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Abstract. We prove a sharp Lp-Sobolev regularity result for a class
of generalized Radon transforms for families of curves in a three di-
mensional manifold, with folding canonical relations. The proof relies
on decoupling inequalities by Wolff and by Bourgain-Demeter for plate
decompositions of thin neighborhoods of cones.

1. Introduction

In this paper we continue the study [20] of Lp regularity properties of
integral operators along families of curves in R3 satisfying suitable curva-
ture and torsion conditions. The previous article dealt with the translation
invariant case, i.e. the integrals

(1.1) Af(x) =

∫
f(x− γ(s))χ(s)ds

where γ is a curve in R3 with nonvanishing curvature and torsion and χ is
smooth and compactly supported. The authors showed an optimal result
with a gain of 1/p derivatives for sufficiently large p, namely that for large
p the operator A maps Lp(R3) into the Lp-Sobolev space Lp1/p. The usual

combination of damping of oscillatory integrals arguments and improved
L∞ bounds, as employed in [24], does not apply to averaging operators for
curves in three or higher dimensions. Instead the authors had to apply a
deep result of Wolff [26] on decompositions of cone multipliers in R3 which
is now known as an `p-decoupling inequality. The result in [20] can be
combined with a recent result by Bourgain and Demeter [5] which extends
the decoupling result for the cone in R3 to the optimal Lp range p > 6; this
combination immediately yields A : Lp(R3)→ Lp1/p(R

3) for p > 4. A result

by Oberlin and Smith [15] shows that this range is optimal, up to possibly
the endpoint p = 4.

In the current work we shall treat extensions of these results for operators
which are not of convolution type. Let ΩL, ΩR be three-dimensional smooth
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manifolds and consider families of curves Mx ⊂ ΩR parametrized by and
smoothly depending on x ∈ ΩL. Let dσx be arclength measure on Mx and
χ◦ ∈ C∞c (R3 × R3). We define the generalized Radon transform operator
R : C∞c (ΩR)→ C∞(ΩL) by

(1.2) Rf(x) =

∫
Mx

f(y)χ◦(x, y)dσx(y) .

In order to formulate our results we use the double fibration formalism of
Gelfand and Helgason (see e.g. [11], p. 340 ff.). Assume

Mx = {y ∈ ΩR : (x, y) ∈M}

where M is a submanifold of ΩL × ΩR of codimension 2 such that the
projections

(1.3) M

}} !!
ΩL ΩR

have surjective differentials. The surjectivity assumption on the differen-
tial of M → ΩL implies that the Mx are smooth immersed curves in ΩR

(depending smoothly on x). Similarly the corresponding assumption on
the differential of M → ΩR implies that My = {x ∈ ΩL : (x, y) ∈M} are
smooth immersed curves in ΩL (depending smoothly on y).

The operator R can be realized as a Fourier integral operator of order

−1/2 belonging to the Hörmander class I−
1
2 (ΩL,ΩR; (N∗M)′) where

(N∗M)′ = {(x, ξ, y, η) : (x, y, ξ,−η) ∈ N∗M}

with N∗M the conormal bundle given by

N∗M :=
{

(x, y, η, ξ)) ∈ T ∗(ΩL × ΩR) \ {0} : (ξ, η) ⊥ T(x,y)M
}
.

(cf. §2).
The assumptions on the projections (1.3) imply that

C := (N∗M)′ ⊂ (T ∗ΩL \ 0L)× (T ∗ΩR \ 0R)

with 0L and 0R referring to the zero sections of the cotangent spaces T ∗ΩL

and T ∗ΩR, respectively. C is a homogenous canonical relation, i.e. if σL
and σR are the canonical two-forms on T ∗ΩL and T ∗ΩR respectively, then
C is Lagrangian with respect to σL − σR. As is well-known from the the-
ory of Fourier integral operators (see [12], [17]), the L2 Sobolev regularity
properties of R are governed by the geometry of the projections

(1.4) C
πL

||

πR

""
T ∗ΩL T ∗ΩR
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Since C is Lagrangian the differential (DπL)P is invertible if and only if
(DπR)P is invertible ([12]). For the canonical relations for averaging opera-
tors over curves in dimensions ≥ 3 the maps πL (and πR) fail to be diffeomor-
phisms, namely for every point (x, y) ∈M there is P = (x, ξ, y, η) ∈ (N∗M)′

so that (DπL)P and (DπR)P are not invertible.

Statement of the main result. We shall assume that the only singular-
ities πL and πR are Whitney folds and say that C projects with two-sided
fold singularities. Recall the definition from [13, Appendix C4]. Given a
C∞ map g : X → Y between C∞ manifolds and P ∈ X the Hessian g′′(P )
is invariantly defined as a map from ker(g′)P to Coker (g′)g(P ). Then g
has a Whitney fold at P if dim(ker(g′)P ) = 1, dim(Coker (g′)g(P ) = 1 and
the Hessian at P is not equal to 0. Equivalently, g is such that for ev-
ery point P ∈ X, DgP is either invertible or g has a Whitney fold then
L = {P : det(Dg)P 6= 0} is an immersed hypersurface of X and for any
vector field V with VP ∈ ker(Dg)P for all P ∈ L (a “kernel field”) we have
V (detDg) 6= 0 at P .

Theorem 1.1. LetM⊂ ΩL×ΩR be a four-dimensional manifold such that
the projections (1.3) are submersions. Assume that the only singularities of
πL : (N ∗M)′ → T ∗ΩL and πR : (N ∗M)′ → T ∗ΩR are Whitney folds. Let
L ⊂ (N∗M)′ be the conic hypersurface manifold where DπL and DπR drop
rank by one, and let $ be the projection of (N ∗M)′ to the base M. Suppose
that its restriction to L,

(1.5) $ : L 7→M
is a submersion. Then R is extends to a continuous operator

R : Lpcomp(ΩR) 7→ Lp1/p,loc(ΩL), 4 < p <∞ .

The conclusion means that for any C∞-function υ compactly supported
in a coordinate chart of ΩL and for any compact K ⊂ ΩR we have for all Lp

functions f supported in K

‖υRf‖Lp
1/p
≤ Cp(υ,K)‖f‖p .

Here Lps is the standard Sobolev space consisting of tempered distributions
g on R3 with (I − ∆)s/2g ∈ Lp(R3). It is easy to see that the regularity
index s = 1/p cannot be improved. As mentioned above the result fails for
p < 4, by a result in [15]. Regarding the hypotheses in Theorem 1.1, one
may conjecture that the two-sided fold assumption can be weakened to a
one-sided fold assumption, i.e. that the assumption of πR being a Whitney
fold can be dropped. See §4.2 for further discussion of relevant examples,
and §10 for related results.

Using a theorem in [19] the regularity result can be further improved by
using Triebel-Lizorkin spaces F sp,q, namely we have

(1.6) ‖υRf‖
F

1/p
p,q
≤ Cp,q(υ,K)‖f‖F 0

p,p
, 4 < p <∞, q > 0,
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for f ∈ F 0
p,p supported in K, this is further discussed in §9. Recall that

F sp,2 = Lps and F sp,q ⊂ F sp,2 ⊂ F sp,p = B0
p,p for q ≤ 2 ≤ p, and any s ∈ R.

Notation. We shall use the notation A . B for A ≤ CB with an unspec-
ified constant C.

Acknowledgement. The authors thank Geoffrey Bentsen for reading a draft
of this paper and providing valuable input.

2. Generalized Radon transforms and Fourier integral
representations

We recall some basic facts on generalized Radon transforms and Fourier
integrals. By localization we may assume that the Schwartz kernel of our op-
erator is supported in a small neighborhood of a base point P ◦ = (x◦, y◦) ∈
M. On the neighborhood the manifoldM is given by a defining function Φ,
i.e., M = {(x, y) : Φ(x, y) = 0}, where Φ = (Φ1,Φ2)ᵀ is a two-dimensional
vector function defined on ΩL×ΩR and such that Φ(P0) = 0. The Schwartz
kernel of our operator is given by the measure χ δ ◦ Φ where δ is the Dirac
measure in R2 and χ is C∞ and compactly supported near the base point
which can be chosen to be the origin in R3 × R3. By the Fourier inversion
formula the Schwartz kernel is an oscillatory integral distribution, formally
written as ([12], [11], [24])

(2.1) χ(x, y)δ ◦ Φ(x, y) = (2π)−2

∫∫
ei(τ1Φ1(x,y)+τ2Φ2(x,y))χ(x, y)dτ.

Since the projection M→ ΩL is a submersion, the 2 × 3 matrix Φy has
rank 2, so by a linear change of variables in y, near y0 we can assume that
det[∇y′Φ1,∇y′Φ2] 6= 0 where y′ = (y1, y2)ᵀ. Then (x, y3) can be chosen as
the local coordinates on M, so that the equation Φ(x, y) = 0 is equivalent
to

(2.2) yi = Si(x1, x2, x3, y3), i = 1, 2.

Since Φ(x, S1, S2, y3) = 0 we can write

(2.3) Φ(x, y) =
2∑
i=1

(Si(x, y3)− yi)Bi(x, y),

where

Bi(x, y) = −
∫ 1

0
Φyi

(
x, S(x, y3) + s(y′ − S(x, y3)), y3

)
ds.

Since Φy1 and Φy2 are linearly independent on M, by choosing the cutoff χ
to be supported sufficiently close to M, we can ensure that B1 and B2 are
linearly independent as well. The equation (2.3) can therefore be re-written
as (

Φ1(x, y)
Φ2(x, y)

)
= B(x, y)

(
S1(x, y3)− y1

S2(x, y3)− y2

)
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where B(x, y) is the 2 × 2 invertible matrix whose column vectors are B1

and B2. Since the projection M → ΩR is a submersion the x-gradients
S1
x(x, y3), S2

x(x, y3) are linearly independent. Now (2.1) can be rewritten as

(2.4)

χ(x, y) δ◦Φ(x, y) = χ(x, y)

∫
τ∈R2

ei〈τ,Φ(x,y)〉dτ

=
χ(x, y)

|detB(x, y)|

∫∫
ei〈τ,S(x,y3)−y′〉dτ.

Then in a neighborhood of the reference point P the canonical relation,
that is the twisted conormal bundle (N∗M)′, is given by

{(x, ξ, y, η) : yi = Si(x, y3), i = 1, 2, ξ = τ1S
1
x(x, y3) + τ2S

2
x(x, y3),

η = (τ1, τ2,−τ1S
1
y3(x, y3)− τ2S

2
y3(x, y3))}.

Thus using (x1, x2, x3, τ1, τ2, y3) as coordinates on (N∗M)′ the projection
πL : (N∗M)′ → T ∗ΩL is identified with

(2.5) π̃L : (x1, x2, x3, τ1, τ2, y3) 7→ (x, τ1S
1
x(x, y3) + τ2S

2
x(x, y3)).

Then
detDπ̃L = det(S1

x, S
2
x, τ1S

1
xy3 + τ2S

2
xy3) = τ1∆1 + τ2∆2

with

(2.6) ∆i(x, y3) ≡ ∆S
i (x, y3) := det(S1

x, S
2
x, S

i
xy3)

∣∣
(x,y3)

, i = 1, 2.

Hence L is the submanifold of (N ∗M)′ consisting of (x, ξ, y, η) such that

ξ = τ1S
1
x(x, y3) + τ2S

2
x(x, y3), η = (τ1, τ2,−τ1S

1
y3(x, y3)− τ2S

2
y3(x, y3)),

yi = Si(x, y3), i = 1, 2, τ1∆1(x, y3) + τ2∆2(x, y3) = 0.

