
ENDPOINT INEQUALITIES FOR

BOCHNER-RIESZ MULTIPLIERS IN THE PLANE

Andreas Seeger

Abstract. A weak-type inequality is proved for Bochner-Riesz means at the critical
index, for functions in Lp(R2), 1 ≤ p < 4/3.

1. Introduction

For a Schwartz-function f ∈ S(R2) let f̂(ξ) =
∫
f(y)e−i〈y,ξ〉dy denote the Fourier

transform and define the Bochner-Riesz means by

Sλ
Rf(x) =

1

(2π)2

∫

|ξ|≤R

(1 − |ξ|2
R2

)λf̂(ξ)ei〈x,ξ〉 dξ;

we set Sλ = Sλ
1 . It is a classical theorem of Bochner that Sλ extends to a bounded

operator on Lp(R2), 1 ≤ p ≤ ∞ if λ > 1/2. The theorem of Carleson and Sjölin
[2] states that Sλ is bounded in Lp(R2) if 0 < λ ≤ 1

2 and 4
3+2λ < p < 4

1−2λ . It is

well known that the Lp boundedness fails if p ≤ 4
3+2λ and C. Fefferman [11] showed

that S0 is not bounded in Lp(R2) if p 6= 2.
In this paper we are concerned with endpoint estimates for the critical exponent

p0(λ) = 4
3+2λ . In [4], [5] M. Christ proved that Sλ is of weak type (p0(λ), p0(λ)) if

1/6 < λ ≤ 1/2 (for related results see also [6], [15]). A combination of L2-variants
of Calderón-Zygmund theory (as used first by Fefferman [10]) and the Lp → L2

restriction theorem for the Fourier transform (valid for p ≤ 6/5 = p0(1/6)) is
essential in Christ’s analysis; this accounts for the restriction λ > 1/6. It had been
an open problem whether the weak type inequality for the critical index λ(p) =
2(1/p− 1/2)− 1/2 is true for 6/5 ≤ p < 4/3 (although for radial functions this was
proved by Chanillo and Muckenhoupt [3]).

Theorem 1.1. Suppose that 0 < λ ≤ 1/2. Then for all α > 0 there is the weak-type

inequality

∣∣{x ∈ R2 : |Sλf(x)| > α}
∣∣ ≤ C

‖f‖p0
p0

αp0
, p0 =

4

3 + 2λ
,

where C does not depend on f or α.

By scaling the same estimate holds for Sλ
R, uniformly in R, and a standard

argument gives that limR→∞ Sλ
Rf = f in the topology of the weak type space Lp0∞

provided that f ∈ Lp0(R2).
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We shall also prove an Lp endpoint version of the Carleson-Sjölin theorem. Define

(1.1) mλ,γ(ξ) =
(1 − |ξ|2)λ

+

(1 − log(1 − |ξ|2))γ
.

Theorem 1.2. Suppose that 1 ≤ p < 4/3 and λ(p) = 2( 1
p
− 1

2
) − 1

2
. Then mλ(p),γ

is a Fourier multiplier of Lp(R2) if and only if γ > 1
p .

The necessity of the condition γ > 1/p was proved in [14], the sufficiency for
p ≤ 6/5 in [15].

In what follows c and C will always be positive numbers which may assume
different values in different formulas.

2. Strong type estimates

For an interval I on the real line denote by I∗ the interval with same midpoint
and double length. Suppose I = {Ij}j≥0 is a collection of intervals such that
Ij ⊂ (1/4, 4) and 2−j−3 ≤ |Ij | ≤ 2−j and such that

I∗j ∩ I∗j′ = ∅ if j 6= j′.

For each j ≥ 0 let ψj be a C2-function supported in Ij with bounds

‖ψ(ℓ)
j ‖∞ ≤ 2jℓ, ℓ = 0, 1, 2.

Let η ∈ C∞
0 (R2) such supp (η) ⊂ {ξ ∈ R2 : |ξ1/ξ2| ≤ 10−1, ξ2 > 0}.

Define the operator Tj by

(2.1) T̂jf(ξ) = η(ξ)ψj(|ξ|)f̂(ξ).

