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1. Introduction.

The purpose of this paper is to study averaging operators of Radon transform type. We shall

formulate suitable �nite type conditions and prove L

p

-Sobolev and L

p

! L

q

estimates. The results

will be essentially sharp for operators associated with families of curves in the plane.

Let X and Y be smooth manifolds, dimX = n

L

, dimY = n

R

and let M be a submanifold

in X � Y with conormal bundle N

�

M; we denote by ` the codimension of M. We shall always

assume that the projections �

X

:M ! X and �

Y

:M! Y are surjective with rank D�

X

= n

L

,

rank D�

Y

= n

R

. This in particular implies that N

�

M � T

�

X n 0 � T

�

Y n 0 where 0 refers to

the zero sections in T

�

X and T

�

Y, respectively. This is the usual assumption for the canonical

relation associated with Lagrangian distributions arising as kernels of Fourier integral operators.

The assumptions on D�

X

, D�

Y

imply that for �xed x 2 X, y 2 Y the sets

(1.1)

M

x

= fy 2 Y; (x; y) 2 Mg

M

y

= fx 2 X; (x; y) 2 Mg

are smooth immersed submanifolds of codimension ` in Y and X, respectively.

Let � 2 C

1

(X� Y) be compactly supported. We shall study the regularity of the averaging

operator (or generalized Radon transform) given by

(1.2) Rf(x) =

Z

M

x

�(x; y)f(y) d�

x

(y);

here d�

x

is a smooth density on M

x

depending smoothly on x.

The averaging operator R is a Fourier integral operator and its distribution kernel belongs to

the class I

m

(X;Y; N

�

M) with m = `=2�(n

L

+n

R

)=4 (cf. [10]). Sharp estimates are well known in

the case where the projections �

L

: N

�

M! T

�

X, �

R

: N

�

M! T

�

Y are locally di�eomorphisms

([10]); then necessarily n

L

= n

R

. There has been considerable interest in obtaining sharp estimates

in the degenerate case where this assumption is relaxed (see e.g. [4], [5], [6], [7], [8], [12], [13], [14],

[15], [16], [17], [19], [20], [21]).

Finite type conditions may be formulated in terms of vector �elds tangent to both M and X,

or to both M and Y, and the commutatators of such vector �elds. We use the notation

T

1;0

P

M = T

P

M\ T

P

(X� f0g)

T

0;1

P

M = T

P

M\ T

P

(f0g �Y);
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so if P = (x; y) 2 M then T

1;0

P

M is tangent to M

y

� f0g and T

0;1

P

M is tangent to f0g �M

x

.

Note that dim T

1;0

P

M = n

L

� `, dimT

0;1

P

M = n

R

� ` and dim T

P

M = n

L

+ n

R

� `. The �nite

type conditions will measure to which extent the subbundle T

1;0

M�T

0;1

M fails to be involutive.

Given the calculus of wavefront sets ([10]) it is also natural to formulate �nite type conditions

in terms of the twisted normal bundle or canonical relation

C = (N

�

M)

0

= f(x; �; y;��) : (x; �; y; �) 2 N

�

Mg:

In fact (N

�

M)

0

can be identi�ed with a subbundle T

�;?

M of T

�

M whose �ber at P = (x; y) 2 M

is

T

�;?

P

M = (T

1;0

P

M� T

0;1

P

M)

?

;

the `-dimensional space of all linear functionals in T

�

P

M which annihilate vectors in T

1;0

P

M and

vectors in T

0;1

P

M. The identi�cation is via restricting linear forms in T

�

P

(X�Y) to tangent vectors

in T

P

M. More precisely if { : M ! X � Y denotes the inclusion map and {

�

the pullback of i

acting on forms in T

�

(X�Y), then

T

�;?

M = f(P; {

�

P

�) : (P; �) 2 Cg

where P = (x; y) 2 M and � = (�;��) 2 (N

�

P

M)

0

; see the discussion in x2.

Given vector �elds V , W we denote the Lie-derivative of W with respect to V (or Lie product

of V and W ) by [V;W ]; in coordinates it is identi�ed with the commutator of the vector �elds V

and W . As customary in Lie-theory we shall also use the notation adV (W ) := [V;W ]. We �rst

introduce the notion of a vector �eld of type � (�; �). Here � refers to the partial order on pairs

of integers de�ned by (j; k) � (j

0

; k

0

) if and only if either j � j

0

and k < k

0

or j < j

0

and k � k

0

.

We say that (j; k) � (j

0

; k

0

) if (j; k) � (j

0

; k

0

) or (j; k) = (j

0

; k

0

).

De�nition. Let U be an open set in M.

(i) A vector �eld V is of type (1; 0) in U if V

P

2 T

1;0

P

M for all P 2 U .

(ii) A vector �eld V is of type (0; 1) in U if V

P

2 T

0;1

P

M for all P 2 U .

(iii) We set V

(0;0)

(U) = f0g and let V

1;0

, V

0;1

be the C

1

(U)-modules of all vector �elds of

type (1; 0), (0; 1), respectively. For a pair (�; �) of positive integers let V

�;�

(U) be the C

1

(U)-

module generated by all vector �elds of type (1; 0) and (0; 1) and all vector �elds of the form

g adV

1

� � �adV

n�1

(V

n

), where g 2 C

1

(U), each V

i

is of type (1; 0) or of type (0; 1), at most � of

the V

i

are of type (1; 0) and at most � of the V

i

are of type (0; 1).

(iv) If V 2 V

�;�

(U) then we say that V is of type � (�; �) in U . If V 2 V

�;�

(U) but V =2

V

�

0

;�

0

(U) for any (�

0

; �

0

) � (�; �) then we say that V is of type (�; �) in U .

(v) Let P 2 M. Two vector �elds V and

e

V are said to be equivalent at P if there is a

neighborhood U so that V and

e

V coincide in U . The set of equivalence classes of vector �elds (or

germs) at P is denoted by V(P ). The submodule V

�;�

(P ) consists of the equivalence classes for

which any representative is in V

�;�

(U), for some suitable U . By abuse of notation we shall say that

a vector �eld V de�ned on M near P belongs to V

�;�

(P ) if V 2 V

�;�

(U) for some neighborhood

U of P .

We remark that the notion of type (�; �) is invariant under special changes of variables of the

form 	(x; y) = (	

L

(x);	

R

(y)) where 	

L

is a di�eomorphism in X and 	

R

is a di�eomorphism in

Y. Of course those are just the changes of variables which leave the L

p

-Sobolev mapping properties

of an operator invariant.
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To see the invariance let 	

�

V be the pullback of V under 	 de�ned by (	

�

V )

P

= (D	)

�1

P

V

	(P )

.

Then the pullback of a vector �eld of type (1; 0) is of type (1; 0) (with respect to the manifold

	

�1

(M)), in fact (	

�

X)

P

= (D	

L

� Id)

�1

P

X

	(P )

for P 2 	

�1

M. Similarly, the pullback of a

vector �eld of type (0; 1) is of type (0; 1). Now 	

�

[X; Y ] = [	

�

X;	

�

Y ] and the latter equals

[	

�

L

X;	

�

R

Y ], which is a vector �eld of type (1; 1). Inductively we see that the notion of a vector

�eld of type (�; �) is invariant under change of variables in X and Y.

De�nition. Let P 2 M and � 2 T

�

P

M. Then T

�

M is said to be of type (�; �) at (P; �) if there

is V 2 V

�;�

(P ) such that h�; V

P

i 6= 0 and if h�;

e

V

P

i = 0 for all vector �elds

e

V of type � (�; �). M

is said to be of �nite type at P if for every � 2 T

�

P

M there are nonnegative integers �, � so that

T

�

M is of type (�; �) at (P; �).

By the above comments on the behavior of vector �elds of type (�; �) under separate changes

of variables in X and Y it is clear that the notion of type (�; �) is well de�ned. Note that T

�

M is

always of type (1; 0) at (P; �) if � does not annihilate vectors in T

1;0

P

M and of type (0; 1) if � does

not annihilate vectors in T

0;1

P

M. Thus the �nite type condition is only interesting if restricted to

T

�;?

M. We note that the type is semicontinuous with respect to the partial order �; in the sense

that if T

�

M is of type (�; �) at (P; �) then there is a neighborhood of (P; �) in T

�

M, conic in the

�ber, such that T

�

M is of type � (�; �) in this neighborhood. The number

n(P ) = max

�2T

�

P

M

minf� + � : T

�

M is of �nite type (�; �) at (P; �)g

is called the H�ormander type. This terminology is suggested by conditions in [9]: If n = n(P ) < 1,

then there are numbers �

i

, �

i

, with �

i

+ �

i

� n and vector �elds V

i

of type (�

i

; �

i

), i = 1; : : : ; n

L

+

n

R

� `, so that the (V

i

)

P

span the tangent space T

P

M.

In this paper we emphasize the case codimM = 1, so that M is a hypersurface in X � Y

and the �bers of T

�;?

M are one-dimensional. Then T

�

M is of type (�; �) at (P; �) for one

� 2 (T

1;0

P

M� T

0;1

P

M)

?

if and only if it is of type (�; �) for all nonzero � 2 (T

1;0

P

M� T

0;1

P

M)

?

.

This justi�es the following terminology.

De�nition. Suppose that M is a hypersurface in X�Y, so that the projections to X and Y are

submersions. Let P 2 M, � � 1, � � 1. Then M is said to be of type (�; �) at P if there is a

vector �eld V of type (�; �) de�ned near P and a linear functional � 2 T

�

P

M annihilating vectors

in T

1;0

P

M and vectors in T

0;1

P

M so that

h�; V

P

i 6= 0:

AgainM is said to be of �nite type at P ifM is of type (�; �) at P , for a pair (�; �) of positive

integers.

We shall now formulate sharp theorems for curves in two dimensional manifolds and genera-

lizations for hypersurfaces M. For every P 2 M let

(1.3) �(P ) = f(�; �) 2Z

+

�Z

+

:M is of type (�; �) at P .g

Let A(P ) be the closed convex hull of the points in f(u; �) : 0 � u � 1; � � 0g and the points

�

�

�+ �

;

1

� + �

�

; (�; �) 2 �(P ):
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Let A(P ) be the closed convex hull of the points in f(u; �) : 0 � u � 1; � � 0g and the points

�

�

n

L

�1

�

n

L

�1

+

�

n

R

�1

;

1

�

n

L

�1

+

�

n

R

�1

�

; (�; �) 2 �(P ):

Notice that

A(P ) = A(P ) if n

L

= n

R

= 2:

Theorem 1.1. Suppose that codimM = 1, P 2 M and 1 � p � 1.

(i) There is a neighborhood U of P such that if supp � � U and if (1=p; �) belongs to the

interior of A(P ) then R is bounded from L

p

s;comp

(Y) into L

p

s+�;loc

(X), for all s 2 R.

(ii) Suppose that R is bounded from L

p

s;comp

(Y) into L

p

s+�;loc

(X), for some s 2 R and that

�(P ) 6= 0. Then (1=p; �) belongs to A(P ).

We note that since supp � is compact we are working with functions of compact support, and

the distinction between the spaces L

p

�

, L

p

�;comp

, L

p

�;loc

becomes irrelevant.

We now turn to L

p

! L

q

estimates. Let B(P ) be the closed convex hull of the points in

f(u; v)) : 0 � u � 1; v � ug and the points

�

� + 1

� + � + 1

;

�

� + � + 1

�

; (�; �) 2 �(P )):

Let B(P ) be the closed convex hull of the points in f(u; v)) : 0 � u � 1; v � ug and the points

�

�

n

L

�1

+ 1

�

n

L

�1

+

�

n

R

�1

+ 1

;

�

n

L

�1

�

n

L

�1

+

�

n

R

�1

+ 1

�

; (�; �) 2 �(P )):

Again

B(P ) = B(P ) if n

L

= n

R

= 2:

Theorem 1.2. Suppose that codimM = 1, P 2 M and 1 � p � 1.