3. Curvature

We shall show that the assumptions in Theorem 1.1 imply a curvature
condition on the fibers of L, as formulated by Greenleaf and the second
author in [8].

Let ∆i be as in (2.6) and P ◦ = (a◦, S1(a◦, b◦), S2(a◦, b◦)) be our reference
point. The following preparatory observation is based on the assumption
that $ in (1.5) is a submersion.

Lemma 3.1. We have

|∆1(x, y3)|+ |∆2(x, y3)| 6= 0

for (x, y3) near (a, b).

Proof. By continuity we have to check |∆1|+ |∆2| 6= 0 at P ◦.
Let τ◦ ∈ R2 \ {0} and let ξ◦ = τ◦1S

1
x(a◦, b◦) + τ◦2S

2
x(a◦, b◦). Clearly if

(a◦, ξ◦) /∈ πL(L) then τ◦1 ∆1(a◦, b◦) + τ◦2 ∆2(a◦, b◦) 6= 0 and therefore we may
assume that (a◦, ξ◦) ∈ πL(L), i.e.

τ◦1 ∆1(a◦, b◦) + τ◦2 ∆2(a◦, b◦) = 0.
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Let VL be a kernel field which we may write as

VL =

2∑
i=1

αi(x, τ)
∂

∂τi
+ α3(x, τ)

∂

∂y3
+

3∑
i=1

βi(x, y3, τ)
∂

∂xi

where βi = 0, by (2.5). We have

VL(τ1∆1 + τ2∆2)
∣∣
(a◦,b◦,τ◦)

=

2∑
i=1

αi(a
◦, τ◦)∆i(a

◦, b◦) + α3(a◦, τ◦)
2∑
i=1

τ◦i
∂∆i

∂y3
(a◦, b◦).

We argue by contradiction and assume that

(3.1) ∆i(a
◦, b◦) = 0, i = 1, 2.

By assumption VL(detπL) 6= 0 on L. Using (3.1) we get

(3.2) τ◦1
∂∆1

∂y3
(a◦, b◦) + τ◦2

∂∆2

∂y3
(a◦, b◦) 6= 0.

Hence can, for ( τ
|τ | , x, y3) near ( τ◦

|τ◦| , a
◦, b◦), solve τ1∆1 + τ2∆2 = 0 in y3 and

obtain a function y3(τ1, τ2), homogeneous of degree 0, so that

τ1∆1(x, y3) + τ2∆2(x, y3) = 0 ⇐⇒ y3 = y3(x, τ).

Implicit differentiation gives

(3.3)
∂y3

∂τi
= − ∆i(x, τ, y3)

τ1∂y3∆1 + τ2∂y3∆2
, i = 1, 2.

Now since we assume that $ : L → M is a submersion the differential
of the map (x, τ) 7→ (x, S1(x, y3(x, τ)), S2(x, y3(x, τ)), y3(τ)) is surjective.
This implies that

rank

∂y3S1(x, y3)∂τ1y3 ∂y3S
1(x, y3)∂τ2y3

∂y3S
2(x, y3)∂τ1y3 ∂y3S

2(x, y3)∂τ2y3

∂τ1y3 ∂τ2y3

 = 1

and thus |∂τ1y3|+ |∂τ2y3| > 0. But by (3.3) this implies that at least one of
the ∆i(a

◦, b◦) is nonzero, yielding a contradiction to (3.1). �

It will be useful to explicitly construct a kernel field VL in a conic neigh-
borhood of L. Notice that L = L+ ∪ L− where L± =

{(x,±ρ(−∆2S
1
x+∆1S

2
x), S1(x, y3), S2

x,y3 , y3, τ,±ρ(∆2S
1
y3−∆1S

2
y3)) : ρ > 0}.

We identify πL with π̃L as in (2.5).

Lemma 3.2. Define Γi(x, y3), i = 1, 2, by

Γ1 = det
(
S1
x S2

x,y3 S1
xy3

)
,(3.4a)

Γ2 = det
(
S1
xy3 S2

x S2
xy3

)
.(3.4b)
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Let

(3.5) V ±L =
±|τ |√

∆2
1 + ∆2

2

(
Γ2(x, y3)

∂

∂τ1
− Γ1(x, y3)

∂

∂τ2

)
+

∂

∂y3
.

Then V +
L , V −L are kernel fields for π̃L near L+, L−, respectively.

Proof. We take τ = ±ρ(−∆2,∆1) and then the assertion reduces to showing
that

(3.6) Γ2S
1
x − Γ1S

2
x −∆2S

1
xy3 + ∆1S

2
xy3

∣∣∣
(x,y3)

= 0.

Denote the left hand side by W . We first observe that

det
(
S1
x S2

x ∆1S
1
x + ∆2S

2
x

)
= ∆2

1 + ∆2
2

which is nonzero, by Lemma 3.1. We use that three vectors v1, v2, v3 ∈ R3

form a basis of R3 if and only if the vector products v1 ∧ v2, v1 ∧ v3, v2 ∧ v3

form a basis, and apply this fact to {S1
x, S

2
x, ∆1S

1
xy3 +∆2S

2
xy3}. Now W = 0

follows by checking 〈W,Six ∧ (∆1S
1
xy3 + ∆2S

2
xy3)〉 = 0, for i = 1, 2, and

〈W,S1
x ∧ S2

x〉 = 0. These are straightforward to verify. �

We now consider the fibers in T ∗ΩL of πL(L), namely

(3.7a) Σx := {(x, τ1S
1
x(x, y3) + τ2S

2
x(x, y3)) :

τ1∆1(x, y) + τ2∆2(x, y3) = 0, |τ | 6= 0}.

Σx is a cone which splits as ∪±Σ±x where

(3.7b) Σ±x = {±ρΞ(x, y3) : ρ > 0}

with

(3.7c) Ξ(x, y3) = −∆2(x, y3)S1
x(x, y3) + ∆1(x, y3)S2

x(x, y3) .

Next, for ρ > 0

(3.8a) V ±L (τ1∆1(x, y3) + τ2∆2(x, y3))
∣∣∣
τ=±ρ(−∆2,∆1)

= ±ρκ(x, y3)

where

(3.8b) κ(x, y3) = Γ2∆1 − Γ1∆2 + ∆1∆2,y3 −∆2∆1,y3

∣∣∣
(x,y3)

.

This quantity is nonzero, by the assumption that πL projects with a fold
singularity.

The following lemma will be crucial to establish the curvature properties
of the cones Σx.

Lemma 3.3. Let κ be as in (3.8b). Then

det
(
Ξ Ξy3 Ξy3y3

) ∣∣∣
(x,y3)

= −[κ(x, y3)]2.
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Proof. We have

Ξ = −∆2S
1
x + ∆1S

2
x,

Ξy3 = −∆2,y3S
1
x + ∆1S

2
x −∆2S

1
xy3 + ∆1S

2
xy3 ,

and

Ξy3y3 =−∆2,y3y3S
1
x + ∆1,y3y3S

2
x

− 2∆2,y3S
1
xy3 + 2∆1,y3S

2
xy3 −∆2S

1
xy3y3 + ∆1S

2
xy3y3

where all expressions are evaluated at (x, y3). Also

Ξ ∧ Ξy3 =(∆1∆2,y3 −∆2∆1,y3)(S1
x ∧ S2

x)

+ (∆1S
2
x −∆2S

1
x) ∧ (∆1S

2
xy3 −∆2S

1
xy3).

Define

E = ∆1∆2,y3 −∆2∆1,y3 .

Diligent computation yields

(3.9) 〈Ξ ∧ Ξy3 ,Ξy3y3〉 =

5∑
i=1

Ai

where

A1 = −2E2,

A2 = E
(
∆1 det

(
S1
x S2

x S2
xy3y3

)
−∆2 det

(
S1
x S2

x S1
xy3y3

) )
,

A3 = (∆2∆1,y3y3 −∆1∆2,y3y3)(∆1∆2 −∆2∆1) = 0,

A4 = 2E(∆2Γ1 −∆1Γ2)

and

A5 =−∆2∆1〈S1
x ∧ S2

xy3 ,−∆2S
1
xy3y3 + ∆1S

2
xy3y3〉

+ ∆2
2〈S1

x ∧ S1
xy3 ,−∆2S

1
xy3y3 + ∆1S

2
xy3y3〉

+ ∆2
1〈S2

x ∧ S2
xy3 ,−∆2S

1
xy3y3 + ∆1S

2
xy3y3〉

−∆1∆2〈S2
x ∧ S1

xy3 ,−∆2S
1
xy3y3 + ∆1S

2
xy3y3〉 .

We rewrite the expression A5 = A5,1 +A5,2 where

A5,1 = ∆2
2 det

(
S1
x ∆1S

2
xy3 S1

xy3y3

)
−∆2

2 det
(
S1
x ∆2S

1
xy3 S1

xy3y3

)
−∆1∆2 det

(
S2
x ∆1S

2
xy3 S1

xy3y3

)
+ ∆1∆2 det

(
S2
x ∆2S

1
xy3 S1

xy3y3

)
and

A5,2 = ∆2
1 det

(
S2
x ∆1S

2
xy3 S2

xy3y3

)
−∆2

1 det
(
S2
x ∆2S

1
xy3 S2

xy3y3

)
−∆2∆1 det

(
S1
x ∆1S

2
xy3 S2

xy3y3

)
+ ∆2∆1 det

(
S2
x ∆2S

2
xy3 S2

xy3y3

)
.

Now by (3.6) we have

∆1S
2
xy3 −∆2S

1
xy3 = −Γ2S

1
x + Γ1S

2
x.
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We use this to simplify A5,1 and A5,2 to

A5,1 = ∆2(Γ1∆2 − Γ2∆1) det
(
S1
x S2

x S1
xy3y3

)
,

A5,2 = −∆1(Γ1∆2 − Γ2∆1) det
(
S1
x S2

x S2
xy3y3

)
.

We combine these formulae with the previous ones for A1, . . . , A4 and use
that A3 = 0. We get

5∑
j=1

Aj = −2E2 + 2E(∆2Γ1 −∆1Γ2) +

(E + ∆1Γ2 −∆2Γ1)
(
∆1 det

(
S1
x S2

x S2
xy3y3

)
−∆2 det

(
S1
x S2

x S1
xy3y3

) )
.

Now using

det
(
S1
x S2

x Sixy3y3
)

= ∆i,y3 − Γi, i = 1, 2,

we obtain

5∑
j=1

Aj = −2E2 + 2E(∆2Γ1 −∆1Γ2)

+ (E + ∆1Γ2 −∆2Γ1)(∆1∆2,y3 −∆1Γ2 −∆2∆1,y3 + ∆2Γ1)

= −E2 − 2E(∆1Γ2 −∆2Γ1)− (∆1Γ2 −∆2Γ1)2

= −(E + ∆1Γ2 −∆2Γ1)2 .

which gives the assertion. �

We now examine the curvature properties of the cone Σx = {ρΞ(y3)}.
Lemma 3.3 implies that Ξ ∧ Ξy3 6= 0. The second fundamental form at

ρΞ(x, y3) with respect to the unit normal N =
Ξ∧Ξy3
|Ξ∧Ξy3 |

is given by(
ρ〈Ξy3y3 , N〉 〈Ξy3 , N〉
〈Ξy3 , N〉 0

)
=

(
ρ〈Ξy3y3 , N〉 0

0 0

)
.

