sum defining the operator T 3[n1, . . . , bn] associated to Λ3 converges in the
strong operator topology as bounded operators L2 → L2.

Proof of (10.72) given Theorem 10.29. We may assume ‖bl‖L∞ = 1, l =
1, . . . , n. For j ∈ Z define the operator Tj by∫

g(x)Tjf(x) dx := Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn, Pjg, f).

Theorem 10.29 is equivalent to∥∥∥∑
j∈Z

TjPj

∥∥∥
L2→L2

� n2 sup
j

‖ςj‖L1 log3(1 + nΓε)

n∏
i=1

‖bi‖p

Corollary 8.10 applies since supj Int
1
ε[Dil2−jTj ] � supj ‖ςj‖Bε

, supj Int
1
0[Dil2−jTj ] �

supj ‖ςj‖L1 . This completes the proof. �

We now turn to the proof of Theorem 10.29. The argument is analogous to the
arguments in the previous section and therefore we shall be brief.

10.5.1. Basic decompositions. We argue as in §10.4.1 and decompose

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+2)

= lim
M→∞

(
Λ[ς

(2j)
j ](Pj+MPjb1, . . . , Pj+MPjbn+1, Pj+MPjbn+2)

− Λ[ς
(2j)
j ](Pj−MPjb1, . . . , Pj−MPjbn+1, Pj−MPjbn+2)

)
= lim

M→∞

M∑
m=−M+1

(
Λ[ς

(2j)
j ](Pj+mPjb1, . . . , Pj+mPjbn+2)

− Λ[ς
(2j)
j ](Pj+m−1Pjb1, . . . , Pj+m−1Pjbn+1, Pj+m−1Pjbn+2)

)
and thus

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+2) =

n+1∑
l=1

∞∑
m=−∞

Λ[ς
(2j)
j ](Pj+m−1Pjb1, . . . , Pj+m−1Pjbl−1,

Qj+mPjbl, Pj+mPjbl+1, . . . , Pj+mPjbn+2).

We repeat the same procedure to each term and write, for fixed m ∈ Z

Λ[ς
(2j)
j ](Pj+m−1Pjb1, . . . , Pj+m−1Pjbl−1, Qj+mPjbl, Pj+mPjbl+1, . . . , Pj+mPjbn+2)
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as the limit (as M → ∞) of the differences

Λ[ς
(2j)
j ]
(
Pj+MPj+m−1Pjb1, . . . , Pj+MPj+m−1Pjbl−1,

Pj+MQj+mPjbl, Pj+MPj+mPjbl+1, . . . , Pj+MPj+mPjbn+2

)
−Λ[ς

(2j)
j ](Pj−MPj+m−1Pjb1, . . . , Pj−MPj+m−1Pjbl−1,

Pj−MQj+mPjbl, Pj−MPj+mPjbl+1, . . . , Pj−MPj+mPjbn+2) .

We continue as above, writing each difference as a collapsing sum, and than ex-
panding each summand using the multilinearity of the functionals. The limit of the
expressions in the last display becomes

Λ[ς
(2j)
j ](Pjb1, . . . , Pjbn+2) =

∑
(l1,l2)

1≤l1 �=l2≤n+2

∑
(m1,m2)∈Z2

λm1,m2

j,l1,l2
(b1, . . . , bn+2)

where, for l1 < l2,

λm1,m2

j,l1,l2
(b1, . . . , bn+2) :=

Λ[ς
(2j)
j ]
(
Pj+m2−1Pj+m1−1Pjb1, . . . , Pj+m2−1Pj+m1−1Pjbl1−1,

Pj+m2−1Qj+m1
Pjbl1 , Pj+m2−1Pj+m1

Pjbl1+1, . . . , Pj+m2−1Pj+m1
Pjbl2−1,

Qj+m2
Pj+m1

Pjbl2 , Pj+m2
Pj+m1

Pjbl2+1, . . . , Pj+m2
Pj+m1

Pjbn+2

)
.

For l1 > l2 there is an obvious modification.
There are (n+2)(n+1) = O(n2) terms in the sum

∑
1≤l1 �=l2≤n+2. It is therefore

our task to show that

(10.73)
∣∣∣ ∑
m1,m2

∑
j

λm1,m2

j,l1,l2
(b1, . . . , bn+2)

∣∣∣
� sup

j
‖ςj‖L1 log3(1 + nΓε)

( n∏
i=1

‖bi‖∞
)
‖bn+1‖2‖bn+2‖2;

then summing the O(n2) terms will complete the proof.