(i) There is a neighborhood U of P such that if supp � � U and if (1=p; 1; q) belongs to the

interior of B(P ) then R is bounded from L

p

comp

(Y) into L

q

loc

(X).

(ii) Suppose dimX = dimY = 2 and that R is bounded from L

p

comp

(Y) into L

q

loc

(X). If

�(P ) 6= 0 then (1=p; 1=q) belongs to B(P ).

Consider now the two dimensional situation. If the principal symbol is multiplied by a suitable

damping factor then one can obtain the same L

2

Sobolev estimates as in the nondegenerate case,

without assumong �nite type conditions, see [21]. An essentially sharp version of this is

Theorem 1.3. Suppose dimX = dimY = 2 and codimM = 1. Let U be an open set containing

supp � and let X 2 V

1;0

(U), Y 2 V

0;1

(U), nonvanishing in U . Let ! be a section in T

�;?

M,

nonvanishing over U , and let J



(x; y) = jh!; [X; Y ]i

(x;y)

j



. De�ne

R



f(x) =

Z

M

x

�(x; y)J



(x; y)f(y) d�

x

(y):

If  > 1=2 then R



maps L

2

comp

boundedly to L

2

1=2;loc

.

Remarks. We state some immediate consequences and further comments, here codimM = 1 and

in fact dimX = dimY = 2, unless otherwise stated.
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(1) If n = n(P ) = minfj�j+ j�j : (�; �) 2 �(P )g is the H�ormander type of M at P then A(P )

and B(P ) are polygonal regions with at most n + 1 extreme points, see Lemma 5.3 below. The

operator R is bounded from L

p

comp

to L

p

�;loc

if (�; 1=p) 2

T

P2supp �

Int(A(P )), and this result is

essentially sharp, up to endpoints.

(2) Suppose that � � 1 and � � 1 and suppose thatM is of type � (�; �) at every P 2 supp �.

Let p = 1+��

�1

and � < (�+�)

�1

. Then R is bounded from L

p

s

into L

p

s+�

, moreover R is bounded

from L

�+�+1

�+1

to L

�+�+1

�

�"

. The �rst statement implies the second and then also the positive results

of Theorems 1.1 and 1.2, by multiple interpolation.

(3) Suppose that R maps L

p

to L

p

�

and that �(P ) 6= 0. Then necessarily (1��)

�1

� p � �

�1

;

moreover there is a pair (�; �) of positive integers with �+ � � �

�1

, so thatM is of type (�; �) at

P . Thus the reciprocal of the H�ormander type is the maximal gain of smoothness which can occur

in some L

p

space.

(4) Suppose that 1 � p < q � 1 and R maps L

p

to L

q

. Suppose also that �(P ) 6= 0. Then M

is of type (�; �) at (x

0

; y

0

) for some pair (�; �) of positive integers with j�j+ j�j+1 � (1=p�1=q)

�1

.

(5) By (3) and (4) the regions A(P ) and B(P ) have at least three extreme points if and only

if M is of �nite type at P . They are triangles in the model case in R

2

where M is given by

y

2

= x

2

+ x

�

1

y

�

1

and P = (0; 0). Here M is of type (�; �) at (0; 0). Also note that M is of type

(1; �) at all points with x

1

6= 0, y

1

= 0, of type (�; 1) for all points with x

1

= 0, y

1

6= 0, and of

type (1; 1) for all points with x

1

6= 0, y

1

6= 0.

(6) Let n = 2k. The region A((0; 0)) has n + 1 extreme points if M � R

2

� R

2

is given by

y

2

= x

2

+ x

k

1

y

k

1

+

P

k�1

j=1

(x

j

1

y

2

k�j

k

1

+ x

2

k�j

k

1

y

j

1

). If n = 2k + 1, then an appropriate model example

is given by y

2

= x

2

+

P

k�1

j=1

(x

j

1

y

2

k�j�1

k

1

+ x

2

k�j�1

k

1

y

j

1

).

(7) Theorem 1.1 is an extension of results in [19] since M satis�es a left �nite type condition

of order m, in the sense of [19], if and only if M is of type � (1; m� 1); and M satis�es a right

�nite type condition of order m if M is of type � (m� 1; 1). Cf. Corollary 3.7 below.

(8) Of course vector �elds have been used before to describe various curvature conditions arising

in analysis (see [9], [11], [18], [3], [15] etc.). In this paper we emphasize the distinction between

vector �elds tangent to X and vector �elds tangent to Y ; this distinction is important for the

derivation of precise estimates for Radon transforms.

(9) Our theorems rely on a crucial L

2

estimate for Radon transforms proved in [19], see (5.3)

below. In fact Theorem 1.3 is an almost immediate consequence of this estimate. We note that an

erroneous argument in [19] is corrected in the appendix x7.

(10) An approach di�erent from the one in this paper was previously used by Greenleaf and the

author ([4], [5]) to obtain endpoint L

2

estimates for Fourier integral operators in speci�c situations

(one sided folds and simple cusps). We plan to extend the methods of [19] to obtain L

2

estimates

for Radon transforms associated with submanifolds of higher codimension, assuming �nite type

conditions.

(11) At this time it seems open in exactly which cases one can obtain sharp endpoint results,

even in two dimensions. The case �+ � = 3 is completely understood (see [12],[15], [13], [19], [20],

[4]). Some endpoint estimate for operators of type (1; �) were obtained by the author in [19]; these

operators map L

p

s

to L

p

s+1=p

if p > � + 1 and L

p

to L

2p

if p > (� + 2)=2; moreover by duality

operators of type (�; 1) map L

p

s

to L

p

s+1=p

0

if p < (�+1)=� and L

p

to L

p=(2�p)

if p � (�+2)=(�+1).

Phong and Stein [16] established sharp L

p

endpoint results for a number of interesting examples,

namely when M is given by y

2

= x

2

+ h(x

1

; y

1

) where is a homogeneous polynomial of degree n,
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h(x

1

; y

1

) =

P

n

j=0

a

j

x

j

1

y

n�j

1

. If a

k

6= 0 and 1 � k � n�1 thenM is of type (k; n�k) at P = (0; 0).

Recently they obtained sharp L

2

results for more general semi-translation invariant cases, namely

when h(x

1

; y

1

) is assumed to be real analytic, see [17]. At least one endpoint estimate is known to

fail even in the translation invariant case; for h(x

1

; y

1

) = (x

1

� y

1

)

n

, M. Christ [2] showed that the

corresponding averaging operator R does not map L

n

s

to L

n

s+1=n

. Observe that in this caseM is of

type (�; �), whenever �+� = n and it is also known that R maps L

p

s

to L

p

s+1=n

if n=(n�1) < p < n,

cf. [19], [16] and [1].

(12) In [3] Christ, Nagel, Stein and Wainger prove L

p

estimates for singular and maximal

Radon transforms, under certain curvature assumptions. E. Stein and S. Wainger have informed

me that [3] also contains the equivalence of those curvature hypotheses with L

2

! L

2

"

regularity

for averages

R

�

��

f((x; t))�(t)dt, where (x; 0) = x. Moreover one of their conditions is closely

related to the setup in this paper, although no speci�c type is de�ned (personal communication,

Varenna 1997).

(13) Consider the special case where M is given by y

2

= x

2

+ h(x

1

; y

1

). Using suitable cuto�

functions � one can use Theorem 1.3 and Plancherel's theorem to derive an estimate for the damped

oscillatory integral operator acting on functions on the real line, namely

T

�;

g(v) =

Z

e

i�h(v;w)

g(w)jh

00

vw

(v; w)j



�(v; w)dw;

here � 2 C

1

0

(R� R). The result is that for � � 1 the L

2

norm of T

�;

is O(j�j

�1=2

) if  > 1=2.

Phong and Stein have recently shown that this bound even holds for  = 1=2, provided that h

is real analytic. This was announced by Stein at the harmonic analysis conference in Varenna

(April 1997); for some model cases see [16]. It would be interesting to extend the endpoint result

to classes of oscillatory integral operators and operators of Radon transform type satisfying �nite

type or suitable convexity assumptions, without the hypothesis of real analyticity.

In x2 we review the condition of type (1; 1) and in x3 we give some convenient formulation of the

�nite type condition for hypersurfaces. x4 contains an elementary estimate for integral operators

which relies on the �nite type condition. In x5 we combine this with L

2

estimates from [19] to

derive the L

p

Sobolev estimates of Theorem 1.1. Necessary conditions are discussed in x6.

2. Preliminary remarks. In this section we consider coordinate patches on X and Y; we may

assume that X and Y are itself open subsets of R

n

L

and R

n

R

, respectively.

We assume that codimM = ` and that M is described by an R

`

-valued de�ning function,

M = f(x; y) : �(x; y) = 0g:

Here � = (�

1

; : : : ;�

`

) and

rank �

0

x

= rank �

0

y

= `:

Recall that the L

2

regularity properties are determined by the projections of C = (N

�

M)

0

n 0

to T

�

X and T

�

Y. Writing R as Fourier integral operator with frequency variable � 2 R

`

we see

that C is parametrized in the usual way as

(2.1) f(x; d

x

	; y;�d

y

	) : d

�

	 = 0g;

with the phase function 	(x; y; �) = h�;�(x; y)i =

P

`

i=1

�

i

�

i

(x; y).
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The situation of maximal nondegeneracy occurs if di�erentials of the projections �

L

and �

R

have maximal rank; that is if the rank of the (n

L

+ `)� (n

R

+ `) matrix

(2.2) J

�

(x; y; �) =

�

	

00

xy

	

00

x�

	

00

�y

	

00

��

�

=

�

h�;�i

00

xy

�

0

x

t

�

0

y

0

�

is maximal, for all � 6= 0. In particular the twisted normal bundle C = (N

�

M)

0

is a local canonical

graph near P if n

L

= n

R

and det(J

�

) 6= 0 for all � 6= 0.

It will be useful to reformulate the �nite type condition in terms of the canonical relation C

and the matrix J

�

. We shall need the behavior of J

�

under changes of variables in X and Y. Let

 

L

and  

R

denote di�eomorphisms in X and Y, respectively and de�ne  (w; z) = ( 

L

(w);  

R

(z)).

Then

(2.3) J

�� 

(w; z; �) =

�

D 

L

t

0

0 I

��

h�;�i

00

xy

�

0

x

t

�

0

y

0

��

D 

R

0

0 I

�

where the derivatives of � are evaluated at (x; y) = ( 

L

(w);  

R

(z)).

In order to reformulate the �nite type condition in terms of J

�

we consider vector �elds

X =

P

j

a

j

(x; y)@=@x

j

of type (1; 0) and vector �elds Y =

P

k

b

k

(x; y)@=@y

k

of type (0; 1) and

extend them to smooth vector �elds in a neighborhood ofM. For these vector �elds we de�ne the

bilinear form

B

�

(X; Y )

P

= a

t

h�;�i

00

xy

b

�

�

�

P

(2.4)

= ( a

t

0 )

�

h�;�i

00

xy

�

0

x

t

�

0

y

0

��

b

0

�

�

�

�

P

which depends linearly on �. (2.3) shows the invariance of B

�

, namely

(2.5) (D 

L

a)

t

h�;� �  i

00

wz

(D 

R

b) = a

t

h�;�i

00

xy

b

�

�

�

(x;y)=( 

L

(w); 

R

(z))

:

Note also the behavior of this bilinear form under changes in the de�ning function. If (x; y) 7!