Now, by Lemma 3.3,

(3.10) ρ〈Ξy3y3 , N〉 =
ρ

|Ξ ∧ Ξy3 |
det
(
Ξ Ξy3 Ξy3y3

)
=
−ρκ(x, y3)2

|Ξ ∧ Ξy3 |
,

and the fold condition says that κ does not vanish. Hence Σx is a two-
dimensional cone such that everywhere there is exactly one nonvanishing
principal curvature, and it is given by (3.10).

4. Some model operators

The examples motivating the present paper originate from problems in
harmonic analysis and integral geometry. We list a few of them below. The
notation used in each of these examples is self-contained.
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4.1. Averages along curves with nonvanishing curvature and torsion. Let
γ : I → R3 be a compact space curve with nonvanishing curvature and
torsion. Then, the integral operator A in (1.1) is an example of a Fourier
integral operator of order −1/2 with two-sided fold singularities. Clearly the
projection $ in (1.5) is a submersion. Thus we recover the result that A :
Lp → Lp1/p for p > 4 which is known by a combination of the results in [20]

and [5]. The theorem in this paper shows that the Lpcomp → Lp1/p estimate

holds true for small variable perturbations of the translation invariant case.

4.2. Restricted X-ray transforms in R3. A restricted X-ray transform in R3

is the restriction of the X-ray transform to a line complex, that is, a three-
dimensional manifold of lines. Under a suitable well-curvedness assumption
it was shown in [9] (see also [8]) that (local versions) of this operator are
Fourier integral operators of order −1/2 for which the projection πR has
Whitney folds. For a class of generic line complexes we have two-sided
fold singularities but this is not the case for the important class satisfying
Gelfand’s admissibility condition (see [9]) which is relevant for invertibility of
the restricted X-ray transform. The optimal L2 → L2

1/4-Sobolev regularity

for the latter was obtained in [10], and can also be seen as a part of a result
on more general Fourier integral operators with one-sided fold singularities
in [8].

We discuss a model case. Let I be a compact interval and γ : I → R2

a smooth regular curve γ(t) = (t, g(t)), t ∈ I. We assume that γ has non-
vanishing curvature, i.e.

(4.1) g′′(t) 6= 0, t ∈ I.

Let β ∈ (−1, 1) and let e2 = (0, 1) ∈ R2. For f ∈ C∞0 (R3) we define

(4.2) Rβf(x1, x2, t) = χ1(t)

∫
f(x1 + st, x2 + s(βx2 + g(t)), s)χ2(s)ds

where x′ = (x1, x2) and χ1, χ2 are smooth real-valued functions, with χ1

supported in the interior of I and χ2 with compact support contained in
R \ {−β−1}.

We examine the adjoint operator which is given by

R∗βh(x) =

∫
h(S1(x, y3), S2(x, y3), y3)χ2(x2)χ1(y3)dy3

with

S1(x, y3) = x1 − x3y3, S2(x, y3) =
x2 − x3g(y3)

1 + x3β
.

Then
(
S1
x S2

x τ1S
1
xy3 + τ2S

2
xy3

)
is given by 1 0 0

0 (1 + x3β)−1 0

−y3
−g(y3)−βx2

(1+x3β)2
−τ1 − τ2

g′(y3)
(1+x3β)2
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and hence

detπL = τ1∆1 + τ2∆2 = −(1 + x3β)−1
(
τ1 + τ2

g′(y3)

(1 + x3β)2

)
.

Now ∂/∂y3 is a kernel field and the fold condition holds iff and only if (4.1)
holds on I.

The cones Σx are given by

Σx =
{
ξ ∈ R3 : ξ = λ(−g′(t), 1 + βx3, tg

′(t)− g(t)− βx2, λ ∈ R, t ∈ I
}
.

To check that the cone Σx has one nonvanishing curvature everywhere one
verifies that the plane curve Γ(t) = (−g′(t), tg′(t) − g(t)) has nonvanishing
curvature. This holds since Γ′1Γ′′2 − Γ′′1Γ′2(t) = −(g′′(t))2.

In order to apply our main result one also needs to check that the pro-
jection πR (for the adjoint R∗β) has only fold singularities; this turns out to
be the case when β 6= 0. πR is given by

(x1, x2, x3, τ1, τ2, y3) 7→ (S1(x, y3), S2(x, y3), y3, τ1, τ2, τ1S
1
y3 + τ2S

2
y3)

and a calculation shows that VR = y3
∂
∂x1

+ ∂
∂x3

is a kernel field. Then

VR(τ1∆1 + τ2∆2) = −τ2g
′(y3)

2β

(1 + βx3)3
.

Thus, if β 6= 0, πR has only fold singularities. Now Theorem 1.1 implies that
for β 6= 0 the operator R∗β maps Lp to Lp1/p for p > 4, and more generally

Lpα to Lpα+1/p. Hence

(4.3) Rβ : Lp → Lp1/p′ , 1 < p < 4/3,

when β 6= 0. Our theorem does not apply to the case β = 0, when πR
has maximal degeneracy (a blowdown singularity). However by a rather
straightforward argument it was shown in [21] that (4.3) remains valid if
β = 0 (provided one uses the result by Bourgain and Demeter in conjunction
with [21]). This leads one to conjecture that the assumption on DπR in
Theorem 1.1 can be dropped.

4.3. Averages along curves in H1. Convolution operators on noncommuta-
tive groups can often be analyzed as generalized Radon transforms. Let us
consider the Heisenberg group H1 which is R3 with the group multiplication
defined by

x · y =
(
x1 + y1, x2 + y2, x3 + y3 + 1

2(x1y2 − x2y1)
)
.

4.3.1. Measures on curves in the plane. Let I be a bounded open interval
and g ∈ C∞. We consider convolution on H1 with a measure on R2 × {0}
supported on {(t, g(t), 0) : t ∈ I} where g′′(t) 6= 0 for t ∈ I. For χ ∈ C∞0 (I)
define µ by

〈µ, f〉 :=

∫
γ
f(t, g(t), 0)χ(t)dt
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and the convolution

A1f(x) := f ∗ µ(x) =

∫
f
(
x′ − y′, x3 − 1

2(x1y2 − x2y1)
)
dµ0(y′).

ThenA1f(x) can be written as
∫
f(y1, S

2(x, y1), S3(x, y1))χ(x1−y1)dy1 with

S2(x, y1) = x2 − g(x1 − y1),

S3(x, y1) = x3 −
x1

2
g(x1 − y1) +

x2

2
(x1 − y1).

As observed in [14], A1 is a Fourier integral operator with folding canonical
relation (i.e. πL and πR) project with folds. Moreover

πL(N∗M) = {(x, τ2S
2
x(x, y1) + τ3S

3
x(x, y1)}

and detπL = g′′(x1−y1)(τ2+τ3x1/2) and thus Σx is given by the parametriza-
tion

Ξ(τ3, t) =
τ3

2

(
x2 − g(t),−x1 + t, 1

)
.

This example, and higher dimensional versions were considered in [14] for
the L2-Sobolev category, together with some refinements, that yield sharp
maximal function estimates on Hn, n ≥ 2. The measure in the horizontal
plane can also be replaced by other measures in other planes transversal to
the center, in which case the estimates in [14] yield less satisfactory results for
maximal function bounds. However in this case sharp Lp-Sobolev estimates
and maximal function bounds for n ≥ 2 have been recently established in
[1], using methods which are closely related to the current paper. For a
more recent result on circular maximal functions on the Heisenberg group
see [2] where the case of Heisenberg radial functions is considered.

4.3.2. Averages along space curves in H1. A closely related example was
considered by Phong and Stein [18] and Secco [23]. Let γα : I → H1 be the
curve given by γα(s) = (s, s2, αs3), where α is a real-valued parameter, and
I a bounded interval. Given a cutoff function χ ∈ C∞0 (I), let us consider
the singular measure µα on H1 supported on γα given by

〈µα, f〉 =

∫
I
f(γα(s))χ(s) ds,

and the right convolution operator by µα:

(4.4) A2,αf(x) = f ∗ µα(x) :=

∫
f(x · γα(s)−1) ds, x ∈ H1.

As shown in [18] A2,α is a Fourier integral operator, with two-sided folds
for α 6= ±1

6 and with one-sided folds for α = ±1
6 . A special role of the

parameters ±1
6 has also been observed by Secco [23] in the context of Lp →

Lq estimates. It is straightforward to verify that the projection πL in this
problem is a fold if and only if α = 1

6 , and the cone Σx ⊆ R3
ξ is generated

by the parabola

ξ1 =
x2

2
+ 2(6α− 1)t2, ξ2 = −x1

2
− (6α− 1)t, ξ3 = 1.
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Our result yields the sharp Lp regularity properties for all α ∈ R \ {±1/6}
but it does not cover the cases α = ±1/6. Bentsen [4] obtained a sharp
Lp regularity results for a class of averaging operators over curves in the
Heisenberg group for which one of πL, πR is a fold and the other is a blow-
down. It turns out that in the case α = −1/6 of (4.4) the local regularity
results follow by changes of variables directly from the regularity results for
the restricted X-ray transform in (4.2) when β = 0 (i.e. the case considered
in [21]).

5. Basic decompositions

We decompose dyadically in τ (for large τ). Then for |τ | ≈ 2k we decom-
pose further according to the size of 2−k detπL which is approximately the
size of 2−k(τ1∆1 + τ2∆2), which is also approximately the distance to the
fold surface. This decomposition is standard and goes back to [18] (with
earlier precursors).

Let η0 ∈ C∞c (R) be an even function so that η0(s) = 1 for |s| ≤ 1
2

and supp(η0) ⊂ (−1, 1), and set η1(s) = η0( s2) − η0(s). Then η0(s) +∑
k≥1 η1(21−ks) ≡ 1 for s ≥ 0. Define

χk(x, y, τ) := χ(x, y)η1(21−k|τ |) for k ≥ 1,(5.1a)

χ0(x, y, τ) := χ(x, y)η0(|τ |),(5.1b)

and, after changing variables in τ

(5.1c) Rkf(x) := 22k

∫∫
ei2

k〈τ,S(x,y3)−y′〉χk(x, y, 2
kτ)dτ f(y)dy,

with 〈τ, S(x, y3) − y′〉 =
∑2

i=1 τi(S
i(x, y3) − yi) and now |τ | ≈ 1. We then

have

Rf =
∑
k≥0

Rkf

for all Schwartz functions f . For 0 ≤ ` ≤ bk/3c, let

χk,`(x, y, τ) :=

{
χk(x, y, 2

kτ)η1

(
2`(τ1∆1 + τ2∆2)

)
, if ` < bk/3c,

χk(x, y, 2
kτ)η0

(
2b

k
3
c(τ1∆1 + τ2∆2)

)
, if ` = bk/3c,

and

Rk,`(x, y) := 22k

∫
ei2

k〈τ,y′−S(x,y3)〉χk,`(x, y, 2
kτ) dτ,(5.2a)

Rk,`f(x) :=

∫
Rk,`(x, y)f(y) dy.(5.2b)

so that Rk =
∑

`≤ k
3
Rk,`. For k > 0 the τ -integration is extended over a

subset of the annulus {1/2 < |τ | < 2} (indeed the intersection of this annulus
with a C2−`-neighborhood of a line l(x, y3)). The quantity τ1∆1 + τ2∆2,
when |τ | ≈ 1 is comparable to the distance to the fold surface L.
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The by now standard L2 estimate for the operators Rk,` is

(5.3) ‖Rk,`‖L2→L2 . 2
`−k
2

for ` = 0, 1, . . . bk/3c, see [7]. The following estimates will be the main
ingredient for the proof of Theorem 1.1.

