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Abstrat. We show that some singular maximal funtions and singular Radon transforms satisfy a weak type

L log logL inequality. Examples inlude the maximal funtion and Hilbert transform assoiated to averages

along a parabola. The weak type inequality yields pointwise onvergene results for funtions whih are loally

in L log logL.

1.Introdution

Let � be a ompat smooth hypersurfae of R

d

, and let � be a ompatly supported smooth density

on �, i.e.

� = �d�

where � 2 C

1

0

(R

d

) and d� is the surfae arried measure on �.

Unless stated otherwise we shall always make the following

Curvature Assumption. The Gaussian urvature does not vanish to in�nite order on �.

We onsider a group of dilations on R

d

, given by t

P

= exp(P log t), t > 0, and we assume that P is a

d� d matrix whose eigenvalues have positive real part. For k 2 Z we set Æ

k

= 2

kP

and de�ne the measure

�

k

by

(1.1) h�

k

; fi = h�; f(Æ

k

�)i:

We shall onsider the onvolutions �

k

� f and study the behavior of the maximal funtion

(1.2) Mf(x) = sup

k2Z

j�

k

� f(x)j

and some related singular integrals. By a resaling we may assume that the measure � is supported in the

unit ball fx : jxj � 1g.

The �rst omplete L

p

bounds (1 < p <1) for a lass of suh operators (Hilbert transforms on urves)

seems to be due to Nagel, Rivi�ere and Wainger [9℄. A lassial referene is the artile by Stein and Wainger

[17℄ ontaining many related results; see also the paper by Duoandikoetxea and Rubio de Frania [6℄ whih

ontains general results for maximal funtions and singular integrals generated by singular measures, with

deay assumptions on the Fourier transform. Conerning the behavior on L

1

it is presently not known

even for the speial lasses onsidered here whether the maximal operator M is of weak type (1; 1), i.e.
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whether it maps L

1

to the Lorentz spae L

1;1

. This question had been raised in [17℄. For some 'at' ases

ounterexamples are in [3℄, but these do not seem to apply in the ase of our urvature assumption.

We shall examine the behavior of the maximal funtion on spaes \near" L

1

. Two results in this

diretion are known: Christ and Stein [4℄ showed by an extrapolation argument that if f is supported in

a ube Q and f 2 L logL(Q) then the maximal funtion Mf belongs to L

1;1

(again under substantially

weaker �nite type assumptions). Moreover Christ [2℄ showed that the launary spherial maximal funtion

maps the standard Hardy spae H

1

(R

d

) to L

1;1

, and that maximal funtions and Hilbert transforms

assoiated to a parabola in R

2

map the appropriate Hardy spae with respet to nonisotropi dilations to

L

1;1

. Weak L

1

(see also Grafakos [8℄ and our reent paper [12℄ for related results). For the two operators

assoiated to the parabola (t; t

2

) it is also known ([11℄) that they map the smaller produt-type Hardy

spae H

1

prd

(R � R) to the smaller Lorentz spae L

1;2

.

We reall that for f to belong to a Hardy spae H

1

a rather substantial anellation ondition has to

be satis�ed. If loally the anellation is missing one has a restrition on the size of f ; more preisely if

a funtion f 2 H

1

is single signed in an open ball then f belongs to L logL(K) for all ompat subsets

K of this ball. This an be dedued from the maximal funtion haraterization of H

1

and the fat that

f

0

2 L logL(q

0

) if f

0

is supported on the ube q

0

and the appropriate variant of the Hardy-Littlewood

maximal funtion of f

0

belongs to L

1

(q

0

), see [15, xI.5.2 ()℄. Here we are interested in the behavior in

Orliz spaes near L

1

without assuming additional anellation onditions.

Our main result is that the maximal operator ats well on L log logL and the global version satis�es

weak type L log logL inequalities. We �rst give a

De�nition. Let � : R

+

! R

+

be a onvex funtion and let T be an operator mapping simple funtions on

R

d

to measurable funtions. T is of weak type �(L) if there is a onstant C so that the inequality

(1.3)

�

�

fx 2 R

d

: jTf(x)j > �g

�

�

�

Z

�

�

Cjf(x)j

�

�

dx

holds for all � > 0.