A(x; y) is smooth with values in the general linear group GL(R

`

), and if

e

�(x; y) = A(x; y)�(x; y),

e

� = (A

t

(x; y))

�1

� then

(2.6) a

t

h

e

�;

e

�i

00

xy

b = a

t

h�;�i

00

xy

b

On X�Y we have exterior derivatives d

L

and d

R

de�ned as natural extensions to X�Y of d

x

on X and d

y

on Y, by d

L

!

(x;y)

= d

x

(!

(�;y)

)

x

and d

R

!

(x;y)

= d

y

(!

(x;�)

)

y

. Now consider the forms

(2.7) d

L

�

i

� d

R

�

i

; i = 1; : : : ; `;

on T

�

(X�Y), which span the �ber of the canonical relation (N

�

M)

0

at P . There are the correspond-

ing forms d

L

�

i

+d

R

�

i

that span the �ber of N

�

M at P and in view of the linear independence of

fd

L

�

i

P

; d

R

�

i

P

; i = 1; : : : `g the set fd

L

�

i

�d

R

�

i

; d

L

�

i

+d

R

�

i

; i = 1; : : : ; `g is linearly independent

at P . We restrict the forms in (2.7) to linear forms acting on tangent vectors in T

P

M;

(2.8) !

i

= {

�

(d

L

�

i

� d

R

�

i

)

where {

�

is the pullback map of the inclusion { :M! X�Y. Then the !

i

P

are linearly independent

in T

�

P

M, and since they annihilate vectors of type (1; 0) and (0; 1), they form a basis of T

�;?

P

M.
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Lemma 2.1. Suppose that !

�

=

P

`

i=1

�

i

!

i

, with !

i

as in (2.8-9). Let X 2 V

1;0

(P ) and Y 2

V

0;1

(P ). Then

(2.9) h!

�

; [X; Y ]i = 2B

�

(X; Y ):

Proof. If X =

P

j

a

j

@=@x

j

, Y =

P

k

b

k

@=@y

k

then [X; Y ] =

P

j

v

j

@=@x

j

+

P

k

w

k

@=@y

k

with

v = �(D

y

a)b and w = (D

x

b)a. Since �

0

x

a = 0 and �

0

y

b = 0 we obtain by di�erentiation

(2.10) h�;�

0

x

i(D

y

a)b = �a

t

h�;�i

00

xy

b = h�;�

0

y

i(D

x

b)a:

By (2.8)

h!

�

; [X; Y ]i =

`

X

i=1

�

i

hd

L

�

i

� d

R

�

i

; [X; Y ]i

= �h�;�

0

x

i(D

y

a)b� h�;�

0

y

i(D

x

b)a

= 2a

t

h�;�i

00

xy

b

where all the expressions are evaluated at P 2 M. �

Remarks. (i) Let (P; �) 2 T

�;?

M, � =

P

`

i=1

!

i

P

. Then T

�

M is of type (1; 1) at (P; �) if and

only if B

�

(X; Y )

P

6= 0 for some X 2 V

1;0

(P ), Y 2 V

0;1

(P ).

(ii) An alternative description of B

�

can be obtained using di�erential forms. Note that

d

L

d

R

�

i

=

P

j

P

k

@

2

�

i

@x

j

@y

k

dx

j

^ dy

k

so that for X 2 V

1;0

(P ), Y 2 V

0;1

(P )

(2.11) hd

L

d

R

� ��jX ^ Y i = B

�

(X; Y );

here we use the standard inner product h�j�i for p-forms, with the normalization that for p-vectors

x = x

1

^ � � � ^ x

p

and p forms � = �

1

^ � � � ^ �

p

we have h�jxi = det(h�

i

; x

j

i). Following Kohn [11]

the result of Lemma 2.1 can be derived using a standard formula for the exterior derivative of a

1-form !, namely hd!jX ^ Y i = X(h!jY i)� Y (h!jXi)� h!j[X; Y ]i; see [23, p. 103].

Let X 2 V

1;0

(P ), Y 2 V

0;1

(P ) then hd

L

�

i

jXi = 0, hd

R

�

i

jXi = 0, hd

R

�

i

jY i = 0, hd

L

�

i

jY i =

0. Now dd = d

L

d

L

= d

R

d

R

= 0 and therefore d

R

d

L

= �d

L

d

R

. We compute hd

L

d

R

�

i

jX ^ Y i =

hdd

R

�

i

jX ^ Y i = �hd

R

�

i

j[X; Y ]i and hd

L

d

R

�

i

jX ^ Y i = �hdd

L

�

i

jX ^ Y i = hd

L

�

i

j[X; Y ]i. If

e

1

; : : : ; e

`

denote the standard unit vectors in R

`

we see that on M

2B

e

i

(X; Y ) = 2hd

L

d

R

�

i

jX ^ Y i = hd

L

�

i

� d

R

�

i

j[X; Y ]i = h!

i

j[X; Y ]i

which is equivalent to the statement of Lemma 2.1.

(iii) There is a formal analogy with the Levi form in several complex variables, which is apparent

from rewriting (2.9) as

(2.12) 2B

�

(X; Y ) =

1

2i

h!

�

; [X � iY;X + iY ]i;

see also the discussion in [14, p. 114].
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Lemma 2.2. Let T

1

; : : : ; T

`

be vector �elds on M satisfying

(2.13) h!

i

; T

j

i =

�

1 if i = j

0 if i 6= j:

Let X

1

; : : :X

n

L

�`

2 V

1;0

(P ), Y

1

; : : : ; Y

n

R

2 V

0;1

(P ) so that fX

i

; Y

j

; T

k

g

P

form a basis of T

�

P

M.

Let fe

1

; : : : ; e

`

g be the standard basis of R

`

. Then there are C

1

functions �

i

; �

j

so that

(2.14) [X; Y ] =

n

L

�`

X

j=1

�

j

X

j

+

n

R

�`

X

k=1

�

k

Y

k

+

`

X

s=1

B

e

s

(X; Y )T

s

:

Proof. This is an immediate consequence of Lemma 2.1. �

It will also be convenient to note the following formula in the particular case where the mani-

folds M

x

, M

y

are curves.

Lemma 2.3. Suppose dimX = dimY = d, codimM = d � 1, P = (x; y) 2 M. Let !

�

=

P

l

i=1

�

i

!

i

, where !

i

is as in (2.8). Let �

j

L

(x; y) be the (d� 1)� (d� 1) matrix obtained from the

(d� 1)� d matrix �

0

x

by omitting the j

th

column, and let �

j

R

(x; y) be the (d� 1)� (d� 1) matrix

obtained from (B

ij

) = �

0

y

by omitting the j

th

column. Let

(2.15) X =

d

X

j=1

a

j

(x; y)

@

@x

j

; Y =

d

X

k=1

b

k

(x; y)

@

@y

k

where

(2.16) a

j

(x; y) = (�1)

j�1

det �

j

L

(x; y); b

k

(x; y) = (�1)

k�1

det �

k

R

(x; y):

Then X and Y are vector �elds of type (1; 0) and (0; 1), respectively, and

(2.17) (�1)

d�1

h!

�

; [X; Y ]i = 2

jaj

2

jbj

2

det �

0

x

�

0

x

t

det �

0

y

�

0

y

t

detJ

�

(�; �; �):

In particular, if d = 2 then h!

�

; [X; Y ]

P

i = �2 detJ

�

(x; y; �).

Proof. Let A = �

0

x

, B = �

0

y

, M = h�;�i

00

xy

. Then Aa = Bb = 0. Setting A

t

= (a; A

t

) and

B

t

= (b; B

t

) we have the identity

�

A 0

0 I

��

M A

t

B 0

��

B

t

0

0 I

�

=

0

@

a

t

Mb a

t

MB

t

0

AMb AMB

t

AA

t

0 BB

t

0

1

A

:

A cofactor expansion yields that detA = jaj

2

, detB = jbj

2

. Therefore taking determinants we see

that

jaj

2

jbj

2

detJ

�

= (�1)

d�1

a

t

h�;�i

00

xy

b det�

0

x

�

0

x

t

det�

y

�

0

y

t

:

The asserted formula follows immediately from Lemma 2.1. �
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3. Finite type conditions for hypersurfaces. In this section we assume that M is a hyper-

surface in X � Y, given by the equation �(x; y) = 0. We shall need the notion of a di�erential

operator of type � (�; �). The operator of multiplication by a function is said to be of type (0; 0).

We say that X is of type (1; 0) if X =

P

j

a

j

@=@x

j

is a vector �eld, whose restriction of X to M

is tangential to both M and X. We say that Y is of type (0; 1) if Y =

P

j

b

j

@=@y

j

is a vector �eld

whose restriction to Y to M is tangential to M and Y. Let � � 1, � � 1; then the operator L is

de�ned to be of type � (�; �) if L is of order � �+ � and if L is a linear combination over C

1

of

operators of order (0; 0) and di�erential operators of the form gV

1

: : : V

n

where each V

i

is of type

(1; 0) or (0; 1), but at most � of the V

i

are of type (1; 0) and at most � of the V

i

are of type (0; 1).

The C

1

module of operators of type � (�; �) in an open set U is denoted by L

�;�

(U), similarly we

may de�ne germs of di�erential operators and use the notation L

�;�

(P ).

We set

B(X; Y ) = B

�

(X; Y )

�

�

�

�=1

; ! = !

�

�

�

�

�=1

:

We shall need to work with tangential vector �elds T satisfying h!; T i

P

= 1; a natural choice is

(3.1) T =

1

2

�

1

j�

0

x

j

2

n

L

X

j=1

@�

@x

j

@

@x

j

�

1

j�

0

y

j

2

n

R

X

k=1

@�

@y

k

@

@y

k

�

:

Theorem 3.1. Suppose P = (x; y) 2 M. The following conditions are equivalent.

(i) M is of type (�; �) at P .

(ii) There are � vector �elds V

1

; : : : ; V

�

2 V

1;0

(P ) and � vector �elds V

�+1

; : : : ; V

�+�

2 V

0;1

(P )

so that

h!; adV

1

� � �adV

�+��1

(V

�+�

)i

P

6= 0

but h!; V i

P

= 0 for any vector �eld V of type � (�; �).

(iii) There are � vector �elds V

1

; : : : ; V

�

2 V

1;0

(P ) and � vector �elds V

�+1

; : : : ; V

�+�

2 V

0;1

(P )

so that the following holds. For any choice of C

1

functions h

i

with h

i

(P ) 6= 0, for any permutation

� of f1; : : : ; �+ �g and for W

i

:= h

i

V

�(i)

(3.2) h!; adW

1

: : :adW

�+��1

(W

�+�

)i

P

6= 0

but h!; V i

P

= 0 for any vector �eld V of type � (�; �).

(iv) There are vector �elds X 2 V

1;0

(P ) and Y 2 V

0;1

(P ), and a di�erential operator L of type

� (�� 1; � � 1) so that L[B(X; Y )] 6= 0, but

e

L[B(

e

X;

e

Y )] = 0 for all di�erential operators

e

L of type

� (� � 1; � � 1) and all

e

X 2 V

1;0

(P ),

e

Y 2 V

0;1

(P ).

A stronger variant of this theorem is obtained in Theorem 3.6 below.

We shall deduce Theorem 3.1 by induction over n = �+ � from various elementary lemmata.