Tj is a bounded operator on L1 with operator norm O(2j/2), and Córdoba [8]

showed that the L4/3 operator norm of Tj is O(j1/4). We note that in order to
prove results such as Theorem 1.2 for p > 1 it is not sufficient to derive sharp Lp

bounds for the individual operators Tj . Our main result is

Theorem 2.1. Suppose that 1 ≤ p < 4/3 and λ(p) = 2( 1
p − 1

2 ) − 1
2 and I, Tj are

as above. Then there is the inequality

(2.2)
∥∥∥
∑

j

Tjfj

∥∥∥
p
≤ C

(∑

j

[
2jλ(p)

∥∥fj

∥∥
p

]p
) 1

p

.

In particular if

(2.3) m =
∑

j

2−jλ(p)ajη(ξ)ψj(|ξ|)

then m is a Fourier multiplier of Lp if {aj} ∈ ℓp (simply apply Theorem 2.1 with

fj = aj2
−jλ(p)f). It is easy to see that the multiplier mλ,γ in (1.1) is a finite sum

of a smooth compactly supported function and rotates of multipliers of the form
(2.3), with aj = cj−γ . Therefore Theorem 2.1 implies Theorem 1.2.
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Proof of Theorem 2.1. By duality the inequality (2.2) is equivalent to

(2.4)
(∑

j

[
2−jλ(q′)‖Tjf‖q

]q
) 1

q ≤ C‖f‖q, q > 4.

As in [8] one decomposes each ψj(| · |) into pieces which are essentially supported in

rectangles of dimensions (c2−j/2, c2−j). To this end let β ∈ C∞
0 (R) be supported

in (−1, 1) such that
∑∞

ν=−∞ β(s− ν) = 1 for all s ∈ R. Then define T ν
j by

T̂ ν
jf(ξ) = β(2j/2ξ1 − ν)T̂jf(ξ).

For n ≤ j/2 let

Zn
j = {(ν, ν′) ∈ Z2 : 2j/2−n−1 < |ν − ν′| ≤ 2j/2−n}.

Notice that T ν
jf T

ν′

j f = 0 if (ν, ν′) ∈ Zn
j and n < 0. Therefore

(∑

j

[
2−jλ(q′)‖Tjf‖q

]q
) 1

q

=
(∑

j

[
2−2jλ(q′)

∥∥∥
∑

ν

∑

ν′

T ν
jf T

ν′

j f
∥∥∥

q

2

] q

2
) 1

q

≤
∞∑

n=0

( ∑

j≥2n

[
2−2jλ(q′)

∥∥∥
∑

(ν,ν′)∈Zn
j

T ν
j f T

ν′

j f
∥∥∥

q

2

] q
2
) 1

q

.(2.5)

We shall show that for q ≥ 4 the nth term in (2.5) is bounded by C2−n(1/2−2/q)‖f‖q

from which (2.4) immediately follows. This is contained in

Proposition 2.2. For f, g ∈ S(R2) let

Bn
j (f, g) =

∑

(ν,ν′)∈Zn
j

T ν
j f T

ν′

j g.

Then for q ≥ 4 there is the inequality

(2.6)
( ∑

j≥2n

[
2−2jλ(q′)‖Bn

j (f, g)‖ q
2

] q
2

) 2
q ≤ C2−n(1− 4

q
)‖f‖q‖g‖q.

Proof. The inequality follows by complex interpolation for bilinear mappings from
the cases q = 4 and q = ∞. The correct interpretation of (2.6) for q = ∞ is of
course

sup
j

2−j
∥∥∥

∑

(ν,ν′)∈Zn
j

T ν
j f T

ν′

j g
∥∥∥
∞

≤ C2−n‖f‖∞‖g‖∞.