Abusing the notation slightly we shall say that T is of weak type L log logL if there is a onstant C so

that the inequality (1.3) holds with �(t) = t log log(e

2

+ t):

Theorem 1.1. The maximal operator M is of weak type L log logL.

We also prove a related theorem on singular onvolution operators with kernels supported on hyper-

surfaes (assuming our �nite type urvature assumption).

Let �

k

be as in (1.1) and assume that in addition

(1.4)

Z

d� = 0:

For Shwartz funtions f de�ne the singular integral operator (or singular Radon transform) T by

(1.5) Tf(x) =

X

k2Z

�

k

� f:

Theorem 1.2. T extends to an operator whih is of weak type L log logL.
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1.3 Remarks and examples.

1.3.1. Theorem 1.1 implies an estimate on the Orliz spae �(L)(Q

0

) where Q

0

is a unit ube and

the norm on �(L) is given by kfk

�(L)

= inff� > 0 :

R

Q

0

�(jf(x)j=�)dx � 1g. Consider the loal maximal

operator

M

lo

f(x) = sup

k<C

j�

k

� [f�

Q

0

℄(x)j;

then M

lo

maps L log logL(Q

0

) to L

1;1

. To see this we may assume that kfk

L log logL(Q

0

)

= 1. Then the

estimate

jfx 2 Q

0

:M

lo

f > �gj . �

�1

is trivial for � < 1 while for � > 1 it follows from the better estimate (1.3).

We note that onversely the better estimate jfx 2 R

n

:M

lo

f > �gj .

R

�(Cjf(x)j=�) an be dedued

from the L log logL(Q

0

) ! L

1;1

boundedness by the Orliz spae variant of Stein's theorem [14℄. Then

the global variant of Theorem 1.1 follows by saling and limiting arguments.

1.3.2. Similarly if we assume the anellation ondition (1.4) then the loal singular Radon transform

P

k<C

�

k

� [f�

Q

0

℄(x) maps L log logL(Q

0

) to L

1;1

.

1.3.3. Suppose that

R

d� = 1 and suppose that the measurable funtion f belongs loally to L log logL;

i.e.

R

K

jf(x)j log log(e

2

+ jf(x)j)dx <1 for every ompat set K. Then lim

k!�1

�

k

� f(x) = f(x) almost

everywhere.

This follows by a standard argument. Observe that we have

R

�

�1

jf(x)j log log(e

2

+�

�1

jf(x)j)dx <1,

for every � > 0. Fix � > 0 and let




�

(f) =

�

x : lim sup

k!�1

�

k

� f(x)� lim inf

k!�1

�

k

� f(x) > �

	

:

Given " > 0 we show that j


�

(f)j < ". One an �nd a bounded funtion h with ompat support so

that

R

�(2Cjf � hj=�)dx � " and sine �

k

� h ! h almost everywhere we see that 


�=2

(h) has measure

zero. Moreover j


�

(f)j � j


�=2

(f � h)j+ j


�=2

(h)j and by Theorem 1.1 we see that 


�=2

(f � h) and thus




�

(f) has measure < 2". Sine " was arbitrary we see that 


�

(f) has measure zero; thus [

m




2

�m
(f) has

measure zero and the result on pointwise onvergene follows.

1.3.4. Examples of Theorem 1.1 inlude the launary spherial maximal operator where �

k

� f is the

average of f over the sphere of radius 2

k

entered at x (for the early L

p

results see [1℄, [5℄). The sphere

may be replaed by any smooth ompat hypersurfae for whih the urvature vanishes of �nite order only,

and the isotropi dilations may be replaed by nonisotropi ones. We remark that the proof of Theorem

1.1 for isotropi dilations is muh less tehnial, see the expository note [13℄.

1.3.5. Other examples of Theorem 1.1 onern the averages along a parabola

P

r

f(x) =

1

r

Z

r

0

f(x

1

� t; x

2

� t

b

)dt

or higher dimensional versions for paraboloids (t

0

; jt

0

j

b

), b 6= 1. Again if f belongs loally to L log logL

then lim

r!0

P

r

f(x) = f(x) almost everywhere.