10.5.2. Proof of the bound (10.73). For k ∈ Z, 1 ≤ l ≤ n+ 2, let

X1,l
k , X2,l

k ∈ {Pk, Pk−1}.
For 1 ≤ l1, l2 ≤ n+ 2, j, k1, k2 ∈ Z, define the operator Tm1,m2

j,l1,l2
by∫

bl1(x)T
m1,m2

j,l1,l2
bl2(x) dx

= Λ[ς
(2j)
j ](X1,1

j+m1
X2,1

j+m2
Pjb1, . . . ,

X1,n
j+m1

X2,n
j+m2

Pjbn, X
1,n+1
j+m1

Qj+m2
Pjbn+1, Qj+m1

Pjbn+2),

where we have suppressed the dependance of Tm1,m2

j,l1,l2
on bl, l 	= l1, l2.

Lemma 10.30. Let ρj,m1,m2
= min{2j , 2j+m1 , 2j+m2}. There is a c > 0 (inde-

pendent of n so that for ε′ > cε

(10.74)
∥∥Dilρ−1

m1,m2,j
Tm1,m2

j,l1,l2

∥∥
Opε′

� min{2−ε′|m1|, 2−ε′|m2|}n2‖ςj‖Bε

∏
l �=l1,l2

‖bl‖L∞ ,
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and
‖Dilρ−1

m1,m2,j
Tm1,m2

j,l1,l2
‖Op0

� ‖ςj‖L1

∏
l �=l1,l2

‖bl‖∞ .

Proof. The bound for ‖Dilρ−1
m1,m2,j

Tm1,m2

j,l1,l2
‖Op0

is immediate, and, equiva-

lently, so is the bound for ‖Tm1,m2

j,l1,l2
‖Op0

. Thus we focus only on the bound for

‖Dilρ−1
m1,m2,j

Tm1,m2

j,l1,l2
‖Opε′ . Fix l1, l2. We may assume ‖bl‖L∞ = 1, l 	= l1, l2. We

distinguish the cases (i) m1,m2 ≥ 0, (ii) m1 ≤ min{0,m2}, (iii) m2 ≤ min{0,m1}.

(i) The case m1,m2 ≥ 0. Now ρj,m1,m2
= 2j . One uses that, for m ≥ 0,

Qj+mPj = 2−mXm,j , where Xm,jf = f ∗ φ
(2j)
m,j and {φm,j : m ≥ 0} is a bounded

subset of C∞ functions supported in {|y| ≤ 2}. Then the bound∥∥Dil2−jTm1,m2

j,l1,l2

∥∥
Opε1

� 2−m1−m2‖ςj‖Bε

follows quickly. (10.74) follows in this case.

(ii) The case m1 ≤ min{0,m2}, that is, ρj,m1,m2
= 2j+m1 . Lemma 10.27

(combined with Theorem 2.9) shows that we have∥∥Dil2−j−m1T
m1,m2

j,l1,l2

∥∥
Opε2

� 2−ε2m1n2‖ςj‖Bε
.

Using that X1,n+1
j+m1

Qj+m2
= 2−(m2−m1)Xj,m1,m2

f , where Xj,m1,m2
f = f ∗ φ(2j+m1 )

j,m1,m2

and {φj,m1,m2
: m2 ≥ m1} ⊂ C∞

0 (Bd(2)) is a bounded set, the bound∥∥Dil2−j−m1T
m1,m2

j,l1,l2

∥∥
Opε3

� 2−(m2−m1)‖ςj‖Bε

follows easily. Combining these two estimates, (10.74) follows.

(iii) The case m2 ≤ min{0,m1}, that is ρj,m1,m2
= 2j+m2 . Now we use an

integration by parts argument as in the proof of Proposition 10.22 to obtain∥∥Dil2−j−m2T
m1,m2

j,l1,l2

∥∥
Opε4

� 2−(m1−m2)‖ςj‖Bε
.

Using Lemma 10.27 (combined with Theorem 2.9), as above, we have∥∥Dil2−j−m2T
m1,m2

j,l1,l2

∥∥
Opε5

� 2−ε′m1n2‖ςj‖Bε
.