But this is immediate since each operator T ν
j is bounded on L∞ with norm inde-

pendent of j and ν and since the cardinality of Zj
n is bounded by C2j/2 × 2j/2−n =

C2j−n.
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We shall now prove the required estimate for q = 4 which is

(2.7)
( ∑

j≥2n

‖Bn
j (f, g)‖2

2

)1/2

≤ C‖f‖4‖g‖4

uniformly in n.
We first use Plancherel’s theorem and C. Fefferman’s basic observation ([12], [8])

that for fixed j the sets supp (T̂ ν
jf) + supp (T̂ ν′

j f) are essentially disjoint; that is

each ξ ∈ R2 is contained in at most M of these sets where M is independent of j.
This yields the inequality

(2.8)
∑

j≥2n

‖Bn
j (f, g)‖2

2 ≤ C
∑

j≥2n

∑

(ν,ν′)∈Zn
j

‖T ν
jf T

ν′

j g‖2
2

It is crucial for this proof that a finer decomposition can be made depending on

how far apart the supports of T̂ ν
jf and T̂ ν′

j g are, that is, depending on n. We define

operators T νµ
j by

T̂ νµ
j f(ξ) = β(2j−nξ1 − µ)T̂ ν

jf(ξ)

so that T̂ νµ
j f is supported in a rectangle of dimensions (C2−j+n, C2−j). Again one

can check that for fixed j and fixed (ν, ν′) ∈ Zn
j each ξ ∈ R2 is contained in at most

M of the sets Eµµ′

jnνν′ = supp (T̂ νµ
j f) + supp (̂T ν′µ′

j g) where M is independent of j,

ν, ν′. Each Eµµ′

jnνν′ is contained in a rectangle of dimensions (C ′2−j+n, C ′2−j). For

fixed j, ν, ν′ there are no more than C ′′2(j−2n) of these rectangles and they form an

essentially disjoint cover of supp (T̂ ν
jf)+supp (T̂ ν′

j g), the latter set being contained

in a rectangle of dimensions (C2−j/2, C2−j/2−n). The disjointness property and
Plancherel’s theorem imply that

(2.9)
∑

j≥2n

‖Bn
j (f, g)‖2

2 ≤ C
∑

j≥2n

∑

µ,µ′

∑

(ν,ν′)∈Zn
j

‖T νµ
j f T ν′µ′

j g‖2
2.

For any integer κ with |κ| ≤ 2n let

Wκ
jn = {µ ∈ Z : |2n−jµ− 2−nκ| ≤ 2−n}.

Then observe that

(2.10) T νµ
j f T ν′µ′

j g = 0 if (ν, ν′) ∈ Zn
j , µ ∈ Wκ

jn, µ
′ ∈ Wκ′

jn, |κ− κ′| ≥ 8.

Indeed, if µ ∈ Wκ
jn, µ′ ∈ Wκ′

jn, T νµ
j f T ν′µ′

j g 6= 0 then |2n−jµ − 2−j/2ν| ≤ 2−j/2+1

and |2n−jµ′ − 2−j/2ν′| ≤ 2−j/2+1. If (ν, ν′) ∈ Zn
j this implies that |2n−j(µ− µ′)| ≤

2−j/2+2 + 2−n ≤ 5 · 2−n and therefore |κ− κ′| ≤ 7, hence (2.10). Moreover we note

that for µ ∈ Wκ
jn the support of T̂ νµ

j f is essentially a rectangle with eccentricity

2−n such that the directions of its sides depend on κ but not on µ.
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By (2.9) and (2.10) we obtain that

∑

j≥2n

‖Bn
j (f, g)‖2

2

≤C
∑

j≥2n

∑

κ

∑

κ′

|κ′−κ|<8

∥∥∥
( ∑

µ∈Wκ
jn

∑

ν

|T νµ
j f |2

) 1
2
( ∑

µ′∈Wκ′

jn

∑

ν′

|T ν′µ′

j g|2
) 1

2
∥∥∥

2

2

≤C ′
∑

j≥2n

∑

κ

∑

κ′

|κ′−κ|<8

∥∥∥
( ∑

µ∈Wκ
jn

∑

ν

|T νµ
j f |2

) 1
2
∥∥∥

2

4

∥∥∥
( ∑

µ′∈Wκ′

jn

∑

ν′

|T ν′µ′

j g|2
) 1

2
∥∥∥

2

4

≤C ′′
( ∑

j≥2n

∑

κ

∥∥∥
( ∑

µ∈Wκ
jn

∑

ν

|T νµ
j f |2

) 1
2
∥∥∥

4

4

) 1
2
( ∑

j≥2n

∑

κ

∥∥∥
( ∑

µ∈Wκ
jn

∑

ν

|T νµ
j g|2

) 1
2
∥∥∥

4

4

) 1
2

.