Theorem 5.1. Let 0 < ε < 1/6. For ` ≤ bk/3c we have

(5.4) ‖Rk,`‖Lp→Lp ≤ Cε,p ·

{
2
`(ε+ 2

p
− 1

2
)
2
− k
p , 4 < p ≤ 6,

2
−`( 1−6ε

p
)
2
− k
p , 6 ≤ p ≤ ∞.

The endpoint Sobolev bound will follow from this theorem with some
additional arguments, see §9.

The main important tool in the proof is the following decoupling inequal-
ity.

Theorem 5.2. Let ` ≤ k/3 and let ε > 0. Let, for ν ∈ Z

(5.5) fν(y) = f(y)1[2−`ν,2−`(ν+1)](y3).

Then for 2 ≤ p ≤ 6,

(5.6)
∥∥∥∑

ν

Rk,`fν
∥∥∥
p
≤ Cε2`(ε+

1
2
− 1
p

)
(∑

ν

∥∥Rk,`fν∥∥pp)1/p
+ Cε2

−k‖f‖p.

Theorem 5.2 will be proved by induction, see §8. In each induction step
we will combine a standard application of the Wolff-Bourgain-Demeter de-
coupling theorem in combinations with suitable changes of variables.

Proof that Theorem 5.2 implies Theorem 5.1. We first note that for gν ∈
L∞ and with 1ν,`(y3) := 1[2−`ν,2−`(ν+1)](y3)

(5.7) sup
ν
‖Rk,`[1ν,`gν ]

∥∥
∞ . 2−` sup

ν
‖gν‖∞.

To see this one derives an estimate for the Schwartz kernel Rk,`(x, y) by
integrating by parts, distinguishing the directions (∆1,∆2) and (−∆2,∆1).

This shows that |Rk,`(x, y)| ≤ CN
∏2
i=1 Uk,`,i(x, y) where

Uk,`,1(x, y) =
2k−`

(1 + 2k−`|∆1(y1 − S1) + ∆2(y2 − S2)|)N

Uk,`,2(x, y) =
2k

(1 + 2k| −∆2(y1 − S1) + ∆1(y2 − S2)|)N

where S1, S2,∆1,∆2 are evaluated at (x, y3). We integrate in (y1, y2) first
and then use that the y3 integration is extended over an interval of length
2−`. This yields (5.7).

From (5.3) and averaging with Rademacher functions we also get(∑
ν

∥∥Rk,`[1ν,`gν ]
∥∥2

2

)1/2
. 2

`−k
2

(∑
ν

‖gν‖22
)1/2

,
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and by interpolation,

(5.8)
(∑

ν

∥∥Rk,`[1`,νgν ]
∥∥p) 1

p
. 2

`( 3
p
−1)

2
− k
p

(∑
ν

‖gν‖pp
) 1
p
, 2 ≤ p ≤ ∞.

Combining this with (5.6) we obtain∥∥Rk,`f∥∥p . Cε2`(ε+ 2
p
− 1

2
)
2
− k
p ‖f‖p, 2 ≤ p ≤ 6.

Finally from (5.7) we also have the bound ‖Rk,`‖L∞→L∞ = O(1) and a
further interpolation gives the inequality asserted in (5.4) for 6 ≤ p ≤ ∞. �

An estimate in Besov-spaces. Theorem 5.1 implies an estimate in Besov

spaces. To see that we let Lk be the operator defined by L̂kf = β(2−kξ)f̂
where β ∈ C∞c (R3 \ {0}). Integration by parts arguments show that there
exists a constant C such that
(5.9)

‖Lk′Rk,`Lk′′‖Lp→Lp ≤ CN2−N max{k,k′,k”} if max{|k − k′|, |k − k′′|} > C

whenever min{k, k′, k′′} ≥ 3`. This, together with the main estimate

(5.10) ‖Rk‖Lp→Lp ≤ C(p)2−k/p for p > 4.

implies the boundedness result

R : (Bs
p,q)comp → (Bs+1/p

p,q )loc, for p > 4.

For the more sophisticated Sobolev bounds, and improvements, see §9.

6. The decoupling step in a model case

In this section we consider a model version of the operator Rk,` defined
in (5.2), where the functions Si are replaced by Si satisfying additional
assumptions at the origin, see (6.9) below. These normalizing assumptions
will enable us to carry out a decoupling step as suggested by the Bourgain-
Demeter decoupling theorem which we review in §6.1. The reduction of the
general case to the model case will be carried out later in §8, using suitable
changes of variables discussed in §7.

6.1. The Bourgain-Demeter decoupling theorem. Let κ0 6= 0 be a constant.
We use the decoupling result in [5], for the part of the cone

Σ = {ξ : κ0ξ2ξ3 + 1
2ξ

2
1 = 0}

where |ξ2| ≈ 1, |ξ1| � 1. A parametrization is given by

ξ(b, λ) = λ(−κ0be1 + e2 − 1
2κ0b

2e3)

where |λ| ≈ 1, |b| � |b|M0 � 1. Let

(6.1) T1(b) =
∂

∂λ
ξ(b, λ) = −κ0be1 + e2 − 1

2κ0b
2e3,
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be the tangent vector pointing towards the origin and let

(6.2) T̃2(b) = −κ−1
0 λ−1 ∂

∂b
ξ(b, λ) = e1 + be3.

Then T1(b) and T̃2(b) form a basis of the tangent space of Σ at λξ(b). A
normal vector is given by

(6.3) N(b) = T1(b) ∧ T̃2(b) = be1 + 1
2κ0b

2e2 − e3.

For the definition of our plate we need to replace T̃2(b) by a vector in the

span of T1(b) and T̃2(b) that is perpendicular to T1(b). Such a vector is given
by

T2(b) = (1− 1

4
κ2

0b
4)e1 + κ0b(1 + 1

2b
2)e2 + (b+ 1

2κ
2
0b

3)e3(6.4)

= e1 + κ0be2 + be3 +O(b3)

Let A > 1. For δ � 1 let

(6.5) ΠA,b(δ) ={
ξ ∈ R3 : A−1 ≤ |〈 T1(b)

|T1(b)| , ξ〉| ≤ A, |〈 T2(b)
|T2(b)| , ξ〉| ≤ Aδ, |〈 N(b)

|N(b)| , ξ〉| ≤ Aδ
2
}
.

One refers to the sets ΠA,b(δ) as plates; they are unions of A(1, δ, δ2)-boxes
with the long, middle, short side parallel to T1(b), T2(b), N(b), respectively.

Theorem ([5]). Let ε > 0, A > 1. There exists a constant C(ε, A) such
that the following holds for 0 < δ1 < δ0 < 1.

Let B = {bν}Mν=1 be a set of points in [−1, 1] such that |bν − bν′ | ≥ δ1

for bν , bν′ ∈ B, ν 6= ν ′, and B is contained in an interval of length δ0.
Let 2 ≤ p ≤ 6. Let fν ∈ Lp(R3) such that the Fourier transform of fν is
supported in ΠA,bν (δ1). Then

(6.6)
∥∥∥∑

ν

fν

∥∥∥
p
≤ C(ε, A)(δ0/δ1)ε

(∑
ν

‖fν‖2p
)1/2

.

One also has

(6.7)
∥∥∥∑

ν

fν

∥∥∥
p
≤ C(ε, A)

(δ0/δ)
ε+1/2−1/p

(∑
ν ‖fν‖

p
p

)1/p
, p ≤ 6,

(δ0/δ)
ε+1−4/p

(∑
ν ‖fν‖

p
p

)1/p
, 6 ≤ p ≤ ∞.

This is the `p-decoupling result that was first proved for large p by Wolff [26].
(6.7) follows from (6.6) by Hölder’s inequality and interpolation arguments.
Our proof of Theorem 1.1 will be based on (6.6) but could also be based
on the case p > 6 of (6.7), as it was in ([20]), in the case of convolution
operators. A variant of this argument was also given in the manuscript [22]
on the variable case, an unpublished precursor to the current paper, with
only a preliminary result.
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6.2. The model case. For i = 1, 2 consider C∞ functions (w, z3) 7→ Si(w, z3)
defined on a neighborhood U of [−r, r]4, for some r ∈ (0, 1). Assume that
M0 satisfies

(6.8) M0 ≥ 2 + ‖S1‖C5([−r,r]4) + ‖S2‖C5([−r,r]4),

where the C5 norm is the maximum of the supremum of all derivatives of
order 0, . . . , 5. We assume that for w ∈ [−r, r]3

(6.9a) (S1,S2,S1
z3)
∣∣
(w,0)

= (w1, w2, w3);

moreover

(6.9b) S2
wz3(0, 0) = 0,

and

(6.9c) S2
w3z3z3(0, 0) = κ0.

Let in (5.1a) the function χ0 be supported in a neighborhood V of (0, 0) ∈
R3 ×R3 which is of diameter ≤ 10−10M0 � r and let (w, z) 7→ α(w, z) be a
C∞ function satisfying

(6.10) M−1
0 ≤ |α(w, z)| ≤M0

and with the higher derivatives of α depending on M0 and the order of
differentiation.

Let (w, z3, µ) 7→ ζ(w, z3, µ) belong to a bounded family of C∞ functions
supported where −r ≤ wi, z3 ≤ r and 1/4 ≤ |µ| ≤ 4. Let η be C∞ and
supported in (−2, 2) and let Tk,` be the operator with Schwartz kernel

(6.11) Tk,`(w, z) := 22k

∫
R2

ei2
k〈µ,S(w,z3)−z′〉×

η
(
2`α(w, z)(µ1∆S

1 (w, z3) + µ2∆S
2 (w, z3))

)
ζ(w, z, µ) dµ .

Here ∆S
i (w, z3) = det(S1

w,S
2
w,S

i
wz3). We shall omit the superscript and

assume throughout this subsection §6.2 that ∆i ≡ ∆S
i . The operator T k,` is

a version of Rk,` defined before under the additional assumptions in (6.9).
We need to include the function α in the localization to provide added
flexibility in the later stages of the proof of Theorem 5.2 when we apply
repeated changes of variables (cf. formula (7.15) below).

The basic decoupling step is summarized in

Proposition 6.1. Let 0 < ε < 1/2. There is a constant Cε so that the
following holds.

Let ` ≤ bk/3c and let

(6.12a) δ0, δ1 ∈ (M2
0 220−`(1−ε2), 2−`ε

2−20M−2
0 )

such that

(6.12b) 2100M0 max{(2−`δ0)1/2, δ
3/2
0 } < δ1 < δ0.
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Let IJ be a collection of intervals of length δ1 which have disjoint interior
and which are contained in [0, δ0]. Let a ∈ R3, ς ∈ C∞c supported in (−1, 1)3

and ς`,0(w) = ς(2`w). Then for 2 ≤ p ≤ 6, for g ∈ Lp(R3) and gI(y) :=
g(y)1I(z3) we have
(6.13)∥∥∥ς`,0 ∑

I∈IJ

Tk,`gI
∥∥∥
p
≤ Cε(δ0/δ1)ε

( ∑
I∈IJ

∥∥ς`,0Tk,`gI∥∥2

p

)1/2
+ Cε2

−10k‖g‖p.

In order to apply (6.6) in this situation we need to consider the Fourier
transforms of ς`,0

∑
I∈IJ Tk,`gI and show that they are concentrated on the

plates 2kΠA,bI (δ1) for bI ∈ I and suitable A > 1. We establish this plate
localization in §6.4 and conclude the proof of Proposition 6.1 in §6.5.