Lemma 3.2. Let V

1

; : : : ; V

n

be vector �elds in V(P ) and let

e

V

i

= f

i

V

i

where f

i

2 C

1

, Then

(3.3)

e

V

1

e

V

2

� � �

e

V

n

= f

1

� � �f

n

V

1

� � �V

n

+

X

;6=A

�f1;:::;ng

X

B

L

B

(f

1

; : : : ; f

n

)V

A

here V

A

= V

i

1

V

i

2

� � �V

i

n

if (i

1

; : : : ; i

n

) 2 A and i

1

< � � � < i

n

. A

c

denotes the complement of A in

f1; : : : ; ng and L

B

(f

1

; : : : ; f

n

) is a �nite sum of expressions of the form

c

Y

i2B

0

f

i

N(B)

Y

k=1

V

j

k

1

� � �V

j

k

s(k)

f

k

10



where B = fB

0

; : : : ; B

N(B)

g is a partition of the set A

c

as a disjoint union, A

c

= B

0

[� � �[B

N(B)

,

with B

k

= fj

k

1

; : : : ; j

k

s(k)

g and j

k

�

< k.

Proof. This follows by a straightforward computation from repeated applications of the product

rule. �

For j � 0, k � 0 let I

j;k

be the ideal in V(P ) generated by vector �elds of the form

L(B(X; Y ))W , where W 2 V(P ) and L 2 L

j;k

(P ), X 2 V

1;0

(P ), Y 2 V

0;1

(P ). We set

I

�1;0

= I

0;�1

= f0g.

Lemma 3.3. Suppose n = � + � and suppose V

1

; : : : ; V

n

are vector �elds, � of them in V

1;0

(P ),

� of them in V

0;1

(P ). Let T 2 V(P ) so that h!; T i = 1. Then

(3.4) adV

1

� � �adV

n�1

(V

n

) = 2V

1

� � �V

n�2

B(V

n�1

; V

n

)T +W

1

+W

2

+ Z

1

+ Z

2

where W

1

2 V

��1;�

(P ), W

2

2 V

�;��1

(P ), Z

1

2 I

��2;��1

(P ), Z

2

2 I

��1;��2

(P ).

Proof. This easily follows by induction using the formula h!; [X; Y ]i = 2B(X; Y ): �

The leading terms in (3.4) are not commutative in V

1

; : : : ; V

n

. The following Lemma shows

that commutativity holds modulo suitable \negligeable" terms.

Let J

n

j;k

(P ) consist of all linear combinations of the expressions gL

1

[B

k

(X; Y )]L

2

where X 2

V

1;0

(P ), Y 2 V

0;1

(P ), L

1

is of type (j

0

; k

0

) where (j

0

; k

0

) � (j; k) and L

2

is a di�erential operator

so that j

0

+ k

0

+ order(L

2

) � n.

Lemma 3.4. Let V

1

; : : : ; V

n

be vector �elds, � of them in V

1;0

(P ), � of them in V

0;1

(P ). Let �,

�

0

be permutations of the set f1; 2; : : : ; ng.

Then

V

�(1)

� � �V

�(n)

= V

�

0

(1)

� � �V

�

0

(n)

+ L

1

+ L

2

+ E;

here L

1

2 L

��1;�

, L

2

2 L

�;��1

; moreover E 2 I

�+��1

��1;��1

.

Proof. It su�ces to prove this theorem for �

0

being the identity. We note by Lemma 2.2 that

V

1

� � �V

k�2

V

k�1

V

k

V

k+1

� � �V

n

= V

1

� � �V

k�2

V

k

V

k�1

V

k+1

� � �V

n

+ V

1

� � �V

k�2

XV

k+1

� � �V

n

+ V

1

� � �V

k�1

Y V

k+1

� � �V

n

+ 2

`

X

k=1

V

1

� � �V

k�2

B

k

(V

k�1

; V

k

)TV

k+1

� � �V

n

(3.5)

where X 2 V

1;0

(P ), Y 2 V

0;1

(P ), B

k

(V

k�1

; V

k

) = B

e

k

(V

k�1

; V

k

) if V

k�1

2 V

1;0

(P ), V

k

2 V

0;1

(P )

and B

k

(V

k�1

; V

k

) = �B

e

k

(V

k

; V

k�1

) if V

k

2 V

1;0

(P ), V

k�1

2 V

0;1

(P ), moreover B

k

(V

k�1

; V

k

) = 0

if V

k�1

and V

k

are both in V

1;0

(P ) or both in V

0;1

(P ). (3.5) and an application of Lemma 3.2

imply the assertion for transpositions �. A repetition of this argument shows the assertion for the

permutation � with �(1) = k, �(j) = j � 1 for 2 � j � k and �(j) = j for j > k. From this

the general case follows easily by induction. In the induction step one uses that for X 2 V

1;0

(P ),

Y 2 V

0;1

(P ), L 2 L

�;�

(P ), E 2 I

�+��1

��1;��1

we have that XL 2 L

�+1;�

(P ), Y L 2 L

�;�+1

(P ),

XE 2 I

�+�

�;��1

, and Y E 2 I

�+�

��1;�

. �

11



Proof of Theorem 3.1. (i) is equivalent with (ii) by the de�nition of type (�; �). (ii) is equivalent

with (iii) by Lemma 3.2 and Lemma 3.4. (iii) is equivalent with (iv) by Lemma 3.3. �

We now wish to show that in statements (ii), (iii) of Theorem 3.1 it is possible to work with

a single vector �eld of type (1; 0) and a single vector �eld of type (0; 1). Our calculations are

facilitated by a particular choice of coordinates in X and Y vanishing at the point P .

We shall use the notation u = x

n

L

, v = y

n

R

and y

0

= (y

1

; : : : ; y

n

R

�1

), x

0

= (x

1

; : : : ; x

n

L

�1

), so

that x = (x

0

; u), y = (y

0

; v). We may assume that near P = (0; 0) the manifold is given by

(3.6) v = S(x; y

0

) () u = S(y; x

0

):

By suitable choices of the coordinates in X and in Y we can assume that

(3.7)

S(x; 0) = x

n

L

� u;

S(y; 0) = y

n

R

� v:

In particular it follows by implicit di�erentiation that @

�

y

S(0; 0) = 0 for all multiindices � 6=

(0; : : : ; 0; 1).

Set �(x; y) = y

n

L

� S(x; y

0

). We shall work with the vector �elds

(3.8) X

j

= ��

0

x

n

L

@

@x

j

+ �

0

x

j

@

@x

n

L

= S

0

u

@

@x

j

� S

0

x

j

@

@u

and

(3.9) Y

k

= �

0

y

n

R

@

@y

k

� �

0

y

k

@

@y

n

R

=

@

@y

k

+ S

0

y

k

@

@v

;

then a short computation using (2.4) shows that for P = (x; y

0

; S(x; y

0

))

(3.10) B(X

j

; Y

k

)

P

= S

0

u

S

00

x

j

y

k

� S

0

x

j

S

00

uy

k

�

�

�

(x;y

0

)

:

If

(3.11) X =

n

L

�1

X

j=1

a

j

(x; y)X

j

; Y =

n

R

�1

X

k=1

b

k

(x; y)Y

k

with smooth functions a

j

, b

k

and a = (a

1

; : : : ; a

n

L

�1

), b = (b

1

; : : : ; b

n

R

�1

) then

B(X; Y ) = S

0

u

h�;r

x

0

ih�;r

y

0

iS � h�;r

x

0

Sih�;r

y

0

S

u

i

�

�

�

�=a(x;y)

�=b(x;y)

:

=

n

L

�1

X

j=1

n

R

�1

X

k=1

a

j

(x; y)b

k

(x; y)[S

0

u

S

00

x

j

y

k

� S

0

x

j

S

00

uy

k

]

(x;y)

:(3.12)

12



Lemma 3.5. Suppose that � � 1, � � 1 and suppose that in a neighborhhod U of P coordinates

vanishing at P are chosen so thatM is given by (3.6), (3.7). Let a

l

: U ! R

n

L

�1

, b

m

: U ! R

n

R

�1

be smooth functions, l = 1; : : : ; �, m = 1; : : : ; �. For each l, m de�ne X

l

=

P

n

L

�1

j=1

a

l

j

(x; y)X

j

,

Y

m

=

P

n

R

�1

k=1

b

m

k

(x; y)Y

k

, where X

j

and Y

k

are as in (3.8), (3.9). Let V

1

= X

1

, V

2

= Y

1

and, if

� + � > 1, let V

3

; : : : ; V

�+�

a permutation of the vector �elds X

2

; : : : ; X

�

; Y

2

; : : : ; Y

�

. Let

(3.13) L = V

3

� � �V

�+�

if (1; 1) � (�; �) and let L be the identity if (1; 1) � (�; �). For �xed (x; y) let L

xy

be the constant

coe�cient di�erential operator

(3.14) L

xy

= h�

1

;r

x

0

i � � � h�

l

;r

x

0

ih�

1

;r

y

0

i � � � h�

m

;r

y

0

i

�

�

�

�

l

=a

l

(x;y)

�

m

=b

m

(x;y)

:

Let I

1;1

be the smallest ideal in C

1

(U) containing the functions (@=@x

0

)



S with 1 � jj � � and

the functions (@=@y

0

)

�

S with 1 � j�j � �. For (1; 1) � (�; �) let I

�;�

be the smallest ideal in

C

1

(U) containing I

1;1

and the functions

�

LB(

�

X;

�

Y )

(x;y)

where

�

L is a di�erential operator of type

� (� � 1; � � 1),

�

X is of type (1; 0) and

�

Y is of type (0; 1). Then

(i) [S

0

u

]

�

L

xy

S � L[B(X

1

; Y

1

)] 2 I

�;�

.

(ii) Let

e

X =

P

n

L

�1

j=1

ea

j

(x; y)X

j

and

e

Y =

P

n

R

�1

k=1

e

b

k

(x; y)Y

k

. If g 2 I

�;�

then

e

Xg 2 I

�+1;�

and

e

Y g 2 I

�;�+1

.

(iii) If M is not of type � (�; �) at P = (0; 0) then L

xy

S(0; 0) = L[B(X

1

; Y

1

)](0; 0) and this

expression does not vanish if M is of type (�; �).

Proof. We prove (i)= (i)

�;�

and (ii)= (ii)

�;�

simultaneously by induction over n = � + �. For

n = 2, i.e. � = � = 1 the assertion (i)

1;1

follows from (3.12).

Clearly

e

Y S

y

k

2 I

1;2

,

e

XS

x

j

2 I

2;1

. Next by (i)

1;1

we have that S

0

u

S

00

x

j

y

k

�B(X

j

; Y

k

) 2 I

1;1

and

since B(X

j

; Y

k

) 2 I

1;2

\I

2;1

and �S

x

j

S

00

uy

k

2 I

1;1

we see that X

j

S

0

y

k

2 I

2;1

and Y

k

S

0

x

j

2 I

1;2

. This

implies also that

e

XS

0

y

k

2 I

2;1

and

e

Y S

0

x

j

2 I

1;2

and therefore (ii) for � = � = 1.

For the induction step let �

0

+ �

0

= n + 1. We consider the case �

0

> 1 and set � = �

0

� 1,

�

0

= �. Let L and L

xy

be as in (3.13), (3.14). Consider

e

L =

e

XL, and the constant coe�cient

operator

e

L

xy

= he�;r

x

0

ih�

1

;r

x

0

i � � � h�

m

;r

y

0

i with e� = ea(x; y), �

l

= a

l

(x; y) and �

m

= b

m

(x; y).