Therefore the desired estimate (2.7) follows from the case q = 4 of the following
lemma.

Lemma 2.3. For q ≥ 2 there is the inequality

(2.11)
( ∑

j≥2n

∑

κ

∥∥∥
( ∑

µ∈Wκ
jn

∑

ν

|T νµ
j f |2

) 1
2
∥∥∥

q

q

) 1
q ≤ C‖f‖q

where C does not depend on n.

Proof. It suffices to prove (2.11) for q = 2 and q = ∞. Let hνµ
j be the Fourier

multiplier defining T νµ
j .

For fixed µ and j there are at most three ν such that T νµ
j 6= 0 and since the

supports of the functions ψj are disjoint it follows that each ξ ∈ R2 is contained
in at most 6 of the sets supp hµν

j . Moreover for fixed µ and j there are at most

two κ such that µ ∈ Wκ
jn. Now (2.11) for q = 2 is an immediate consequence of

Plancherel’s theorem.

In order to check the required estimate for q = ∞ we consider for a fixed a =
{aνµ} ∈ ℓ2(Z2) the multiplier

mjκ
a (ξ) =

∑

µ∈Wκ
jn

∑

ν

aνµh
νµ
j (ξ)

and denote by Kjκ
a its inverse Fourier transform.

Let eκ
1 = (2−nκ,

√
1 − 2−2nκ2) and eκ

2 = (−
√

1 − 2−2nκ2, 2−nκ) and let Lκ
jn be

the symmetric linear transformation in R2 with Lκ
jne

κ
1 = 2jeκ

1 , Lκ
jne

κ
2 = 2j−neκ

2 .

Then hνµ
j (Lκ

jn·) is supported in a cube Qνµ
j of sidelength 10 and for fixed j the

cubes Qνµ
j have finite overlap, uniformly in j. Moreover it is easy to see that for

µ ∈ Wκ
jn

∥∥∥ ∂α

∂ξα

[
hνµ

j (Lκ
jn·)

]∥∥∥
∞

≤ C, |α| ≤ 2.
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Since the Sobolev-space L2
2 is a subspace of L̂1 we obtain that

‖Kjκ
a ‖1 = ‖2−2j+nKjκ

a ((Lκ
jn)−1·)‖1

≤ C
∑

|α|≤2

∥∥∥
∑

µ,ν

aνµ
∂α

∂ξα

[
hνµ

j (Lκ
jn·)

]∥∥∥
2

≤ C ′
(∑

µ,ν

|aνµ|2
) 1

2

where C ′ does not depend on j, κ and a. This implies

sup
j≥2n

sup
κ

∥∥∥
( ∑

µ∈Wκ
jn

∑

ν

|T νµ
j f |2

) 1
2
∥∥∥
∞

= sup
j≥2n

sup
κ

sup
x∈R2

sup
‖a‖

ℓ2(Z2)≤1

|Kjκ
a ∗ f(x)|

≤ sup
j≥2n

sup
κ

sup
‖a‖

ℓ2(Z2)≤1

‖Kjκ
a ‖1‖f‖∞ ≤ C‖f‖∞

which is the desired estimate for q = ∞. �

Remarks.

(a) For q = ∞ the inequality (2.11) is closely related to an estimate on square-
functions with respect to an equally spaced decomposition, see e.g. [9], [13]; in fact
it can be obtained from these estimates.

(b) A variant of the above proof can be used to obtain the known sharp L4 bound
‖Tj‖L4→L4 = O(j1/4) without making use of the sharp L2 bounds for Kakeya-
maximal functions.

(c) The observation concerning the overlapping properties of supp T νµ
j +supp T ν′µ′

j

can be used to improve on some bounds for sectorial square-functions in Córdoba
[9]. This has been observed by A. Carbery and the author.