6.3. Derivatives of S and ∆. We use this section to record some facts needed
later in §6.4, about various derivatives of Si(w, z3) and ∆i(w, z3), under the
assumption that

(6.14) |w|∞ ≤ 2−` ≤ δ0, |z3| ≤ δ0,

under the specifications in (6.12).

6.3.1. Taylor expansion of S1
w and S2

w.

Lemma 6.2. Let w, z3, 2−`, δ0 be as in (6.14). Then

(6.15)
S1
w(w, z3) = e1 + z3e3 + E1(w, z3)

S2
w(w, z3) = e2 + 1

2κ0z
2
3e3 + E2(w, z3)

where

(6.16) |〈ei, E1(w, z3)〉| ≤ 8M0δ
2
0 , i = 1, 2, 3,

and

|〈ei, E2(w, z3)〉| ≤ 8M0δ
2
0 , i = 1, 2,(6.17a)

|〈e3, E
2(w, z3)〉| ≤M0(8δ02−` + 2δ3

0),(6.17b)

Proof. We expand using conditions (6.9a) and obtain

S1
w(w, z3) = e1 + z3e3 + Ẽ1(w, z3)

S2
w(w, z3) = e2 + Ẽ2(w, z3)
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where for ν = 1, 2 we have 〈ei, Ẽν〉 = Ii,ν + IIi,ν + IIIi,ν with

Ii,ν(w, z3) =

∫ 1

0
(1− s)

3∑
j=1

3∑
k=1

Sν
wiwjwk

(sw, sz)wjwk ds

IIi,ν(w, z3) =

∫ 1

0
(1− s) 2

3∑
j=1

Sν
wiwjz3(sw, sz)wjz3 ds

IIIi,ν(w, z3) =

∫ 1

0
(1− s)Sν

wiz3z3(sw, sz)z2
3 ds

and obtain the bounds

|Ii,ν(w, z3)| ≤ 9
2M0|w|2∞ ≤ 9

2M02−2`

|IIi,ν(w, z3)| ≤ 6
2M0|w|∞|z3| ≤ 3M02−`δ0

|IIIi,ν(w, z3)| ≤ 1
2M0|z3|2 ≤ 1

2M0δ
2
0

Recall κ0 = S2
w3z3z3(0, 0). For i = 3, ν = 2 we expand further

III3,2(w, z3) = 1
2κ0z

2
3 + E3,2(w, z3)

where
|E3,2(w, z3)| ≤M0

(
3
2 |w|∞|z3|2 + 1

2 |z3|3
)
≤ 2M0δ

3
0

(where we used 2−` ≤ δ0). Combining terms we obtain the stated error
estimates. �

6.3.2. Computations involving ∆1 and ∆2. By the assumption δ0 ≤ 2−10M−1
0

we have from above |S1
wi(w, z3)| ≤ 2, |S2

wi(w, z3)| ≤ 2 and |S1
wiz3(w, z3)| ≤

2. Moreover |S2
wz3(w, z3)| ≤ 4M0δ0 � 1. Using upper bounds for Si

w, Si
wz3

and higher derivatives, the permutation formula for determinants, trilinear-
ity of the determinants and differentiation of products we see that any first
order partial derivative of ±∆i is a sum of 3 ·6 terms, each bounded by 4M0.
Hence any first order partial derivative of ±∆S

i is bounded by 72M0, and
similarly, by the structure of the ∆i, any second order partial derivative of
±∆S

i is bounded by 216M0. Moreover, any third order partial derivative of
±∆S

i is bounded by 54 · 2M2
0 . These observations also yield

|∆1(w, z3)− 1|, |∆2(w, z3)| ≤ 72M0δ0 ≤ 2−10.

In §6.4 we shall use a Taylor expansion and rely on the conditions (6.9).
This yields

∆1(w, 0) = 1, ∆2(w, 0) = 0,

and straightforward computations give

∆1,z3(w, 0) = S1
w3z3z3(w, 0) + S2

w2z3(w, 0)

∆2,z3(w, 0) = S2
w3z3z3(w, 0) + S2

w1z3(w, 0)

and thus

∆1,z3(0, 0) = S1
w3z3z3(0, 0), ∆2,z3(0, 0) = S2

w3z3z3(0, 0) = κ0.



20 MALABIKA PRAMANIK AND ANDREAS SEEGER

Further calculations give

∆1,z3z3(0, 0) = 3S1
w1z3z3(0, 0) + S2

w2z3z3(0, 0) + S1
w3z3z3z3(0, 0)

∆2,z3z3(0, 0) = 2S2
w1z3z3(0, 0) + S2

w3z3z3z3(0, 0),

∆1,wjz3(0, 0) = S2
w2wjz3(0, 0) + S1

w3wjz3z3(0, 0)

∆2,wjz3(0, 0) = S2
w3wjz3z3(0, 0),

and

∆1,wjwk(0, 0) = 0

∆2,wjwk(0, 0) = S2
w3z3wjwk

(0, 0).

6.4. Plate localization in the model case. The following lemma contains the
information that will allow us to apply the decoupling inequality (6.6).

Lemma 6.3. Let δ0, δ1 be as in (6.12). Let 2−` � r, M02−` ≤ 2−10,
w ∈ [−2−`, 2−`], |z3| ≤ δ0. Suppose 1/4 < |µ| ≤ 4 and

(6.18)
∣∣µ1∆1(w, z3) + µ2∆2(w, z3)

∣∣ ≤M02−`.

Then

(6.19) µ1S
1
w(w, z3) + µ2S

2
w(w, z3) ∈ ΠA,b(δ1), A = 2(1 + |κ0|).

Proof. We examine the quantity µ1S
1
w +µ2S

2
w, for 1/4 < |µ| ≤ 4 and under

the condition (6.18), and rewrite it as

(6.20)
1

∆1

(
(µ1∆1 + µ2∆2)S1

w + µ2(∆1S
2
w −∆2S

1
w)
)
.

The assumption (6.18) and |µ| ∈ (1/4, 4) implies that |µ1| ≤ 2−8 and hence
|µ2| ∈ (1/5, 4).

The second expression in (6.20) is the main term for our analysis. We use
a Taylor expansion:

∆1S
2
w −∆2S

1
w

∣∣∣
(w,z3)

= e2 + v0z3 +
3∑
j=1

vjxj

(6.21)

+
1

2

(
v0,0z

2
3 + 2

3∑
j=1

v0,jz3wj +

3∑
j=1

3∑
k=1

vj,kwjwk

)
+ E(w, z3)

where E(w, z3) is the Taylor reminder which vanishes of third order. Since
∆1(w, 0) = 1, ∆2(w, 0) = 0 the leading term is e2. For the R3-valued
coefficients of the linear term we get (with all terms on the right hand side
evaluated at 0, and using input from §6.3)

v0 = ∆1,z3S
2
w + ∆1S

2
wz3 −∆2,z3S

1
w −∆2S

1
wz3

∣∣∣
0,0

= S1
w3z3z3(0, 0)e2 − κ0e1
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and, for j = 1, 2, 3,

vj = ∆1,wjS
2
w + ∆1S

2
wwj −∆2,wjS

1
w −∆2S

1
wwj

∣∣∣
(0,0)

= 0.

For the coefficients of the quadratic terms we have

v0,0 = ∆1,z3z3S
2
w + 2∆1,z3S

2
wz3 + ∆1S

2
wz3z3

−∆2,z3z3S
1
w − 2∆2,z3S

1
wz3 −∆2S

1
wz3z3

∣∣∣
(0,0)

=(S2
w1z3z3 −∆2,z3z3)e1 + (S2

w2z3z3 + ∆1,z3z3)e2 + (S2
w3z3z3 − 2∆2,z3)e3

∣∣∣
(0,0)

;

in particular

(6.22) 〈v0,0, e3〉 = −κ0.

Moreover, for j = 1, 2, 3,

v0,j =∆1S
2
wwjz3 + ∆1,wjS

2
wz3 + ∆1,z3S

2
wwj + ∆1,wjz3S

2
w

−∆2S
1
wwjz3 −∆2,wjS

1
wz3 −∆2,z3S

1
wwj −∆2,wjz3S

1
w

∣∣∣
(0,0)

=(S2
w1wjz3 −∆2,wjz3)e1 + (S2

w2wjz3 + ∆1,wjz3)e2 + S2
w3wjz3e3

∣∣∣
(0,0)

,

and, for j, k = 1, 2, 3,

vj,k =∆1S
2
wwjwk

+ ∆1,wjS
2
wwk

+ ∆1,wkS
2
wwj + ∆1,wjwkS

2
w

−∆2S
1
wwjwk

−∆2,wjS
1
wwk
−∆2,wkS

1
wwj −∆2,wjwkS

1
w

∣∣∣
(0,0)

=∆1,wjwk(0, 0)e2 −∆2,wjwk(0, 0)e1.

Gathering terms in the above Taylor expansion leads to

∆1S
2
w −∆2S

1
w

∣∣∣
(w,z3)

= e2 − κ0z3e1 − 1
2κ0z

2
3e3

(6.23)

+ S1
w3z3z3(0, 0)z3e2 +

3∑
j=1

S2
w3wjz3(0, 0)wjz3e3 +

2∑
i=1

ri(w, z3)ei + E3(w, z3)

where we get

(6.24a) |S1
w3z3z3(0, 0)z3| ≤M0δ0,

and by assumption (6.12b),

(6.24b)
3∑
j=1

|S2
w3wjz3(0, 0)wjz3| ≤ 3M02−`δ0 � δ2

1 .

For the quadratic error terms in the first two coordinates we have

(6.24c) |ri(w, z3)| ≤ 8M0δ
2
0 , i = 1, 2,
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and finally for the cubic error terms we have the straightforward estimate

(6.24d) |E3(w, z3)| ≤ 220M2
0 δ

3
0 .

Now consider the situation where |z3 − b| ≤ δ1. Let T2(b) be as in (6.4),
that is, T2(b) = e1 +κ0be2 +be3 +O(b3) with 1/2 ≤ |T2(b)| ≤ 2. We compute

(6.25) 〈 T2(b)
|T2(b)| ,∆1S

2
w −∆2S

1
w〉
∣∣∣
(w,z3)

= 1
|T2(b)|κ0(b− z3) + ET2(w, z3)

where (cf. (6.12b))

|ET2(w, z3)| ≤ 213M0δ
2
0 ≤ 213M0(2−100M−1

0 δ1)4/3 � δ1.

The computation for the normal component is more subtle. With N(b) =
be1 + 1

2κ0b
2e2 − e3, we consider the contributions of the terms in the above

Taylor expansion to 〈N(b),∆1S
2
w −∆2S

1
w〉. We get

〈N(b),∆1S
2
w −∆2S

1
w〉 = 1

2κ0b
2 − κ0bz3 + 1

2κ0z
2
3

+ 1
2κ0b

2z3S
1
w3z3z3(0, 0)−

3∑
j=1

S2
w3wjz3(0, 0)wjz3

+ br1(w, z3) + 1
2κ0b

2r2(w, z3) + 〈N(b), E3(w, z3)〉.