Then S

0

u

hea;r

x

0

i �

P

j

ea

j

X

j

=

P

j

ea

j

S

0

x

j

@

@u

and therefore

(S

0

u

)

�+1

h~a;r

x

0

iL

xy

S �

e

XL[B(X

1

; Y

1

)] = (S

0

u

)

�

n

L

�1

X

j=1

~a

j

S

0

x

j

@

@u

(L

xy

S)

+ (S

0

u

)

�

e

X

�

1

(S

0

u

)

�

��

((S

0

u

)

�

L

xy

S � L(B(X

1

; Y

1

))

�

+

e

X

�

(S

0

u

)

�

L

xy

S � L(B(X

1

; Y

1

))

�

+ (S

0

u

)

�

e

X

�

1

(S

0

u

)

�

�

L(B(X

1

; Y

1

))

The �rst term on the right hand side belongs to the ideal generated by the S

0

x

j

, 1 � j � n

L

� 1,

hence to I

1;1

� I

�+1;�

= I

�

0

;�

0

. The third belongs to I

�;�

by the induction hypothesis for (i),

13



hence also to I

�

0

;�

0

. The fourth term involves L(B(X

1

; Y

1

)) and therefore also belongs to I

�

0

;�

0

.

The second term belongs to

e

XI

�;�

� I

�+1;�

= I

�

0

;�

0

by the induction hypothesis for (ii).

There is another case with �

0

+ �

0

= n+1, namely �

0

> 1 and �

0

= �, � = �

0

� 1, and now

e

L is

replaced by

e

Y L and the relevant constant coe�cient operator is h

e

�;r

y

0

ih�

1

;r

x

0

i � � � h�

m

;r

y

0

i with

e

� =

e

b(x; y), �

l

= a

l

(x; y), �

m

= b

m

(x; y): One now shows that the di�erence of

e

Y L(B(X

1

; Y

1

))

and the constant coe�cient operator belongs to I

�;�+1

= I

�

0

;�

0

. The argument is the same as

before.

To complete the induction step we have to show (ii)

�

0

;�

0

. We argue as in the �rst step. Assume

that �

0

> 1. Clearly

e

X(@=@x

0

)



S 2 I

�

0

;1

� I

�

0

;�

0

if jj = �. If � is a multiindex with j�j = �

0

then

by (i)

(1;�

0

)

we see as in the �rst step that

e

X(@=@y

0

)

�

S 2 I

2;�

0

� I

�

0

;�

0

. Also if

�

L is a di�erential

operator of type � (��1; ��1) then

e

X

�

L is a di�erential operator of type � (�; ��1). This shows

e

XI

�

0

�1;�

0

� I

�

0

;�

0

. Similarly one checks

e

Y I

�

0

;�

0

�1

� I

�

0

;�

0

, and the proof of the induction step is

complete.

Finally, (iii) is an immediate consequence of (i) since ifM is not of type � (�; �) at P then all

functions in I

�;�

vanish at the point (0; 0). �

Given Lemma 3.5 we can re�ne Theorem 3.1 to

Theorem 3.6. Suppose P = (x; y) 2 M.

(1) The following conditions are equivalent.

(i) M is of type (�; �) at P .

(ii) There are vector �elds X 2 V

1;0

(P ) and Y 2 V

0;1

(P ) with the following property: If

L = V

1

� � �V

�+��2

where � � 1 of the V

i

are equal to X and � � 1 of the V

i

are equal to Y , then

L[B(X; Y )]

P

6= 0; but

e

L[B(

e

X;

e

Y )] = 0 for all di�erential operators

e

L of type � (� � 1; � � 1) and

all

e

X 2 V

1;0

(P ),

e

Y 2 V

0;1

(P ).

(iii) There are vector �elds X 2 V

1;0

(P ) and Y 2 V

0;1

(P ) with the following property: If

V = adV

1

� � �adV

�+��2

[X; Y ] where �� 1 of the V

i

are equal to X and � � 1 of the V

i

are equal to

Y , then h!; V i

P

6= 0; but h!;

e

V i

P

= 0 for all vector �elds

e

V of type � (�; �).

(2) Suppose M is not of type � (�; �) at P . Then coordinates x in X, y in Y vanishing at P can

be chosen near P , such that M is given by (3.6), so that (3.7) holds and

(3.15)

@

jj+j�j

S

(@x

0

)



(@x

0

)

�

(0; 0) = 0

for multiindices , � with (jj; j�j)� (�; �).

Moreover if M is of type (�; �) at P then the coordinates can be chosen so that in addition

(3.16)

@

�+�

S

(@x

1

)

�

(@y

1

)

�

(0; 0) 6= 0

Proof. The implications (ii) =) (i), (iii) =) (i) have been already proved in Theorem 3.1.

Consider the vector space V of all linear combinations of monomials

x

�

1

1

x

�

2

2

� � �x

�

n

L

�1

n

L

�1

y

�

1

1

y

�

2

2

� � �y

�

n

R

�1

n

R

�1

14



with the property that

P

j

�

j

= �,

P

k

�

k

= �. Then V is spanned by the polynomials of the

form h�

0

; x

0

i

�

h�

0

; y

0

i

�

, �

0

2 R

n

L

�1

, �

0

2 R

n

R

�1

. This is seen by a straightforward adaptation of a

corresponding argument in Stein's book [22, p.343] for polynomials of a single set of variables.

Now suppose that M is of type (�; �) at P . Then we can choose coordinates such that M is

given by (3.6), (3.7). The observation about V implies that

h�

0

;r

x

0

i

��1

h�

0

;r

y

0

i

��1

S(0; 0) 6= 0

for suitable �

0

2 R

n

L

�1

, �

0

2 R

n

R

�1

. Then by Lemma 3.5 for X

�

0

:=

P

n

L

�1

j=1

�

j

X

j

, Y

�

0

:=

P

n

R

�1

k=1

�

k

Y

k

X

��1

�

0

Y

��1

�

0

B(X

�

0

; Y

�

0

) 6= 0;

moreover

e

L[B(

e

X;

e

Y )] = 0 for all

e

X 2 V

1;0

(P ),

e

Y 2 V

0;1

(P ) and all di�erential operators

e

L of type

� (� � 1; � � 1), by Theorem 3.1. We have proved the implication (i) =) (ii). The equivalence

of the conditions (ii) and (iii) follows from Lemma 3.3. (3.15) follows from Lemma 3.5 and (3.16)

can be achieved by separate rotations in the x and the y coordinates. �

Corollary 3.7. Suppose dimX = dimY = 2, dimM = 3 and P 2 M. Let X 2 V

1;0

(P ) and

Y 2 V

0;1

(P ), non vanishing at P . Then

(i)M is of type (�; �) at P if and only if X

��1

Y

��1

(detJ

�

)

P

6= 0 but X

�

0

�1

Y

�

0

�1

(detJ

�

)

P

6=

0 for all (�

0

; �

0

) � (�; �).

(ii) M is of type (1; m� 1) at P = (x; y) if and only if det J

�

�

�

M

x

vanishes of order m � 2 at

y 2 M

x

.

(iii) M is of type (m� 1; 1) at P = (x; y) if and only if det J

�

�

�

M

y

vanishes of order m� 2 at

x 2 M

y

.

The proof is immediate from Theorem 3.1, Lemma 2.3 and Lemma 3.4.

4. L

p

-estimates for integral operators in the plane. We assume that M is imbedded

in R

2

� R

2

and that in a neighborhood of supp � \ M the manifold M is given by �(x; y) =

S(x

1

; x

2

; y

1

)� y

2

= 0 so that S

0

x

2

6= 0 and that

(4.1) y

2

= S(x; y

1

) () x

2

= S(y; x

1

);

with S

0

x

2

6= 0 and S

0

y

2

6= 0. Moreover we assume that M is of type � (�; �) at P

0

2 supp � \M.

Our operator is then de�ned by

(4.2) Rf(x

1

; x

2

) =

Z

f(y

1

; S(x; y

1

))�(x; y)dy

1

The Monge-Amp�ere determinant is now given by

(4.3) detJ

�

(x; y) = S

00

x

1

y

1

(x; y

1

)S

0

x

2

(x; y

1

)� S

00

x

2

y

1

(x; y

1

)S

0

x

1

(x; y

1

);

in particular it is independent of y

2

.

De�ne vector �elds X , Y

(4.4)

X =

@

@x

1

+S

0

x

1

@

@x

2

;

Y =

@

@y

1

+ S

0

y

1

@

@y

2

:
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Then X is of type (1; 0) and Y is of type (0; 1) on M. We note that the vector �eld

(4.5) T =

@

@y

2

+ S

0

x

2

@

@x

2

:

is tangent to M and X , Y and T are linearly independent at any particular point P 2 M. An

analogue to Lemma 2.2 is the formula

(4.6) [aX; bY ] = aX(b)Y � bY (a)X + ab�T +W

where

� =

detJ

�

S

x

0

2

andW = 0 onM. It follows from Lemma 2.3 and Theorem 3.6 that the �nite type condition can be

restated in terms of �. The assumption of type � (�; �) implies that there is (j; k) � (�� 1; �� 1)

such that

(4.7) X

j

Y

k

� 6= 0

for (x; y

1

; S(x; y

1

)) in supp � \M.

Note that � does not depend on y

2

. Therefore if

�

k

(y

1

; y

2

; x

1

) =

@

k

�

(@y

k

1

)

(x

1

;S(y

1

; y

2

; x

1

); y

1

)

then (4.7) just means that

@

j

�

k

(@x

1

)

j

(y

1

; y

2

; x

1

) 6= 0

for (x

1

;S(y; x

1

); y

1

) = (x; y

1

; S(x; y

1

)) 2 supp � \M.

We introduce a localization into regions where j detJ

�

j � j�j � 2

�l

. Let

�

l

(x; y

1

) = �(2

l

j�(x; y

1

)j)�(x; y

1

; S(x; y

1

))

where � 2 C

1

0

((1=2; 2)). We shall need L

p

estimates for the integral operator

(4.8) R

l

f(x) =

Z

�

l

(x; y

1

)f(y

1

; S(x; y

1

)) dy

1

Proposition 4.1. Suppose thatM is of type � (�; �) in supp �\M. Let p =

�+��2

��1

and suppose

that  < (�+ � � 2)

�1

. Then the inequality

kR

l

fk

p

� C



2

�l

kfk

p

holds for all f 2 L

p

.

We shall use the following elementary

16



Lemma 4.2. Let k and N be positive integers, such that k � N . For an interval J and f 2 C

N

(J)

let M

N

(f) = max

x2J

jf

(N)

(x)j.

Then there is a constant A

k;N

such that for all L, for all intervals J of length L > 0, for all

functions f 2 C

N

(J) and for all �,  satisfying  �

1

N !

(L=2)

N

M

N

(f), � �

2

(N�k)!

(L=2)

N�k

M

N

(f)

measfx 2 J : jf(x)j � ; jf

(k)

(x)j � �g � A

k;N

�



�

�

1=k

:

This estimate is an easy consequence of a lemma by M. Christ [1] which is closely related to

van der Corputs Lemma on oscillatory integrals. It states that for any k 2Z

+

there is a constant

A

k

such that for any interval I � R, any f 2 C

k

(I) and any  > 0

(4.9) measfx 2 I : jf(x)j � g � A

k



1=k

inf

x2I

jD

k

f(x)j

�1=k

:

Proof of Lemma 4.2. Let a be the midpoint of J and let P the Taylor polynomial of degree

N � 1 expanded about x = a. With the speci�cations on � and  it follows that jP (x)� f(x)j � ,

jP

(k)

(x) � f

(k)

(x)j � �=2 for all x 2 J . If E

�;

denotes the set of all x 2 J with jP (x)j � 2 and

jf

(k)

(x)j � �=2 then

fx 2 J : jf(x)j � ; jf

(k)

(x)j � �g � E

�;

:

Since P is a polynomial of degree N � 1 the set E

�;

is the union of O(N) disjoint intervals. We

may apply Christ's estimate (4.9) to each of those intervals and as a result obtain

meas(E

�;

) � CNA

k

(4=�)

1=k

:

This implies the asserted inequality.