Combining these two estimates yields (10.74) in this last case and the proof is
complete. �

Proposition 10.31. For each m1,m2,
∑

j∈Z
Tm1,m2

j,n+1,n+2 converges in the strong

operator topology as operators L2 → L2 (with equiconvergence with respect to the
{(b1, . . . , bn) : ‖‖bi‖∞ ≤ C}) and the estimates
(10.75)∥∥∥∑

j∈Z

Tm1,m2

j,n+1,n+2

∥∥∥
L2→L2

� min
{
2−ε′(|m1|+|m2|)nM sup

j
‖ςj‖Bε

, sup
j

‖ςj‖L1

} n∏
i=1

‖bi‖∞,

for suitable M � 1, and
(10.76)

∞∑
m1=−∞

∞∑
m2=−∞

∥∥∥∑
j∈Z

Tm1,m2

j,n+1,n+2

∥∥∥
L2→L2

� sup
j

‖ςj‖L1 log2(1 + nΓε)
n∏

i=1

‖bi‖∞.

hold.
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Proof. With Lemma 10.30 in hand, (10.75) is based on almost orthogonality
(Lemma 9.1) and follows just as in the proof of Proposition 10.23. (10.76) follows
after summing in m1, m2. �

We combine the above results with several applications of Theorem 8.22 to
prove our last proposition.

Proposition 10.32. For 1 ≤ l1, l2 ≤ n+ 2,∥∥∥ ∑
j,m1,m2

Tm1,m2

j,l1,l2

∥∥∥
L2→L2

� sup
j

‖ςj‖L1 log3(1 + nΓε)
n∏

i=1

‖bi‖∞.

The sum converges in the strong operator topology, with equiconvergence with respect
to {(b1, . . . , bn) : ‖bi‖∞ ≤ C}.

Proof. For r ∈ Z define

Sr,l1,l2 :=
∑

j,m1,m2:
min{j,j+m1,j+m2}=r

Tm1,m2

j,l1,l2
.

Note that
∑

r∈Z
Sr,l1,l2 =

∑
j,m1,m2∈Z

Tm1,m2

j,l1,l2
, and Lemma 10.30 shows

(10.77)
∥∥Dil2−rSr,l1,l2

∥∥
Op′

ε
� nM sup

j
‖ςj‖Bε

∏
l �=l1,l2

‖bl‖∞,

and

(10.78)
∥∥Dil2−rSr,l1,l2

∥∥
Op0

� log2(1 + nΓε) sup
j

‖ςj‖L1

∏
l �=l1,l2

‖bl‖∞.

By Proposition 10.31,∥∥∥∑
r∈Z

Sr,n+1,n+2

∥∥∥
L2→L2

� sup
j

‖ςj‖L1 log2(1 + nΓε)

n∏
i=1

‖bi‖∞

and using (10.77), (10.78), Theorem 8.22 shows∥∥∥∑
r∈Z

Sr,n+1,n+2

∥∥∥
H1→L1

� (sup
j

‖ςj‖L1) log3(1 + nΓε)
n∏

i=1

‖bi‖∞.

Here we have convergence in the strong operator topology (as operators H1 → L1),
with equicontinuity with respect to b1, . . . , bn in bounded subsets of L∞(Rd). Using
the definition of Sr,l1,l2 , this is equivalent to∥∥∥∑

r∈Z

Sr,l2,n+2

∥∥∥
H1→L1

� sup
j

‖ςj‖L1 log3(1 + nΓε)
∏

l �=l2,n+2

‖bl‖∞,

with convergence in the strong operator topology (as operators H1 → L1) with
equicontinuity with respect to bl, l /∈ {l2, n + 2}, in bounded subsets of L∞(Rd).
This argument will now be used repeatedly. Using this L1 → L1 result together
with (10.77) and (10.78), Theorem 8.22 shows∥∥∥∑

r∈Z

Sr,l2,n+2

∥∥∥
L2→L2

� sup
j

‖ςj‖L1 log3(1 + nΓε)
∏

l �=l2,n+2

‖bl‖∞.

Taking transposes, this shows∥∥∥∑
r∈Z

Sr,n+2,l2

∥∥∥
L2→L2

� sup
j

‖ςj‖L1 log3(1 + nΓε)
∏

l �=l2,n+2

‖bl‖∞.
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Using this, (10.77) and (10.78), Theorem 8.22 shows∥∥∥∑
r∈Z

Sr,n+2,l2

∥∥∥
H1→L1

� sup
j

‖ςj‖L1 log3(1 + nΓε)
∏

l �=l2,n+2

‖bl‖∞.

Using the definition of Sr,l1,l2 , this is equivalent to∥∥∥∑
r∈Z

Sr,l1,l2

∥∥∥
H1→L1

� sup
j

‖ςj‖L1 log3(1 + nΓε)
∏

l �=l1,l2

‖bl‖∞.