(d) The decomposition in terms of the bilinear operators Bn
j is related to a

decomposition used by Carbery [1] in his work on weighted inequalities for the
maximal Bochner-Riesz operator Sλ

∗ . The techniques above can be used to prove
new weighted inequalities for Sλ

∗ .

3. Weak type estimates

Let I be a family of disjoint intervals as introduced in §2 and let Tj be as in
(2.1). Define

Tλf =
∑

j≥0

2−jλTjf.

We shall prove the estimate

(3.1)
∣∣{x ∈ R2 : |Tλ(p)f(x)| > α}

∣∣ ≤ C
‖f‖p

p

αp
, p <

4

3

where λ(p) = 2(1/p − 1/2) − 1/2 and C does not depend on f or α. Of course
Theorem 1.1 is a consequence of (3.1).
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As in [5] the proof is based on an interpolation. The argument uses Theorem 2.1
and known estimates previously obtained in the proof of weak-type (1,1) inequalities
(see [4], [7], [15]).

Let f ∈ Lp(R2) where 1 ≤ p < 4
3

and let α > 0. In order to estimate the quantity
on the left hand side of (3.1) we apply the Calderón-Zygmund decomposition to
|f |p at height αp. We obtain a decomposition f = g + b where ‖g‖∞ ≤ Cα,
‖g‖p ≤ C‖f‖p, b =

∑
Q bQ, supp bQ ⊂ Q, the squares Q are pairwise disjoint,

‖bQ‖p
p ≤ Cαp|Q|, ∑

Q |Q| ≤ Cα−p‖f‖p
p; and as a consequence αp−2‖g‖2

2 + ‖b‖p
p ≤

C‖f‖p
p.

Let l(Q) be the sidelength of Q and Bj =
∑

Q:l(Q)=2j bQ if j > 0 and B0 =∑
Q:l(Q)≤0 bQ. Then

{x ∈ R2 : |Tλ(p)f(x)| > α} ⊂ Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 ∪ Ω5

where Ω1 is the union of the double squares Q∗ and

Ω2 = {x ∈ R2 : |Tλ(p)g(x)| > α

5
}

Ω3 =
{
x ∈ R2 :

∣∣∣
∑

s≥0

∑

j>s

2−jλ(p)TjBj−s(x)
∣∣∣ > α

5

}

Ω4 =
{
x ∈ R2 :

∣∣∣
∑

j≥0

2−jλ(p)TjB0(x)
∣∣∣ > α

5

}

Ω5 =
{
x ∈ R2 \ Ω1 :

∣∣∣
∑

σ>0

∑

j≥0

2−jλ(p)TjBj+σ(x)
∣∣∣ > α

5

}
.

By the disjointness of the squares Q we have

|Ω1| ≤
∑

Q

|Q∗| ≤ C
‖f‖p

p

αp

and Chebyshev’s inequality and the L2-boundedness of Tλ imply

|Ω2| ≤ C
‖Tλg‖2

2

α2
≤ C ′ ‖g‖2

2

α2
≤ C ′′

‖f‖p
p

αp
.

Next we choose r such that p < r < 4/3. We shall show that the following estimates
hold with ǫ = 1

2( r
p − 1).

∥∥∥
∑

j>s

2−jλ(p)TjBj−s

∥∥∥
r

r
≤ C2−ǫsαr−p‖b‖p

p, s ≥ 0,(3.2)

‖2−jλ(p)TjB0‖r
r ≤ C2−ǫjαr−p‖b‖p

p, j ≥ 0,(3.3)
∥∥∥

∑

j≥0

2−jλ(p)TjBj+σ

∥∥∥
p

Lp(R2\Ω1)
≤ C2−εσ‖b‖p

p, σ ≥ 0.(3.4)

From (3.2-4) it follows by applications of Minkowski’s and Chebyshev’s inequalities
that

|Ω3| + |Ω4| + |Ω5| ≤ C
‖b‖p

p

αp
≤ C ′

‖f‖p
p

αp
.
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In order to prove (3.2-4) we use analytic interpolation (i.e. the Phragmen-Lindelöf
principle) similarly as in [5]. For Re (z) ∈ [0, 1] define

Bj,z(x) = |Bj(x)|p[(1−z)+z/r]sign(Bj(x))

and

γ(z) = 2(1 − z +
z

r
− 1

2
) − 1

2
.