Proof of Proposition 4.1. Fix N so that 2N

�1

< (�+ � � 2)

�1

� . Let m

N

be the maximum

of the C

N+�

norm of � and the C

N+�

norm of �

k

in supp �. Recall that @

j

�

k

=(@x

1

)

j

6= 0 for

(x; y

1

; S(x; y

1

)) 2 supp � where (j; k) � (� � 1; � � 1).

Let A

l

(x) = fy

1

: j�(x; y

1

)j � 2

�l+1

g. If � = 1 then j = 0 so that @

k

y

1

� 6= 0 and hence by

(4.9) jA

l

(x)j � C2

�l=k

. The asserted L

1

estimate is immediate.

In what follows we assume that � > 1 and � > 1 (the case � = 1 is easier). Let

A

m;l

(x) = fy

1

: j�(x; y

1

)j � 2

�l+1

; 2

�m

�

�

�

�

@

k

�

(@y

k

1

)

(x; y

1

)

�

�

�

� 2

�m+1

; (x; y

1

; S(x; y

1

)) 2 supp �g

A

l;l

(x) = fy

1

:

�

�

�

@

k

�

(@y

k

1

)

(x; y

1

)

�

�

�

� 2

�l+1

; (x; y

1

; S(x; y

1

)) 2 supp �g

and let

B

m

(y) = fx

1

: j�

k

(y; x

1

)j � 2

�m+1

; (x

1

;S(y; x

1

); y) 2 supp �g:

For any interval J of length 2

�l=N

m

�1

N

the set A

m;l

(x)\J has measure � C2

(m�l)=k

, by Lemma

4.2. Adding these estimates we obtain

(4.10) meas(A

m;l

(x)) � C

N

2

l=N

2

(m�l)=k

17



uniformly in x. Similarly by (4.9)

(4.11) meas(B

m

(y)) � C

j

2

�m=j

uniformly in y.

By H�older's and Minkowski's inequality

�

Z

jR

l

f(x)j

p

dx

�

1=p

�

X

m�l

�

Z

h

Z

A

m;l

(x)

jf(y

1

; S(x; y

1

))jdy

1

i

p

dx

�

1=p

� C

N

2

l=N

X

m�l

2

(m�l)(p�1)=(kp)

�

Z Z

A

m;l

(x)

jf(y

1

; S(x; y

1

))j

p

dy

1

dx

�

1=p

:(4.12)

Now note that if y

1

2 A

m;l

(x) and y

2

= S(x; y

1

) (or equivalently x

2

= S(y; x

1

)) then also x

1

2

B

m

(y). We interchange the order of integration in (4.12) and perform the change of variable

y

2

= S(x

1

; x

2

; y

1

), for �xed x

1

; y

1

:

ZZ Z

A

m;l

(x)

jf(y

1

; S(x; y

1

))j

p

dy

1

dx

1

dx

2

=

ZZ Z

fx

2

:y

1

2A

m;l

(x

1

;x

2

)g

jf(y

1

; S(x; y

1

))j

p

dx

2

dx

1

dy

1

=

ZZ Z

fy

2

:y

1

2A

m;l

(x

1

;S(y

1

;y

2

;x

1

))g

jf(y

1

; y

2

))j

p

�

�

�

@S

@y

2

�

�

�

dy

2

dx

1

dy

1

�

ZZ Z

B

m

(y)

dx

1

jf(y

1

; y

2

))j

p

�

�

�

@S

@y

2

�

�

�

dy

2

dy

1

� C

j

2

�m=j

ZZ

jf(y

1

; y

2

))j

p

dy

2

dy

1

(4.13)

by (4.10). From (4.12) and (4.13) it follows that

kR

l

fk

p

� C

N

2

l=N

X

�c�m�l

2

�

m

jp

2

�

l�m

k

(1�

1

p

)

kfk

p

� C

N

2

l=N

X

�c�m�l

2

�

m

(��1)p

2

�

l�m

��1

(1�

1

p

)

kfk

p

:

If p = p

0

= (�+ � � 2)=(�� 1) then this yields

kR

l

fk

p

0

� C(1 + l)2

l=N

2

�l=(�+��2)

kfk

p

0

� C



2

�l

kfk

p

0

:

Finally note that after notational changes the above argument also proves the easier L

1

estimate

for the case � = 1. �

5. Regularity of Radon transforms. We shall �rst consider the case of Radon transforms

associated with a family of curves in R

2

, whereM is given by the equation y

2

= S(x; y

1

), see (4.2).

We assume that S is de�ned in a neighborhood U of supp �.

Introducing a dyadic decomposition in the frequency variable we consider the operator

(5.1) R

k

l

f(x) =

ZZ

e

i�(y

2

�S(x;y

1

))

�(2

l

j�(x; y

1

)j)a

k

(x; y; �)f(y) d� dy:

18



where the a

k

are symbols of order 0 (with uniform bounds in k), so that � 7! a

k

(x; y; �) is supported

in the union of dyadic intervals �[2

k

; 2

k+1

]. The C

1

function � is assumed to have support in

(1=2; 2). The operator R

k

l

is bounded on L

p

(R

2

), uniformly in l and k, since

(5.2) jR

k

l

f(x)j � C

N

Z

2

k

(1 + 2

k

jy

2

� S(x; y

1

)j)

�N

j�

l

(�(x; y

1

))jf(y) dy:

The main estimate of [19] is that

(5.3) kR

k

l

fk

2

� C

"

2

l("+1=2)

2

�k=2

kfk

2

This estimate is uniform in S, if S varies over a compact subset of C

1

(U).

Let R

l

be de�ned as in (4.8).

Proposition 5.1. For l 2Z

kR

l

fk

L

2

1=2

� C

�

2

l(�+

1

2

)

kfk

2

Proof. Let � 2 C

1

0

(R

2

) be supported where j�j � 1 so that �(�) = 1 if j�j � 1=2. Let �

0

= � and

�

k

(�) = �(2

�k�1

j�j)� �(2

�k

j�j) for k � 1.

Suppose l � k. Then for a suitable choice of a

k

and a �xed integer M (independent of l and k)

�

k

(D)R

l

=

k+M

X

�=k�M

k+M

X

m=k�M

R

�

l

�

m

(D) + E

k

l

where

(5.4) kE

k

l

k

L

2

!L

2
� C

N

2

�(k�l)N

;

(for the proof see estimate (5.7) in [19]). The inequalities (5.3) and (5.4) are used for k � l(1 + ")

and for k � l(1 + ") we simply use the trivial bounds k�

k

(D)R

l

k

L

2

!L

2
= O(1). We obtain

kR

l

fk

L

2

1=2

� C

�

X

k

2

k

k�

k

(D)R

l

fk

2

2

�

1=2

� C

1

2

l(1+")=2

kfk

2

+ C

2

M

X

n

1

;n

2

=�M

�

X

k�l(1+")

2

k

kR

k+n

1

l

�

k+n

2

(D)fk

2

2

�

1=2

+ C

3

�

X

k�l(1+")

2

k

kE

k

l

fk

2

2

�

1=2

By (5.3) and an orthogonality argument the second expression is dominated by

C2

l("+1=2)

M

X

n

2

=�M

�

X

k

k�

k+n

2

(D)fk

2

2

�

1=2

� C

0

2

l("+1=2)

kfk

2

while the third expression is bounded by

C

X

k�l(1+")

2

(k�2kN)=2

2

lN

kfk

2

� C

0

2

l=2

kfk

2

:
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The assertion follows. �

Proof of Theorem 1.3. By Lemma 2.3 and (2.6) we have h!; [X; Y ]i

(x;y)

= a(x; y)�(x; y) where

a is a C

1

function, nonvanishing in U . Let �



= jaj



�, then ~�



is smooth and the asserted

estimate follows if we can show that for  > 1=2 the operator

(5.5) R



f(x) =

Z

j�(x; y

1

)j



�



(x; y

1

; S(x; y

1

))f(y

1

; S(x; y

1

)) dy

1

maps L

2

boundedly to L

2

1=2

.

Let � 2 C

1

0

(1=2; 2) so that

P

1

l=�1

�(2

l

s) = 1 for s > 0. De�ne e�



(s) = �(s)jsj



(so that �



is

an admissible cuto� function in (5.1)). De�ne

R

;l

f(x) =

Z

e�



(2

l

j�(x; y

1

)j)�



(x; y

1

; S(x; y

1

))f(y

1

; S(x; y

1

)) dy

1

:

The operator R

;l

maps L

2

to L

2

1=2

with norm bounded by C

"

2

l("+1=2)

, by Proposition 5.1. However

R



=

P

l

2

�l

R

;l

and R

;l

= 0 for large negative l, so the asserted bound for R



follows.

Estimates for Radon transforms associated with hypersurfaces. Assume now that M is

a hypersurface in X�Y. Suppose that (�; �) 2 �(P ) (that isM is of type (�; �) at P ). Then there

is a neighborhood U so that M is of type � (�; �) in U and we assume that the cuto� function �

is supported in U .

The L

p

Sobolev estimates of Theorem 1.1 follow from the following result by multiple interpo-

lation.

Proposition 5.2. Let p = (� + �)=�, � < (� + �)

�1

. Then R maps L

p

comp

(Y) boundedly to

L

p

�;loc

(X).

Proof. A duality argument shows that it is su�cient to consider the case � � �, and since the

nondegenerate case is well understood we may assume that � � 2. We may choose coordinates x

in X and y in Y so that x(P ) = 0, y(P ) = 0 and M is given by (3.6), (3.7) near P . Let

R

k

f(x

0

; v) =

ZZ Z

e

i�(v�S(x

0

;u;y

0

))

a

k

(x; y; �)d� f(y

0

; v)dy

0

dv

where a

k

(x; y; �) = �

k

(�)�(x; y) is a symbol of order 0 supported where j� j � 2

k

. Since we do not

attempt to prove endpoint results it su�ces to show that the L

p

! L

p

bound of R

k

is O(2

�k�

)

for � < (�+ �)

�1

and p = (�+ �)=�. Let X

1

; Y

1

be as in (3.8), (3.9), and by Theorem 3.6 we may

assume that

X

��1

1

Y

��1

1

B(X

1

; Y

1

) 6= 0

where

B(X

1

; Y

1

) = S

0

u

S

00

x

1

y

1

� S

0

x

1

S

00

uy

1

:

Split x

0

= (x

1

; x

00

), y

0

= (y

1

; y

00

) and de�ne for functions g(y

1

; v)

R

k

x

00

y

00

g(x

1

; u) =

ZZ Z

e

i�(v�S(x

1

;x

00

;u;y

1

;y

00

))

a

k

(x

1

; x

00

; u; y

1

; y

00

; v; �)d� g(y

1

; v)dy

1

dv:
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Moreover put � = B(X

1

; Y

1

)=S

0

u

, then also X

��1

1

Y

��1

1

� 6= 0. De�ne

�

l

(x

1

; x

00

; u; y

1

; y

00

; v) = �(2

l

j�(x

1

; x

00

; u; y

1

; y

00

)j)�(x

1

; x

00

; u; y

1

; y

00

; v);

where � satis�es

P

l

�(2

l

s) = 1 for s > 0, and

R

k

x

00

y

00

;l

g(x

1

; u) =

ZZ Z

e

i�(v�S(x

1

;x

00

;u;y

1

;y

00

))