1.3.6. Similarly Theorem 1.2 an be used to dedue the weak type L log logL inequality for the Hilbert

transform

Hf(x) = p:v:

Z

1

�1

f(x

1

� t; x

2

� t

b

)

dt

t

:

We give a brief outline of the paper. The main novelty in this paper is a stopping time argument

based on the quantities of thikness �

n

and length �

n

assoiated to a density v(x)dx (depending on an

additional parameter n). Basially, the point is that the length �

n

[v℄ is used to ontrol the size of an

exeptional set while the thikness �

n

[v℄ is used to ontrol the L

2

norm of an essential part of the maximal

3



funtion outside of the exeptional set, for suitable hoies of v. The quantities of length and thikness

are omplementary in some sense; this and other basi properties are disussed in x2. In x3 we inlude

preliminary and standard arguments from Calder�on Zygmund theory. These arguments an be skipped

by the experts; they may be used to reprove the known L logL estimates. In x4 we desribe the stopping

time argument based on length and thikness. The proof of the weak-type L log logL inequality for the

maximal operator is given in x5. The bounds for the singular Radon transforms are disussed in x6.

2. Length and thikness

In this setion let v be an integrable nonnegative funtion whih vanishes in the omplement of a

dyadi ube q. Dyadi ubes are supposed to be `half-open', i.e. of the form

Q

d

i=1

[n

i

2

m

; (n

i

+1)2

m

) where

n

i

;m 2 Z.

We de�ne a dyadi version of a one-dimensional Hausdor� ontent or simply length �(E) to be

(2.1) �(E) := inf

Q

X

Q2Q

l(Q)

where Q ranges over all �nite olletions Q of dyadi ubes with E �

S

Q2Q

Q, and l(Q) denotes the

sidelength of Q. Note that this de�nition di�ers from the usual de�nition of a one-dimensional Hausdor�

measure as �(E) � l(Q) if E is ontained in the dyadi ube Q.

Given n 2 Zwe denote by E

n

[v℄ the onditional expetation of v, for the �-algebra generated by dyadi

ubes of sidelength 2

�n

; thus

E

n

[v℄(x) =

X

Q

�

Q

(x)jQj

�1

Z

Q

v(y)dy

where of ourse the sum runs over all dyadi ubes of sidelength 2

�n

: We also de�ne

(2.2) S

n

(v) = fx : E

n

[v℄(x) 6= 0g:

Notie that v(x) = 0 for almost every x 2 R

d

nS

n

[v℄ sine v is nonnegative. Now de�ne

(2.3) �

n

[v℄ = �(S

n

(v)):

Note that S

n

(v) is a union of dyadi ubes of length 2

�n

and therefore the in�mum in the de�nition

of � beomes a minimum; i.e. there is a olletion Q of dyadi ubes overing the set S

n

(v) so that

�

n

[v℄ =

P

Q2Q

l(Q). Here the ubes in Q have to be hosen to be of sidelength at least 2

�n

.

Next we de�ne the thikness of v to be the quantity

(2.4) �

n

[v℄ := sup

Q

1

l(Q)

Z

Q

v(x)dx

where Q ranges over all dyadi ubes of sidelength l(Q) � 2

�n

. Clearly, if v vanishes o� a dyadi ube q

it is suÆient to only onsider dyadi sububes of q in (2.4).

We note that the restrition to dyadi ubes in the de�nition of length and thikness is onvenient

but not essential. Sine every ube of sidelength 2

L

(L 2 Z) is ontained in a union of 2

d

dyadi ubes of

sidelength 2

L

we observe that

(2.5)

�

n

[v(�+ a)℄ � 2

d

�

n

[v℄

�

n

[v(�+ a)℄ � 2

d

�

n

[v℄:

4



The quantities of length and thikness are omplementary. Namely, it is immediate from the de�nitions

of �

n

and �

n

that

(2.6)

Z

v(x)dx � �

n

[v℄�

n

[v℄:

The bound (2.6) an be attained, for instane if v is the harateristi funtion of a dyadi box. It would

be desirable to have a onverse to (2.6), with bounded onstants, but this generally does not hold as the

following example shows. Let E

n

be the union of n + 1 retangles R

�

, parallel to the oordinate axes,

with dimensions (2

��

; 1) so that the left lower endpoint of R

�

has oordinates (�; 0), � = 0; : : : ; n. Let

v

n

= �

E

n

. Then �

n

[v

n

℄ = n + 1,

R

v

n

(x)dx < 2 and �

n

[v

n

℄ = 1; thus the onverse of (2.3) fails with a

uniform onstant.