Finally, using this again with (10.77) and (10.78), one last application of Theorem
8.22 completes the proof of the proposition. �
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CHAPTER 11

Interpolation

We use complex interpolation to show that the Lp1 × · · · × Lpn+2 estimates in
Theorem 2.8 follow from the special case in Theorem 2.10, together with Theorem
2.9.

Let K =
∑

j ς
(2j)
j be as in the assumption of Theorem 2.8 with sup ‖ςj‖Bε

< ∞.

Define for a permutation � of {1, . . . , n+ 2}

Λ�[K](b1, . . . , bn+2) = Λ[K](b�(1), . . . , b�(n+2))

so that Λ�[K] = Λ[K�] with

K� =
∑
j

(
�ςj)
(2j)

where 
� is as in Theorem 2.9. There is ε′ > c(ε), B ≥ 1, both independent of n,
such that for all permutations ‖
�σ‖Bε′ ≤ Bn2‖ς‖Bε

and ‖
�σ‖L1 = ‖ς‖L1 . As a
consequence we get for any pair l1, l2 ∈ {1, . . . , n+ 2}, l1 	= l2 the estimate

|Λ[K](b1, . . . , bn+2)|

≤ Cε′,d,δn
2 sup
j∈Z

‖ςj‖L1 log3
(
2 + n

Bn2 supj∈Z ‖ςj‖Bε

supj∈Z ‖ςj‖L1

)( ∏
l/∈{l1,l2}

‖bl‖∞
)
‖bl1‖p‖bl2‖p′

≤ A
( ∏

l/∈{l1,l2}
‖bl‖∞

)
‖bl1‖p‖bl2‖p′

(11.1)

where 1 + δ ≤ p ≤ 2 and

A := 33BCε′,d,δn
2 sup
j∈Z

‖ςj‖L1 log3
(
2 + n

supj∈Z
‖ςj‖Bε

supj∈Z ‖ςj‖L1

)
.

Let R be the set of points (p−1
1 , . . . , p−1

n+2) ∈ [0, 1]n+2 for which the inequality

(11.2) |Λ[K](b1, . . . , bn+2)| ≤ A
n+2∏
i=1

‖bi‖pi

holds for all (b1, . . . , bn+2) ∈ Lp1(Rd)× · · · × Lpn+2(Rd).
We note that if P0 = (p−1

1,0, . . . , p
−1
n+2,0) and P1 = (p−1

1,1, . . . , p
−1
n+2,1) both belong

to R then, by complex interpolation for multilinear functionals, we also have for
0 ≤ ϑ ≤ 1

|Λ[K](b1, . . . , bn+2)| ≤ A

n+2∏
i=1

‖bi‖[Lpi,0 ,Lpi,1 ]ϑ
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where [·, ·]θ denotes Calderón’s complex interpolation method, see Theorem 4.4.1
in [1]. By Theorem 5.1.1 in [1] (a version of the Riesz-Thorin theorem) we have
the identification of the complex interpolation norm with the standard Lp norm:

‖f‖[Lpi,0 ,Lpi,1 ]ϑ = ‖f‖Lp , p−1 = (1− ϑ)p−1
i,0 + ϑp−1

i,1 .

We conclude that the set R is convex. Denote by ei, i = 1, . . . , n+2, the standard
basis in Rn+2. By (11.1), R contains all points in Rn+2 of the form

Pi,j(δ) =
δ

1 + δ
ei +

1

1 + δ
ej , i 	= j.

Let

Pδ =
{
x ∈ Rn+2 :

n+2∑
i=1

xi = 1, 0 ≤ xj ≤ (δ + 1)−1, j = 1, . . . , n+ 2
}
.

Pδ is a compact convex subset of Rn+2, of dimension n+ 1. It is easy to see that
{Pi,j(δ) : i 	= j} is the set of the extreme points of Pδ. By Minkowski’s theorem
(see e.g. Theorem 2.1.9 in [24]) every point in Pδ is a convex combination of (at
most n+ 2 of) the extreme points Pi,j(δ). Thus we can conclude

Pδ ⊂ R,

and we have verified (11.2) for all (n+2)-tuples of exponents pi, with
∑n+2

i=1 p−1
i = 1

and 1 + δ ≤ pi ≤ ∞. This completes the proof. �
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Astérisque, vol. 57, Société Mathématique de France, Paris, 1978. With an English summary.
MR518170

[12] G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow, J.
Reine Angew. Math. 616 (2008), 15–46, DOI 10.1515/CRELLE.2008.016. MR2369485
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