�

l

�

k

(�)d� g(y

1

; v)dy

1

dv;

R

x

00

y

00

;l

g(x

1

; u) =

Z

�

l

�(x

1

; x

00

; u; y

1

; y

00

; S(x

1

; x

00

; u; y

1

; y

00

))g(y

1

; v)dy

1

:

By (5.3)

(5.7) kR

k

x

00

y

00

;l

gk

L

2

(R

2

)

� C2

�k=2

2

l("+1=2)

kgk

L

2

(R

2

)

uniformly in x

00

; y

00

. By (5.1) we have

jR

k

x

00

y

00

gj � C

N

Z

2

k

1 + 2

k

jsj

�

�

R

x

00

y

00

;l

[g(�; �+ s)]

�

�

ds

and from Proposition 4.1 it follows that for p

0

= (�+ � � 2)=(�� 1) > 2

(5.8) kR

k

x

00

y

00

;l

gk

L

p

0

(R

2

)

� C



2

�l

kgk

L

p

0

(R

2

)

;  < (� + � � 2)

�1

:

Since R

k

x

00

y

00

;l

is L

1

! L

1

bounded with uniform bound in l; k; x

00

; y

00

we also obtain that

(5.9) kR

k

x

00

y

00

;l

gk

L

r

(R

2

)

� C

�

2

�l�

kgk

L

r

(R

2

)

; � <

1� r

�1

1� p

�1

0

1

� + � � 2

; 1 < r < p

0

:

Interpolation of (5.7) and (5.8) yields that for p = (� + �)=�) 2 (2; p

0

)

(5.10) kR

k

x

00

y

00

;l

gk

L

p

(R

2

)

� C

�

2

�k=(�+�)

2

l"

kgk

L

p

(R

2

)

:

We take a suitable geometric mean of (5.9) and (5.10) and obtain that

(5.11) kR

k

x

00

y

00

;l

gk

L

p

(R

2

)

� C

�

2

�l�(�)

2

�k�

kgk

L

p

(R

2

)

where � < (� + �)

�1

and "(�) > 0 in this range of �. Observe that

R

k

f(x) =

X

l

Z

R

k

x

00

y

00

;l

[f(�; y

00

; �)]dy

00

:

Since supp � is compact we see from (5.11) and applications of Minkowski's and H�older's inequal-

ities that

kR

k

k

L

p

!L

p

= O(2

�k�

)

for � < (� + �)

�1

. �

We now use the Sobolev estimates to deduce L

p

! L

q

estimates. The argument follows known

patterns.
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Lemma 5.3. Suppose that R is bounded from L

p

i

to L

p

i

�

i

, with �

i

> 0, i = 1; : : : ; N . Suppose

(1=p; 1=q) belongs to the interior of the convex hull of the points ((�

i

+p

�1

i

)=(1+�

i

); p

�1

i

=(1+�

i

)).

Then R is bounded from L

p

comp

to L

q

loc

.

Proof. One uses the obvious fact that for k > 0 the L

1

! L

1

bound of R

k

is O(2

k

) (this does not

rely on any �nite type assumption). The assumed boundedness in Sobolev spaces implies that the

L

p

i

! L

p

i

operator norm is O(2

�k�

i

). An interpolation shows that the L

p

! L

q

operator norm

of R

k

is bounded by C2

�k"(p;q)

with "(p; q) > 0 if (1=p; 1=q) belongs to the half open line segment

connecting the points (1=p

i

; 1=p

i

) and ((�

i

+ p

�1

i

)=(1 + �

i

); p

�1

i

=(1 + �

i

)) excluding the latter.

Interpolating with the trivial L

1

! L

1

and L

1

! L

1

estimates yields L

p

! L

q

boundedness for

(1=p; 1=q) in the interior of the triangle with corners (0; 0), (1; 1), ((�

i

+p

�1

i

)=(1+�

i

); p

�1

i

=(1+�

i

))

and obvious further interpolations yield the assertion. �

The Lemma applied with p

i

= (�

i

+ �

i

)=�

i

, �

i

= (�

i

+ �

i

)

�1

and then (�

i

+ p

�1

i

)=(1 + �

i

) =

(� + 1)=(� + � + 1), p

�1

i

=(1 + �

i

) = �=(� + � + 1) implies the L

p

! L

q

inequalities asserted in

Theorem 1.2.

We conclude with an observation concerning the boundedness regions A(P ) and B(P ), men-

tioned in the introduction.

Lemma 5.4. The regions A(P ), A(P ) and B(P ), B(P ) are convex polygonal regions. They have

at least three extreme points if and only if M is of �nite type at P . In this case let n = minf�+� :

(�; �) 2 �(P )g be the H�ormander type of M at P . Then there are at most n � 1 di�erent pairs

(�

s

; �

s

) so that M is of type (�

s

; �

s

) atM, and the regions A(P ), A(P ), B(P ), B(P ) have at most

n + 1 extreme points .

Proof. Fix a pair (�; �) 2 �(P ) so that �+� = n. Let E

1

consist of those integers j with 1 � j � �

such that (j; k) 2 �(P ) for some k � 1. Let E

2

consist of those integers k with 1 � k � � � 1 such

that (j; k) 2 �(P ) for some j � 1. For j 2 E

1

let k

j

= minfk : (j; k) 2 �(P )g and for k 2 E

2

let

j

k

= minfj : (j; k) 2 �(P )g. If M is of type (�

s

; �

s

) at P then (�

s

; �

s

) has to be one of the points

(j; k

j

), j 2 E

1

or (j

k

; k), k 2 E

2

, and there are at most n � 1 such points. Moreover it is easy to

see that A(P ) is the convex hull of the points (u; �) with � � 0 and 0 � u � 1 and the points

(0; 0), (1; 0), (j=(j + k

j

); 1=(j + k

j

), j 2 E

1

and (j

k

=(j

k

+ k); 1=(j

k

+ k), k 2 E

2

. Every extreme

point of A(P ) has to be among these points. Similarly B(P ) is the convex hull of the points (u; v)

with v � u and 0 � u � 1 and the points (0; 0), (1; 0), ((j+1)=(j+k

j

+1); j=(j+k

j

+1)), j 2 E

1

,

and ((j

k

+ 1)=(j

k

+ k + 1); j

k

=(j

k

+ k + 1)), k 2 E

2

, and every extreme point of B(P ) has to be

among these points. A similar consideration applies to A(P ), B(P ). �

6. Necessary conditions.

Fixing P , we may introduce coordinates vanishing at P , so that (3.6) and (3.7) hold. From

Taylor's formula we obtain

(6.1) S(x

0

; x

n

L

; y

0

)) =

X

j�j�N

X

j�j�N

�

��

(x

0

)

�

(y

0

)

�

+O((jy

0

j+ jx

0

j)

N+1

+ jx

n

L

j);

and if M is of not of type (j; k) at P , for (j; k) � (�; �), then

(6.2) �

��

= 0 if (j�j; j�j) � (�; �)

by Theorem 3.6.
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In what follows we use the notation

c

jk

=

�

j

n

L

�1

+ 1

j

n

L

�1

+

k

n

R

�1

+ 1

;

j

n

L

�1

j

n

L

�1

+

k

n

R

�1

+ 1

�

:

Note that except (0; 0) and (1; 1) all the extreme points of the region A(P ) are of the form c

��

for

suitable integers � � 1, � � 1.

It su�ces to show the necessity of the condition (1=p; 1=q) 2 B(P ) in Theorem 1.2 since it

implies the necessity of the condition (1=p; �) 2 A(P ) in Theorem 1.1, by Lemma 5.3 and a simple

computation.

Lemma 6.1. Assume P 2 M and �(P ) 6= 0. Suppose that 1 � p � 1 and that R is bounded

from L

p

! L

q

. Then

(i) n

R

=p � 1=q+n

R

� 1 so that (1=p; 1=q) is on or above the line connecting c

�1

and (1; 1), for

all � > 0, and

(ii) q � n

L

p, so that (1=p; 1=q) is on or above the line connecting c

1�

and (0; 0).

(iii) Suppose that M is not of type (�

0

; �

0

) for all (�

0

; �

0

) with either �

0

< � and �

0

> 0 or

�

0

= � and �

0

< �. Then

n

R

�1

�

+

1

q

�

n

R

�1+�

�p

, i.e. (1=p; 1=q) is on or above the line connecting

c

��

and (1; 1).

(iv) Suppose that M is not of type (�

0

; �

0

) for all (�

0

; �

0

) with either �

0

> 0 and �

0

< � or

�

0

< � and �

0

= �. Then q � (n

L

� 1 + �)p=�; i.e. (1=p; 1=q) is on or above the line connecting

c

��

and (0; 0).

(v) Suppose that M is not of �nite type at P . Then p � q.

(vi) Suppose that c

��

and c

�

0

�

0

are two extreme points of B(P ) (di�erent from (0; 0), (1; 1)),

so that the line segment connecting c

��

and c

�

0

�

0

is an edge of B(P ). Then (1=p; 1=q) lies on or

above the straight line through c

��

and c

�

0

�

0

.

Proof. For assertion (i) one chooses f = �

�

to be the characteristic function of a ball of radius

�. Then jRf(x)j � c�

n

R

�1

on a set of measure � c

1

� and therefore kRf

�

k

q

� �

n

R

�1+1=q

while

kf

�

k

p

= O(�

n

R

=p

). (ii) follows from (i) by applying the �rst to the adjoint operator. Similarly (iv)

follows from (iii).

To see (iii) we assume that P = (0; 0) and assume that M near P is given by (3.6), (3.7)

with u = x

2

, v = y

2

. We use (6.1) for large N . Let f be the characteristic function of the

cylinder fjy

0

j � c

1

�

1=�

; jy

n

R

j � �g. Then jRf(x)j � c�

(n

R

�1)=�

if jx

0

j � c

2

�

1=(N+1)

(here we apply

(6.1), (6.2)) and jx

n

L

j � c

3

� for suitable c

1

, c

2

, c

3

. Therefore kRfk

q

� �

(n

R

�1)=�

�

(N+n

R

)=(N+1)q

,

but kf

�

k

p

� C�

(n

R

�1+�)=�p

. Therefore the assumed L

p

! L

q

boundedness yields the restriction

(n

R

� 1)=� +(N +n

R

)=q(N +1) � (n

R

� 1+ �)=(�p). (iii) follows from letting N !1. Moreover

(v) follows immediately from a combination of (i)-(iv).

Finally we turn to the proof of (vi). Let e� =

�

n

L

�1

, e� =

�

n

R

�1

. Suppose that c

��

and c

�

0

�

0

are two extreme points of B(P ) so that c

��

lies to the left of c

�

0

�

0

, that is (e� + 1)=(e� + e� + 1) �

(e�

0

+ 1)=(e�

0

+ e�

0

+ 1); this condition is equivalent with (e� + 1)e�

0

< (e�

0

+ 1)e�. Since c

��

is an

extreme point it lies below the line through (0; 0) and c

�

0

�

0

which implies that e� < e�

0

. Since c

�

0

�

0

is an extreme point it lies below the line through c

��

and (1; 1) which implies that e�

0

< e� . Both

conditions also imply that e�

0

e� � e�e�

0

> 0. Let

a =

1

n

L

� 1

e� � e�

0

e�

0

e� � e�e�

0

; b =

1

n

R

� 1

e�

0

� e�

e�

0

e� � e�e�

0

:
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A computation shows that the point (u; v) is below the line through c

��

and c

�

0

�

0

if and only if

(b(n

R

� 1) + 1)u� (a(n

L

� 1) + 1)v > b(n

R

� 1). Moreover the point c

jk

is below this line if and

only if aj + bk < 1. Therefore, M is not of �nite type (j; k) if aj + bk < 1, by the de�nition of

B(P ).