By (6.24),

〈 N(b)
|N(b)| ,∆1S

2
w −∆2S

1
w〉 = 1

|N(b)|
(

1
2κ0(z3 − b)2 + EN (w, z3)

)
(6.26)

with |EN (w, z3)| ≤ 221M2
0 δ

3
0 + 22−`M0δ0 � δ2

1

where for the error estimate we have used (6.12b). Clearly the main term
on the right hand side is ≤ |κ0|δ2

1/2.
This finishes the analysis of the second term in (6.20). Finally consider

the first term in (6.20), again under the assumption (6.18). We get the
estimates

|(µ1∆1 + µ2∆2)〈S1
w(w, z3), Ti(b)〉| ≤ 10M02−` � δ1, i = 1, 2

and

|(µ1∆1 + µ2∆2)〈S1
w(w, z3), N(b)〉|

≤ 2−`|〈e1 + z3e3, be1 − e3〉|+ 102M2
0 2−`δ2

0 ≤ 22−`δ1 � δ2
1 .

The proof is completed by combining terms. �

6.5. Proof of the decoupling step in the model case. Fix b and let mk,δ1,b be
a multiplier that is equal to 1 on Π2A,b(δ1) and equal to 0 on R3 \Π3A,b(δ1),
and satisfies the natural differentiability properties∣∣〈T1(b),∇〉α1〈T2(b),∇〉α2〈N(b),∇〉α3mk,δ1,b(ξ)

∣∣
.α 2−kα3(2kδ1)−α2(2kδ2

1)−α3 .
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Let Pk,δ1,b be defined by P̂k,δ1,bf = mk,δ1,bf̂ . Let I be an interval of length
δ1 and let fI(y) = f(y)1I(y3). The Schwartz kernel of

f 7→ (I − Pk,δ,b)[ς`,0Tk,`f ]

is given as a sum of oscillatory integrals
∑∞

n=0Kn,k,` where for n > 0

Kn,k,`(w, z) = 22k

∫∫∫
ei(〈w−v,ξ〉+2k〈τ,S(v,z3)−z′〉ς`,0(v)×

(1−mk,δ1,b(ξ))η1(|ξ|2−n)χk,`(v, z, 2
kτ)dv dξdτ 1I(z3),

with

χk,`(v, z, 2
kτ) := η

(
2`α(w, z)(τ1∆S

1 (w, z3) + τ2∆S
2 (w, z3))

)
ζ(w, z, τ, k) dτ

and the family ζ(·, ·, ·, k) is bounded uniformly in C∞c . If |n− k| > 10, then
repeated integration by parts in the v-variables (followed by subsequent
integration by parts in the ξ-variables) shows that

|Kn,k,`(w, z)| . min{2−10n, 2−10k(1 + |w − z|)−N}, |k − n| ≥ C.
For |k − n| ≤ C a similar argument applies to the assumption that on the
support of (1−mk,δ1,b) we have 2−kξ /∈ Π3A,b(δ1). That means∣∣∇v[−〈v, ξ〉+ 〈2kτ,S(v, z3)〉]

∣∣ ≥ c2kδ2
1 .

Differentiating the amplitude gives a factor of 2` with each differentiation.
Thus for |k − n| ≤ C an N -fold integration by parts in the v variables
followed by integration by parts in the ξ-variables shows that

|Kn,k,`(w, z)| .N (2kδ2
12−`)−N (1 + |w − z|)−N1 , |k − n| ≤ C.

Notice that by ` ≤ k/3 and δ1 ≥ 2−(1−ε2)` we have

2kδ2
12−` ≥ 2kε

2/3.

Thus a b40/ε2c-fold integration by parts in v (again followed by multiple
integration by parts in ξ) yields

|Kn,k,`(w, z)| . 2−11k(1 + |w − z|)−N1 .

Let bI be the left endpoint of the interval I. We decompose the left hand
side of (6.13) as

(6.27)
∥∥∥ ∑
I∈IJ

Pk,δ1,bI [ς`,0Tk,`gI ]
∥∥∥
p

+
∥∥∥ ∑
I∈IJ

(I − Pk,δ1,bI )[ς`,0Tk,`gI ]
∥∥∥
p

By Lemma 6.3 we can apply the decoupling inequality (6.6) (with ε replaced
by ε2) to bound the first term in (6.27) by

C(ε2, A)δ−ε
2
( ∑
I∈IJ

∥∥Pk,δ1,bI [ς`,0Tk,`gI ]∥∥pp)1/p

. C(ε2, A)δ−ε
2
( ∑
I∈IJ

∥∥ς`,0Tk,`gI∥∥pp)1/p
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For the second term in (6.27) we use the above error estimates, apply
Minkowski’s inequality and get the bound (6.27) by

2−11k
∑
I∈IJ

(∫ ∣∣∣ ∫ (1 + |w − z|)−N |g(z)1I(z3)|dz
∣∣∣pdw)1/p

. 2−10k‖g‖p.

This finishes the proof of Proposition 6.1. �

7. Families of changes of variables

Let P ◦ = (a◦, y◦) ∈M, with y◦ = S1(a◦, b◦), S2(a◦, b◦), b◦). For r > 0 let

Q(r) := {(x, y3) : |x− a◦|∞ ≤ r} and I(r) := {y3 : |y3 − b◦| ≤ r}.
Let Si be smooth functions in a neighborhood of Q(2r0) × I(2r0), for

some r0 > 0. After possibly permuting the variables y1, y2 we may assume,
by Lemma 3.1 that ∆1(x, y3) = det(S1

x, S
2
x, S

1
xy3) 6= 0 on Q(2r0) × I(2r0)).

Choose M so that

M > 2 + ‖S‖C5(Q(2r0)×I(2r0)) + max
(x,y3)∈Q(2r0)

|∆1(x, y3)|−1.

We now consider (a, b) close to (a◦, b◦) and construct changes of variables
so that in the new coordinates theconstant coefficient decoupling theorem
in Proposition 6.1 can be applied at suitable scales. The idea of applying
a constant coefficient decoupling theorem in a variable coefficient situation
also appears in [3].

For a ∈ Q(2r0), b ∈ I(2r0) let Γ1, Γ2 be as in (3.4), and let ρ ≡ ρ(a, b) ∈ R3

be defined by

(7.1) (ρ1, ρ2, ρ3) =
1

∆1(a, b)

(
− Γ2(a, b),Γ1(a, b),∆2(a, b)

)
For (x, y3), (a, y3) ∈ Q(r0) and (a, y3) ∈ I(2r0) consider the function

(x, a, y3) 7→ w(x, a, y3)

Q(r0)×Q(r0)× I(2r0)→ R3

defined by

(7.2)w1

w2

w3

 =

 S1(x, b)− S1(a, b),
S2(x, b)− ρ3(a, b)S1(x, b)− S2(a, b) + ρ3(a, b)S1(a, b)

S1
y3(x, b)− S1

y3(a, b)

 .

We have

(7.3) det(Dw(x, a, b)/Dx) = det(S1
x, S

2
x − ρ3S

1
x, S

1
x,y3)|(x,b) = ∆1(x, b).

By the implicit function theorem there exists r1 > 0 with r1 < r0 such that
for |w|∞ < 2r1, |a − a◦| < 2r1, b − b◦| < 2r1 the equation w(x, a, b) = w is
solved by a unique C∞ function

(7.4) x = x(w, a, b).
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Note the estimate

(7.5) |ρi(a, b)| ≤ 6M4, for a ∈ Q(2r0), b ∈ I(2r0).

By the definition of w and the mean value theorem for the coordinate func-
tions this implies |w(x, a, b)|∞ ≤ 3M(1 + 6M4)|x − a|∞ for x, a ∈ Q(r0),
b ∈ I(2r0). Hence if r2 < r1 and if |x− a◦|∞ < r2 and |a− a◦|∞ < r2 then
|w(x, a, b)|∞ ≤ 42M5r2 and if we define

(7.6) r2 = (50M5)−1r1

we get |w(x, a, b)|∞ < r1 for x, a ∈ Q(r2), b ∈ I(2r1). By the uniqueness
of the function x we thus see that x(w(x, a, b)) = x for x, a ∈ Q(r2) for
x, a ∈ Q(r2), b ∈ I(2r1).

We will also need to change variables in the y-variables, in a more explicit
form. Define

(7.7) z = (z1, z2, z3) : R2 ×Q(2r0)× I(2r0)→ R3

by

z1(y, a, b) = y1 − S1(a, y3), z3(y, a, b) = y3 − b,
and

z2(y, a, b) =

y2 − ρ3(a, b)y1 − S2(a, y3) + ρ3(a, b)S1(a, y3)− (y3 − b)
2∑
i=1

ρi(yi − Si(a, y3)).

We have

(7.8) det(Dz/Dy) = (1− ρ2(y3 − b)).

By (7.5) this quantity lies in (1/2, 3/2) provided that y3, b ∈ I(2r3) with

(7.9) r3 < min{r1, (24M4)−1}.

The inverse z 7→ y(z, a, b), defined for |z3| ≤ r3, |b−b◦| ≤ r3, |a−a◦| ≤ 2r0,
is given by

(7.10)

y1(z, a, b) = z1 + S1(a, b+ z3),

y2(z, a, b) =
z2 + z1(ρ3(a, b) + ρ1(a, b)z3) + (1− z3)S2(a, b+ z3)

1− ρ2(a, b)z3
,

y3(z, a, b) = b+ z3.

Lemma 7.1. The functions x, y defined above have the following properties.
(i) x(0, a, b) = a, y(0, a, b) = (S1(a, b), S2(a, b), b), y3(z, a, b) = b+ z3.

(ii) det
(Dx(w,a,b)

Dw

)
= 1

∆1(x(w,a,b),b) .

(iii) Let ρ ≡ ρ(a, b) be as in (7.1) and let

(7.11) B(z3, a, b) =

(
1 0

−ρ3 − ρ1z3 1− ρ2z3

)
.
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Then for |z3| ≤ r3, |a− a◦|∞ ≤ r2, |w| ≤ r2

(7.12)

B(z3, a, b)

(
S1(x(w, a, b), b+ z3)− y1(z, a, b)
S2(x(w, a, b), b+ z3)− y2(z, a, b)

)
=

(
S1(w, z3, a, b)− z1

S2(w, z3, a, b)− z2

)
where Si are C∞ with

(7.13) S1(w, 0) = w1, S2(w, 0) = w2, S1
z3(w, 0) = w3;

moreover

(7.14) S2
wz3(0, 0, a, b) = 0.

(iv) Let

∆S
i (x, y3) = det(S1

x, S
2
x, S

1
xy3)|(x,y3),

∆S
i (w, z3) = det(S1

w,S
2
w,S

1
wz3)|(w,z3).

Then, for (τ1, τ2) = (µ1, µ2)B(z3, a, b),

(7.15)
2∑
i=1

τi∆
S
i (x(w, a, b), b+ z3) =

∆S
1 (x(w, a, b), b)

1− ρ2(a, b)z3

2∑
i=1

µi∆
S
i (w, z3).

(v) Let κ be as in (3.8b). Then

(7.16) S2
w3z3z3(0, 0, a, b) =

κ(a, b)

∆1(a, b)2
.

Proof. We write for i = 1, 2

Si(x, y3)− yi = Si(a, b) + Si(x, b)− Si(a, b)
+ Si(x, y3)− Si(a, y3)− Si(x, b) + Si(a, b)

+ Si(a, y3)− Si(a, b)− yi

and set

x̃i = Si(x, b)− Si(a, b), i = 1, 2,

x̃3 = S1
y3(x, b)− S1

y3(a, b)

so that

det
(Dx̃
Dx

)
= ∆S

1 (x, b).

Also let

ỹi = yi − Si(a, y3), i = 1, 2.