Since 2−jγ(1+iτ)Tj is a bounded operator on L1 with norm independent of j we
obtain

∥∥∥
∑

j>s

2−jγ(1+iτ)TjBj−s,1+iτ

∥∥∥
1
≤ C

∑

j>s

‖Bj−s,1+iτ‖1 ≤ C ′‖b‖p
p(3.5)

‖2−jγ(1+iτ)TjB0,1+iτ‖1 ≤ C‖B0‖p
p ≤ C ′ ‖b‖p

p.(3.6)

From estimates in [7] (or [15]) it follows that

∥∥∥
∑

j>s

2−jγ(1+iτ)TjBj−s,1+iτ

∥∥∥
2

2
≤ C2−s/2αp‖b‖p

p(3.7)

‖2−jγ(1+iτ)TjB0,1+iτ‖2
2 ≤ C2−j/2‖b‖p

p(3.8)

and also that
(3.9)∥∥∥

∑

j≥0

2−jγ(1+iτ)TjBj+σ,1+iτ

∥∥∥
L1(R2\Ω1)

≤ C2−σ
∑

j≥0

‖Bj+σ,1+iτ‖1 ≤ C ′2−σ‖b‖p
p.

Using the inequality ‖F‖r ≤ C‖F‖
2
r
−1

1 ‖F‖2− 2
r

2 we get from (3.5), (3.7) and from
(3.6), (3.8) that

∥∥∥
∑

j>s

2−jγ(1+iτ)TjBj−s,1+iτ

∥∥∥
r

r
≤ C2−s r−1

2 αp(r−1)‖b‖p
p(3.10)

‖2−jγ(1+iτ)TjB0,1+iτ‖r
r ≤ C2−j r−1

2 αp(r−1)‖b‖p
p.(3.11)

Now by Theorem 2.1 it follows that

∥∥∥
∑

j>s

2−jγ(iτ)TjBj−s,iτ

∥∥∥
r

r
≤ C

∑

j>s

‖Bj−s,iτ‖r
r ≤ C ′‖b‖p

p(3.12)

‖2−jγ(iτ)TjB0,iτ‖r
r ≤ C‖B0,iτ‖r

r ≤ C ′‖b‖p
p(3.13)

∥∥∥
∑

j≥0

2−jγ(iτ)TjBj+σ,iτ

∥∥∥
r

r
≤ C

∑

j≥0

‖Bj+σ,iτ‖r
r ≤ C ′‖b‖p

p.(3.14)

Now let h be arbitrary function in Lp′

, p′ = p/(p− 1), with ‖h‖p′ ≤ 1 and define

hz(x) = |h(x)|zp′/r′

sign(h(x)).
8



Moreover let g be an arbitrary function in Lr′

with ‖g‖r′ ≤ 1. We then apply the
Phragmen-Lindelöf principle to the functions

z 7→W1,s(z) =

∫ ∑

j>s

2−jγ(z)TjBj−s,z(x)g(x)dx

z 7→W2,j(z) =

∫
2−jγ(z)TjB0,z(x)g(x)dx

z 7→W3,σ(z) =

∫ ∑

j≥0

2−jγ(z)TjBj+σ,z(x)hz(x)dx

and estimate these functions at z = θ chosen such that 1/p = (1 − θ) + θ/r. From
(3.10), (3.12), from (3.11), (3.13) and from (3.9), (3.14) it follows that

|W1,s(θ)| ≤ Cαr−p2−
s
2 ( r

p
−1)‖b‖p

p

|W2,j(θ)| ≤ Cαr−p2−
j

2 ( r
p
−1)‖b‖p

p

|W3,σ(θ)| ≤ C2−σ( r
p
−1)‖b‖p

p

and an application of the converse of Hölder’s inequality yields (3.2), (3.3) and
(3.4).

Remark. Endpoint versions for more general classes of multiplier transformations
have been formulated in [15]. By combining arguments in this and the present
paper one can prove similar results for radial Fourier multipliers of Lp(R2), for the
full range 1 ≤ p < 4/3.
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