Now let f

�

be the characteristic function of the cylinder fjy

0

j � �

b

; jy

n

R

j � �g. By (6.1) with

N � a; b we see that

jS(x; y

0

)j � C

X

(j;k)2�(P )

1�j�N

1�k�N

jx

0

j

j

�

kb

+ O(�

b(N+1)

+ jx

0

j

N+1

�

b

+ jx

n

L

j):

We choose N large and evaluate for jx

0

j � c

1

�

a

, jx

n

L

j � c

2

� to see that jRf

�

(x)j � �

b(n

R

�1)

on a set of measure > c

2

�

a(n

L

�1)+1

. Therefore kRf

�

k

q

� c�

b(n

R

�1)+(a(n

L

�1)+1)=q

while kf

�

k

p

=

O(�

(b(n

R

�1)+1)=p

). Assuming that R is bounded from L

p

to L

q

and letting � ! 0 we obtain the

restriction (b(n

R

� 1)+1)=p� (a(n

L

� 1)+1)=q � b(n

R

� 1) and this is precisely the assertion. �

7. Appendix. We have noticed that our argument used in [19, Lemma 3.6] is correct only in

the semitranslation-invariant case. Since this lemma is a technical step leading to inequality (5.3)

above we give the proof valid in the general case in this appendix.

Let � denote a C

1

function of the variables (w; �; y

1

) 2 R

2

�R�R, supported near (w; y

1

; �)

0

=

(0; 0; 1), in particular �(w; �; y

1

) = 0 for � < 1=2. Let (w; y

1

) 7! S(w; y

1

) be a C

1

function such

that 1=4 � @

w

2

S � 4. We assume that if w; z 2 supp �(�; �; y

1

) for any �; y

1

then the equation

S(z; y

1

)� S(w; y

1

) = 0 can be solved in z

1

and in w

1

; that is, there is a function v such that

S(z

1

; v(z

1

; w; y

1

); y

1

)� S(w; y

1

) = S(z; y

1

)� S(w

1

; v(w

1

; z; y

1

)) = 0:

Note that then

S(z; y

1

)� S(w; y

1

) � z

2

� v(z

1

; w; y

1

) � v(w

1

; z; y

1

))� w

2

Let n be a �xed positive integer and r = (r

1

; : : : ; r

n

) 2 Z

n

such that 0 � r

i

� l + n + C for

suitable C. Let

�

j

(x; y

1

) =

1

(j + 1)!

�

@

@z

1

�

j+1

�

S

0

y

1

(z

1

; v(z

1

; x; y

1

); y

1

)

�

�

�

�

z

1

=y

1

:

Let �

0

l

(s) = �

0

(2

l+n+4

s) and �

r

i

l

(s) = �

0

(2

l�r

i

+n+4

s) � �

0

(2

l�r

i

+n+3

s) and let 

r

l

(x; y

1

) =

�

l

(�

0

(x; y

1

))

Q

n

i=1

�

r

i

l

(�

i

(x; y

1

)): De�ne

(7.1) K

l;r

�

(w; z) =

ZZ

e

i�� [S(z;y

1

)�S(w;y

1

)]

�

r

l

(w; z; �; y

1

) d�dy

1

with �

r

l

(w; z; �; y

1

) = �(w; y

1

; �)

r

l

(w; y

1

)�(z; y

1

; �)

r

l

(z; y

1

): The following is a reformulation of

[19, Lemma 3.6].

Lemma 7.1. Fix � > 1 and l, k such that 0 < l < k and 2

k�1

< � � 2

k

, and let

I

lk

m

(z

1

) = fw

1

; jw

1

� z

1

j 2 [2

l�k

m; 2

l�k

(m+ 1)]g:

Let m � 2

l"

1

for suitable small "

1

> 0 and assume that

(7.2) jS

y

1

(w

1

; u(w

1

; z; y

1

); y

1

)� S

y

1

(z

1

; z

2

; y

1

)j � c2

�l

jw

1

� z

1

j

for w

1

2 I

lk

m

(z

1

) and for z

1

2 I

lk

m

(w

1

). Then

(7.3)

ZZ

w

1

2I

lk

m

(z

1

)

jK

l;r

�

(w; z)j dw +

ZZ

z

1

2I

lk

m

(w

1

)

jK

l;r

�

(w; z)j dz � C

�

1

(1 +m)

�1

2

l(1+�

1

)

�

�2

:

We shall need
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Lemma 7.2. Let N � 2 and let a be a C

N+1

function on the interval [�R;R], R � 1. For l � 1

let E

l

= ft 2 [�R;R] : ja(t)j > 2

�l

g and

c

E

l

= [�R;R] nE

l

. Suppose that for some B � 1

sup

t2[�R;R]

ja

(N)

(t)j � B:

Then

Z

E

l

ja

0

(t)j

ja(t)j

dt � C

B;N

l2

l=N

:

and

Z

c

E

l

ja

0

(t)jdt � C

B;N

l2

�l(1�1=N)

:

The �rst inequality is proved in [19 , Lemma 3.8], the second can be deduced from the �rst,

noticing that

Z

c

E

l

ja

0

(t)jdt � C

X

m�0

2

�l�m

Z

E

l+m

ja

0

(t)j

ja(t)j

dt � C

0

X

m�0

2

�l�m

(l +m)2

(l+m)=N

� C

00

l2

�l(1�1=N)

:

Actually by a similar argument one could also obtain the �rst inequality from the second.

Proof of Lemma 7.1. By symmetry it su�ces to consider the �rst term in (7.3), for �xed z

1

. In

(7.1) we perform �rst one integration by parts with respect to y

1

and then many integrations by

parts with respect to � . Let L be the di�erential operator de�ned by

Lg(y

1

; �) =

1� i��(S

0

y

1

(z; y

1

)� S

0

y

1

(w; y

1

))g

0

y

1

1 + j�

2

�

2

[S

0

y

1

(z; y

1

)� S

0

y

1

(w; y

1

)]j

2

and

t

L its formal transpose. Then integration by parts yields

K

l;r

�

(w; z) =

Z

e

i�� [S(z;y

1

)�S(w;y

1

)]

�

1�

@

2

(@�)

2

�

N

[

t

L

r

l

](w; z; �; y

1

)

(1 + �

2

jS(w; y

1

)� S(z; y

1

)j

2

)

N

d� dy

1

:

Let

J

lr

(w; z) = fy

1

; 

r

l

(w; y

1

)

r

l

(z; y

1

) 6= 0g

and for 0 � j � n

J

j1

lr

(w; z) = fy

1

2 J

lr

(w; z);

@

@y

1

�

�

r

j

l

(�

j

(w; y

1

))

�

6= 0g:

J

j2

lr

(w; z) = fy

1

2 J

lr

(w; z);

@

@y

1

�

�

r

j

l

(�

j

(z; y

1

))

�

6= 0g:

Arguing as in [19] one obtains the estimate

jK

l;r

�

(w; z)j � C

h

Z

J

lr

(w;z)

H

l;r

�;1

(w; z; y

1

) dy

1

+

Z

J

lr

(w;z)

H

l;r

�;2

(w; z; y

1

) dy

1

+

n

X

j=0

Z

J

j1

lr

(w;z)

H

l;r;j

�;3

(w; z; y

1

) dy

1

+

n

X

j=0

Z

J

j2

lr

(w;z)

H

l;r;j

�;4

(w; z; y

1

) dy

1

i
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where

(7.4)

H

l;r

�;1

(w; z; y

1

) = (1 + �jS

0

y

1

(w; y

1

)� S

0

y

1

(z; y

1

)j)

�1

(1 + �

2

jS(w; y

1

)� S(z; y

1

)j

2

)

�N

H

l;r

�;2

(w; z; y

1

) =

�jS

00

y

1

y

1

(w; y

1

)� S

00

y

1

y

1

(z; y

1

)j

1 + �

2

jS

0

y

1

(w; y

1

)� S

0

y

1

(z; y

1

)j

2

1

1 + �

2

jS(w; y

1

)� S(z; y

1

)j

2

)

N

H

l;r

�;j;3

(w; z; y

1

) =

2

l�r

j

j@

y

1

�

j

(w; y

1

)j

(1 + �jS

0

y

1

(w; y

1

)� S

0

y

1

(z; y

1

)j)(1 + �

2

jS(w; y

1

)� S(z; y

1

)j

2

)

N

H

l;r

�;j;4

(w; z; y

1

) =

2

l�r

j

j@

y

1

�

j

(z; y

1

)j

(1 + �jS

0

y

1

(w; y

1

)� S

0

y

1

(z; y

1

)j)(1 + �

2

jS(w; y

1

)� S(z; y

1

)j

2

)

N

:

We now estimate separately each term in (7.4). For �xed z set u(w

1

; y

1

) := v(w

1

; z; y

1

). In

the argument to follow the constants in the various estimates will be chosen independently of z.

Integrations will always be performed over subsets of a �xed compact set, in particular we shall

always assume that w

1

2 I

lk

m

(z

1

), so that �jw

1

� z

1

j � 2

l

m, moreover the length of I

lk

m

(z

1

) is

� 2

l

�

�1

. Then

(7.5) jS

0

y

1

(w; y

1

)� S

0

y

1

(z; y

1

)j � c

0

�

2

�l

jw

1

� z

1

j � C

0

jw

2

� u(w

1

; y

1

)j;

�

hence

(7.6) jS

0

y

1

(w; y

1

)� S

0

y

1

(z; y

1

)j � c

0

�

�1

(m+ 1) if jw

2

� u(w

1

; y

1

)j � C

�1

0

2

�l

jw

1

� z

1

j:

Note also that

(7.7)

Z

jw

2

�u(w

1

;y

1
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It follows that
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In order to estimate the second term in (7.4) we wish to apply the Lemma 7.2 (with N � 1=�

2
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Moreover
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Therefore using Lemma 7.2 we obtain

ZZZ

w

1

2I

lk

m

(z

1

)

y

1

2J

lr

(w;z)

H

l;r

�;2

(w; z; y

1

) dy

1

dw

� C

Z

2

l

�jw

1

� z

1

j

Z

h

j@

y

1

a(w

1

; y

1

)j

ja(w

1

; y

1

)j

+ 1

i

Z

1

(1 + �jw

2

� u(w

1

; y

1

)j)

2N�1

dw

2

dy

1

dw

1

+ C

Z

jw

1

�z

1

j

�2

l

�

�1

m

Z Z

jw

2

�uj�

c2

�l

jw

1

�z

1

j

2

l

m

(1 + �jw

2

� u(w

1

; y

1

)j)

2N�1

dw

2

dy

1

dw

1

� C(�

2

)2

l(1+�

2

)

�

�2

m

�1

+ C

0

2

2l

�

�2

m

3�2N

(7.9)

where �
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> 0 is arbitrary (we choose �
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). Since we assume that m � 2
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large enough to obtain the desired estimate for H
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:

We �rst perform the w

2

integration, then use the second Lemma and we obtain, by a straight-

forward computation, the bound (7.9) for the sum of the three previous expressions. The analogous

estimate for H

l;r;j

�;4

(w; z; y

1

) is similar (actually simpler, since the terms �

j

(z

1

; y

1

) do not vary in

w). The proof is concluded by combining the desired estimates for the terms in (7.4). �
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