ỹ3 = y3 − b
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Note that x̃ᵀ = (x−a)ᵀAᵀ+O(|x−a|2) where Aᵀ is the matrix with column
vectors (S1

x, S
2
x, S

1
xy3)|(a,b). We then expand

S1(x, y3)− y1 = x̃1 − ỹ1 + x̃3ỹ3 +R1,1(x̃, ỹ3, a, b)

S2(x, y3)− y2 = x̃2 − ỹ2 + ỹ3

3∑
i=1

ρ
i
x̃i +R2,1(x̃, ỹ3, a, b)

where

(7.17) ρ
i

= 〈A−1ei, S
2
x,y3(a, b)〉,

and where R1,1, R2,1 vanish to third order with no pure x̃ or pure ỹ3 terms,
moreover ∂ỹ3R1,1 has no pure x̃ terms. We label R1,1 an error term of type
I and R2,1 an error term of type II. Precisely, an error term of type I is of
the form

(7.18a) ỹ2
3

3∑
i=1

x̃iβ̃i(x̃, ỹ3, a, b)

with β̃i smooth, and a term of type II is of the form

(7.18b) y3

3∑
j=1

3∑
k=1

x̃j x̃kβ̃jk(x̃, ỹ3, a, b) + term of type I,

with β̃jk smooth. Note that (ρ
1
, ρ

2
, ρ

3
) satisfies

ρ
1
S1
x(a, b) + ρ

2
S2
x(a, b) + ρ

3
S1
xy3(a, b) = S2

xy3(a, b)

and hence, by Cramer’s rule, we see that ∆1(ρ
1
, ρ

2
, ρ

3
) = (−Γ2,Γ1,∆2), i.e.

ρ
i

= ρi

where ρi is as in (7.1).
Given c1, c2, c3 ∈ R we compute

(c3 + c1ỹ3)(S1(x, y3)− y1) + (1 + c2ỹ3)(S2(x, y3)− y2)

= (x̃2 + c3x̃1)− (ỹ2 + c3ỹ1)

− ỹ3(

3∑
i=1

x̃i(ρi + ci))− c1ỹ1ỹ3 − c2ỹ2ỹ3 +R2,2(x̃, ỹ3, a, b)

where R2,2 is an error term of type II. We choose ci = −ρi(a, b) so that the
mixed quadratic terms drop out.

We now change variable in x̃ and in ỹ separately, setting

z1 = ỹ1, z2 = ỹ2 − ρ3ỹ1 − ρ1ỹ1ỹ3 − ρ2ỹ2ỹ3, z3 = ỹ3

and

w1 = x̃1, w2 = x̃2 − ρ3x̃1, w3 = x̃3.

Define

Si(w, z3, a, b) = Si(x(w, a, b), b+ z3), i = 1, 2.
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Setting

B(z3, b) =

(
1 0

−ρ3 − ρ1z3 1− ρ2z3

)
we obtain

(7.19) B(y3 − b, b)
(
S1(x, y3)− y1

S2(x, y3)− y2

)
=

(
S1(w, z3, a, b)− z1

S2(w, z3, a, b)− z2

)
if w = w(x, a, b) and y = y(z, a, b) and w and y are as in (7.2) and (7.10).
Now (7.19) implies (7.12).

The functions S1, S2 satisfy

S1(w, z3, a, b) = w1 + w3z3 +R1,3(w, z3, a, b)

S2(w, z3, a, b) = w2 +R2,3(w, z3, a, b)

where R1,3 is an error term of type I (with (x̃, ỹ3) replaced by (w, z3), cf.
(7.18a)) and R2,3 is a term of type II (again in the (w, z3)-variables, cf.
(7.18b)). We see that (7.12) and (7.13), (7.14) hold.

In order to obtain (7.15) we calculate

2∑
i=1

(Bᵀµ)i∆
S
i (x(w, a, b), b+ z3) =

det
(
∇w(S1(x, y3)),∇w(S2(x, y3)),∇w(〈Bᵀµ, Sy3(x, y3)〉)

)
det

Dw

Dx
(x)

with x ≡ x(w) ≡ x(w, a, b). We have

∇wS1(x(w), z3) = ∇w(S1(x(w), b+ z3)),

and, with b22(z3) = 1− ρ2z3,

∇wS2(x(w), z3) = b22(z3)∇w(S2(x(w), b+z3))−b21(z3)∇w(S1(x(w), b+z3));

moreover

∇wS1
z3(x(w), b+ z3) = ∇w(S1

y3(x(w), b+ z3)),

and

∇wS2
z3(x(w), b+ z3) = −ρ1∇w(S1(x(w), b+ z3))− ρ2∇w(S2(x(w), b+ z3))

+ b21(z3)∇w(S1
y3(x(w), b+ z3)) + b22(z3)∇w(S1

y3(x(w), b+ z3)).

A quick calculation with determinants and (7.3) yields the asserted identity
(7.15).

For the curvature calculation we start with the equation (7.12) for the
second component and differentiate with respect to w3. This yields

S2
w3

(w, z3) =

(−ρ3 − ρ1z3)
( Dx

Dw
e3

)ᵀ
S1
x(x, b+ z3) + (1− ρ2z3)

( Dx

Dw
e3

)ᵀ
S2
x(x, b+ z3).
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here the Jacobian Dx/Dw is evaluated at (w, b). We differentiate twice with
respect to z3 to obtain

S2
w3z3z3(w, z3) = −2ρ1

( Dx

Dw
e3

)ᵀ
S1
xy3(x, b+ z3)− 2ρ2

( Dx

Dw
e3

)ᵀ
S2
xy3(x, b+ z3)

− (ρ3 + ρ1z3)
( Dx

Dw
e3

)ᵀ
S1
xy3y3(x, b+ z3) + (1− ρ2z3)

( Dx

Dw
e3

)ᵀ
S2
xy3y3(x, b+ z3)

where x ≡ x(w, a, b). Using Cramer’s rule we find that

Dx

Dw
e3

∣∣
(w,a,b)

=
1

∆1(x(w, a, b), b)
S1
x ∧ S2

x

∣∣
(x(w,a,b),b)

.

We evaluate the previous identity at z3 = 0, and w = 0 to obtain

S2
w3z3z3(0, 0) =

1

∆1(a, b)

(
− 2ρ1〈S1

x ∧ S2
x, S

1
xy3〉 − 2ρ2〈S1

x ∧ S2
x, S

2
xy3〉

− ρ3〈S1
x ∧ S2

x, S
1
xy3y3〉+ 〈S1

x ∧ S2
x, S

2
xy3y3〉

∣∣∣
(a,b)

)
Using (7.1) we see that S2

w3z3z3(0, 0) equals

1

∆1

(
− 2ρ1∆1 − 2ρ2∆2 − ρ3(∆1,y3 − Γ1) + (∆2,y3 − Γ2)

)∣∣∣
(a,b)

=
1

∆2
1

(
2Γ2∆1 − 2Γ1∆2 − (∆1,y3 − Γ1)∆2 + (∆2,y3 − Γ2)∆1

)∣∣∣
(a,b)

which equals κ(a, b)/∆1(a, b)2 so that (7.16) is proved. �

8. Decoupling in the general case

We consider the operator Rk.` as in (5.2). With χ is as in (5.1a) we
assume that χ is zero if x /∈ [−r2/2, r2/2] or if y3 /∈ [r3/2, r3/2] (see the
paragraph leading to (7.4) and (7.6), (7.9)).

Proposition 8.1. Let 0 < ε < 1/2, ` ≤ bk/3c. Let δ0, δ1 ∈ (2−`(1−ε
2), 2−`ε

2
)

such that

(8.1) max{(2−`δ0)1/2, δ
3/2
0 } < δ1 < δ0.

Let J be an interval of length δ0, near b◦, and let IJ be a collection of
intervals of length δ1 which have disjoint interior and which intersect J . For
each I, let fI be defined by fI(y) = f(y)1I(y3). Let a ∈ R3, ε0 = (10M)−4,
ϑ ∈ C∞c supported in (−r2, r2)3 and ϑ`,a(x) = ϑ(2`ε−1

0 (x − a)). Then for
2 ≤ p ≤ 6,
(8.2)∥∥∥ϑ`,a ∑

I∈IJ

Rk,`fI
∥∥∥
p
≤ Cε(δ0/δ1)ε

( ∑
I∈IJ

∥∥ϑ`,aRk,`fI∥∥2

p

)1/2
+ CN,ε2

−kN‖f‖p.

The constants do not depend on the choice of J and IJ .
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Proof. Fix a near a◦ and b ∈ J . We apply (7.12) and then the changes
of variables y = y(z, a, b) in (7.10) and τ = Bᵀ−1(z3, a, b))µ. Note from
(7.8), (7.11) that det(Dy/Dz) detB = 1. Let f(y) =

∑
I∈JI f1I(y3) and

g(z, a, b) = f(y(z, a, b)).
Let

(8.3) M1 ≥ 1 +
2∑
i=1

sup
(a,b)∈[−r0,r0]4

‖Si(·, a, b)‖C5([−r0,r0]4).

which is just the uniform version of the condition (6.8). By applications of
Hölder’s inequality it suffices to prove (8.2) under a slightly more restrictive
assumptions on δ0, δ1, namely

δ0, δ1 ∈ (M2
1 220−`(1−ε2), 2−`ε

2−20M−2
1 )

2100M1 max{(2−`δ0)1/2, δ
3/2
0 } < δ1 < δ0.

These are the uniform versions of (6.12) which will allow us to apply Propo-
sition 6.1.

We have

Rk,`f(x) = 22k

∫∫
ei2

k〈µ,S(w(x,a,b),z3)−z′〉χ̃k,`(x, z, µ, a, b)g(z, a, b)dµdz

with

χ̃k,`(x, z, µ, a, b) = χ(x, y(z, a, b))η1(|Bᵀ−1(z3, a, b)µ|)×

η
(
2` ∆1(x)

1−ρ3(a,b)z3
(µ1∆S

1 (w, z3, a, b) + µ2∆S
2 (w, z3, a, b))

)
.

Hence we get, with ς`,a(w) := ϑ`,a(x(w, a, b)),

ϑ`,a(x(w, a, b))
∑
I

Rk,`fI(x(w, a, b)) = ς`,0(w)
∑
I∈JI

Tk,`,a,bgI(w)

where gI(z, a, b) = g(z, a, b)1−b+I(z3) and Tk,` ≡ Tk,`,a,b is as in (6.11).
We can now write the left hand side of (5.6) as(∫ ∣∣∣ϑ`,a(x(w, a, b)) ∑

I∈IJ

Rk,`fI(x(w, a, b))
∣∣∣p|det( Dx

Dw |dw
)1/p

.
∥∥∥ς`,0 ∑

I∈IJ

Tk,`gI
∥∥∥
p

where we used uniform upper bounds on |det( Dx
Dw )|. By Proposition 6.1 we

can bound∥∥∥ς`,0 ∑
I∈IJ

Tk,`gI
∥∥∥
p
≤ Cε(δ0/δ1)ε

( ∑
I∈IJ

∥∥ς`,0Tk,`gI∥∥2

p

)1/2
+ Cε2

−10k‖g‖p.
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Undoing the above change of variable (and using uniform lower bounds on

| det( Dx
Dw )|) we may bound this, using Proposition 6.1, by

C ′ε(δ0/δ1)ε
( ∑
I∈IJ

∥∥ϑ`,aRk,`fI∥∥2

p

)1/2
+ Cε2

−10k‖f‖p. �

Proof of Theorem 5.2. We may assume ε < 1/10. Let ϑ ∈ C∞c (R3) sup-
ported in (−1, 1)3 such that ϑ ≥ 0 everywhere and

∑
n∈Z3 ϑ(· − n) = 1.

Let, for n ∈ Z3, ζ`,n(x) = υ(x)ζ(2`ε−1
0 x− n). Thus

(8.4) ‖υRk,`f‖p .
( ∑
n∈Z3

∥∥ϑ`,nRk,`f∥∥pp)1/p
.

Now let I(m) be the family of dyadic intervals with length 2−m. Let I ′ be
a dyadic interval of length ≥ 2−m then we denote by I(m, I ′) the collection
of dyadic intervals which are of length 2−m and are contained in I ′. For
any dyadic interval define fI(y) = f(y)1I(y3). Let m0 = b`ε2c. By Hölder’s
inequality,

(8.5)
∥∥ϑ`,nRk,`f∥∥p ≤ 2

m0(1− 1
p

)
( ∑
J∈I(m0)

∥∥ϑ`,nRk,`fJ∥∥pp)1/p

It is not hard to see that we can pick a sequence of integers

m1, . . . ,mN(`)

such that mj ≤ mj+1 ≤ ` for j = 0, . . . , N(`)− 1, and such that

(8.6a) mj+1 ≤ min
{
b3mj

2 c, b
mj+`

2 c
}

;

moreover

(8.6b) mN ≥ b`(1− ε2)c, and N(`) ≤ Cε log2(`).

We claim that for j = 0, . . . , N(`)− 1

(8.7)∥∥ϑ`,nRk,`f∥∥p ≤ Cjε22
m0(1− 1

p
)+(mj−m0)( 1

2
− 1
p

+ε2)
( ∑
I∈I(mj)

∥∥ϑ`,nRk,`fI∥∥pp)1/p

+ 2−9k
( j−1∑
ν=0

Cνε2
)
‖f‖p

We show this by induction. The case j = 0 is covered by (8.5). For the
induction step assume (8.7) for some j < N(`) − 1. Observe that for I ∈
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I(mj) Proposition 8.1 and Hölder’s inequality give∥∥ϑ`,nRk,`fI∥∥p =
∥∥∥ϑ`,n ∑

I′∈I(mj+1,I)

Rk,`fI′
∥∥
p

≤ Cε22(mj+1−mj)ε2
( ∑
I′∈I(mj+1,I)

‖ϑ`,nRk,`fI′
∥∥2

p

)1/2
+ Cε22−10k‖fI‖p

≤ Cε22
(mj+1−mj)( 1

2
− 1
p

+ε2)
( ∑
I′∈I(mj+1,I)

‖ϑ`,nRk,`fI′
∥∥p
p

)1/p
+ Cε22−10k‖fI‖p

We use the induction hypothesis (8.7) and by the last inequality we bound∥∥ϑ`,nRk,`f∥∥p by

Cj+1
ε2

2
m0(1− 1

p
)+(mj+1−m0)( 1

2
− 1
p

+ε2)
( ∑
I′∈I(mj+1)

∥∥ϑ`,nRk,`fI′∥∥pp)1/p

+ Cj
ε2

2
m0(1− 1

p
)+(mj+1−m0)( 1

2
− 1
p

+ε2)
2−10k

( ∑
I∈I(mj)

∥∥fI∥∥pp)1/p

+ 2−9k
( j−1∑
ν=0

Cνε2
)
‖f‖p.

Since m0(1− 1
p) + (mj+1 −m0)(1

2 −
1
p + ε2) ≤ k and (

∑
I∈I(mj)

∥∥fI∥∥pp)1/p ≤
‖f‖p we obtain the case for j + 1 of (8.7).

We consider the case j = N(`) of (8.7). Observe that each interval

I ∈ I(mN(`)) is the union of 2`−mN(`) dyadic intervals of length 2−`. We

also sum in n ∈ Z3 and use the finite overlap of the supports of ζ`,n. Observe
that the cardinality of the index set of n which give a nonzero contribution
is O(23`) = O(2k). We get∥∥Rk,`f∥∥p . ( ∑

n∈Z3

‖ζ`,nRk,`f
∥∥p
p

)1/p

≤ Cj
ε2

2
m0(1− 1

p
)+(mj−m0)( 1

2
− 1
p

+ε2)+(`−mN(`))(1− 1
p

)
( ∑
I∈I(`)

∑
n∈Z3

∥∥ζ`,nRk,`fI∥∥pp)1/p

+ 2−8k
(N(`)−1∑

ν=0

Cνε2
)
‖f‖p.

Observe

m0(1− 1

p
) + (mj −m0)(

1

2
− 1

p
+ ε2) + (`−mN(`))(1−

1

p
)

≤ `(ε2(1− 1

p
) + (1− 2ε2)(

1

2
− 1

p
+ ε2) ≤ `(2ε2 + 1/2− 1/p)
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and (with N(`) as in (8.6b))

N(`)−1∑
l=0

C lε2 . (1 + `)B(ε)

for some large constant B(ε). This yields the assertion of the theorem. �

9. Lp-Sobolev estimate

In order to prove our Sobolev estimate we have to combine the estimates
for the operators Rk. Here we use a special case of Theorem 1.1. in [19]. In

what follows the operators Pk are defined by P̂kf(ξ) = φ(2−kξ)f̂ , where φ
is supported in {ξ : 1

2 < |ξ| < 2}

Proposition 9.1. ([19]) Assume ε > 0, p0 < p < ∞ and λ > 1. We
are given operators Tk, k > 0, with smooth Schwartz kernels Kk (acting on
functions in R3) satisfying

sup
k>0

2k/p‖Tk‖Lp→Lp ≤ A(9.1a)

sup
k>0

2k/p0‖Tk‖Lp0→Lp0 ≤ B0.(9.1b)

Assume that for each cube Q there is a measurable exceptional set EQ such
that

(9.1c) meas(EQ) ≤ λmax{diam(Q)2, |Q|}

and such that for every k > 0 and every cube Q with 2kdiam(Q) ≥ 1 we
have
(9.1d)∫

R3\EQ
|Kk(x, y)|dy ≤ B1 max{(2kdiam(Q)−ε, 2−kε} for a.e. x ∈ Q.

Then for q > 0,

(9.2)
∥∥∥(∑

k>0

2kq/p|PkTkfk|q
)1/q∥∥∥

p

. A
[

log
(
3 +

B
p0
p

0 (Aλ1/p +B1)
1− p0

p

A

)] 1
q
− 1
p
(∑

k

‖fk‖pp
) 1
p
.

We claim that for ` > 0

(9.3)
∥∥∥( ∑

k:bk/3c≥`

2kq/p|PkRk,`fk|q
)1/q∥∥∥

p
≤ Cp2−`ε(p)

(∑
k

‖fk‖pp
) 1
p
, p > 4

which can be used, together with (5.9) to deduce

(9.4) R : (Bs
p,p)comp → (F s+1/p

p,q )loc, p > 4, q > 0.
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Since Lsp = F sp,2 ↪→ Bs
p,p for p > 2 and F 0

p,q ↪→ F 0
p,2 = Lp, q ≤ 2, this implies

the asserted Lp-Sobolev estimates. In order to check (9.3) we need to verify
the assumptions of the proposition for the family {Rk,`}k≥3`.

Let 4 < p0 < p. By Theorem 5.1 we have (9.1a) with A = Cp2
−`β and

β < 2/p− 1/2 if 4 < p ≤ 6 and β < 1/p if p ≥ 6. Moreover we have (9.1b)
with B0 = Cp02−`β0 and β0 < 2/p0 − 1/2 if 4 < p0 ≤ 6 and β0 < 1/p if
p0 ≥ 6.

By integration by parts argument one has the bound

|Rk,`(x, y)| ≤ CN
22k

(1 + 2k−`|y′ − S(xQ, y3)|)N

for the Schwartz kernel of Rk,`. For a cube Q with center xQ define

EQ := {y : |y′ − S(xQ, y3)| ≤ C22`diam(Q)}

if diam(Q) ≤ 1. If diam(Q) ≥ 1 we let EQ be a ball of diameter C22`diam(Q),

centered at xQ. Assumption (9.1c) is then satisfied with the choice of λ = 22`

and (9.1d) holds with B1 = 22`. The logarithmic term in (9.2) gives us an
additional factor O(`). Thus we have verified (9.3) with ε(p) < β and (9.4)
follows by summation in ` ≥ 0.

10. Further results and conjectures

In our analysis we heavily used the condition ` ≤ bk/3c for the operators
Rk,`. If one is interested to relax the assumption that πR is a fold one
needs to explore finer localizations of τ1∆1 + τ2∆2 as used by Comech in
[6]. There he proves sharp L2-Sobolev estimates under the assumption that
πL is a fold but πR satisfies a finite type condition of order t, i.e. if VR is

a kernel field for πR then
∑t

j=0 |V
j
R(detπR)| 6= 0. The case t = 1 applies

to the fold assumption on πR. In the general finite type situation we can
show the Lpcomp → Lp1/p,loc estimate for p ≥ 5, and in fact in a slightly larger
range.

Theorem 10.1. LetM⊂ ΩL×ΩR be a four-dimensional manifold such that
the projections (1.3) are submersions. Assume that the only singularities of
πL : (N ∗M)′ → T ∗ΩL are Whitney folds and that πR : (N ∗M)′ → T ∗ΩR is
of finite type ≤ t, for some t ≥ 0. With L, $ be as in Theorem 1.1 suppose
that $ is a submersion. Then R is extends to a continuous operator

R : Lpcomp(ΩR)→ Lp1/p,loc(ΩL), 10t+2
2t+1 < p <∞ .

Sketch of Proof. By the L2 estimates in [6] the operators R`,k the L2 bound
in (5.3) is still valid, and all of our previous arguments apply. Hence we just
need to consider the case ` = bk/3c.

The operator Rbk/3c,k, for which |τ1∆1 + τ2∆2| . 2−k/3, satisfies the

norm estimate ‖Rk,bk/3c‖L2→L2 . 2−
k
2

t+1
2t+1 , a less satisfactory bound. One

can show this estimate as a consequence of more refined L2-estimates in
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[6]. This yields an analogue of (5.8) in the finite type case, namely for
2 ≤ p ≤ ∞,(∑

ν

∥∥Rk,bk/3c[1bk/3c,νgν ]
∥∥p) 1

p
. 2

− k
p

t+1
2t+1
− k

3
(1− 2

p
)
(∑

ν

‖gν‖pp
) 1
p
.

Combining this with the decoupling estimate (5.6) (which remains true for
` = bk/3c) yields∥∥Rk,bk/3cf∥∥p . Cε2 k3 ( 1

2
− 1
p

+ε)
2
− k
p

t+1
2t+1
− k

3
(1− 2

p
)‖f‖p, 2 ≤ p ≤ 6,

i.e. ‖Rk,bk/3cf‖p . 2−k(α(p)+1/p) with α(p) > 0 for 10t+2
2t+1 < p ≤ 6. Fur-

ther interpolation with the bound ‖Rk,bk/3c‖L∞→L∞ = O(1) gives a similar
statement for 6 ≤ p ≤ ∞ with an α(p) > 0 for 6 ≤ p <∞. �

To improve on this result, one would have to employ finer localizations in
terms of detπL (which would correspond to the assumption |τ1∆1 +τ2∆2| ≈
2−` where a range of ` > k/3 will depend on t). Our current arguments
for the plate localization in Lemma 6.3 are not effective in that situation.
Nevertheless we conjecture that the result of Theorem 10.1 remains true for
all p > 4, and even that the assumptions on πR can be dropped altogether
in Theorem 1.1. See the discussion of model examples in §4.2 and §4.3.2.
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