However we shall show that v an be eÆiently deomposed into a sum of funtions for whih a onverse

of (2.6) does hold. The main result needed to ahieve this is

Proposition 2.1. Let q be a dyadi ube with l(q) � 2

�n

. Suppose that v is a bounded nonnegative

measurable funtion supported in q. Then there exists a deomposition

v = g + h

with nonnegative funtions g and h and g, h vanish in the omplement of the set S

n

(v) � q; moreover the

inequalities

(2.7) �

n

[h℄ �

1

2

�

n

[v℄

and

(2.8) �

n

[v℄�

n

[g℄ � 8

Z

g(x)dx

hold.

In partiular we see from (2.7/8) that the funtion g satis�es

�

n

[g℄�

n

[g℄ � 8

Z

g(x)dx;

thus a onverse to (2.6).

We shall �rst prove a tehnial result whih states that for eah dyadi ube one may onstrut a

funtion v

I

from v so that v

I

has `ontrolled' thikness and `large' integral.

Lemma 2.2. Let  > 0. For any dyadi ube I of sidelength � 2

�n

, there exists a (possibly empty)

olletion Q[I ℄ of disjoint dyadi ubes of sidelength � 2

�n

ontained in I, and a measurable funtion v

I

suh that

(2.9) 0 � v

I

(x) � v�

I

(x)

for all x 2 R

d

,

(2.10) �

n

[v

I

℄ � 2

and

(2.11) 2

Z

v

I

(x)dx � 2

X

Q2Q[I℄

l(Q) +

Z

In

S

Q2Q[I℄

Q

v(x)dx:

5



Proof. We prove this by indution on the sidelength of I . We �rst assume that l(I) = 2

�n

. Notie that

in this ase we have

�

n

[v�

I

℄ =

1

l(I)

Z

I

v(x)dx:

We distinguish two ases. First if �

n

[v�

I

℄ � 2 we hoose v

I

= v�

I

and take for Q[I ℄ the empty

olletion. Clearly (2.9), (2.10), (2.11) are satis�ed.

Next if �

n

[v�

I

℄ > 2 we may hoose a measurable funtion v

I

whih vanishes outside I suh that

0 � v

I

(x) � v�

I

(x) for all x 2 R

d

and

(2.12)  �

1

l(I)

Z

I

v

I

(x)dx � 2:

Clearly �

n

[v

I

℄ � 2. For Q[I ℄ we take the singleton olletion fIg and (2.11) is satis�ed beause of the

�rst inequality in (2.12).

Now �x a dyadi ube I with l(I) > 2

�n

and suppose that the lemma has been proven for all proper

dyadi sububes I

0

of sidelength at least 2

�n

. Partition I into 2

d

sububes I

1

; : : : ; I

2

d of sidelength

1

2

l(I). By the indution hypothesis, we may onstrut olletions Q[I

j

℄ and measurable funtions v

I

j

for

j = 1; : : : ; 2

d

satisfying the properties of the lemma relative to I

j

.

To prove the assertion for I we again distinguish two ases. First suppose that

(2.13)

2

d

X

j=1

Z

v

I

j

(x)dx � 2l(I):

In this ase we simply de�ne v

I

(x) :=

P

2

d

j=1

v

I

j

(x) and Q[I ℄ :=

S

2

d

j=1

Q[I

j

℄. Then by the indution

hypothesis

2

Z

v

I

(x)dx =

2

d

X

j=1

2

Z

v

I

j

(x)dx �

2

d

X

j=1

h

2

X

Q2Q[I

j

℄

l(Q) +

Z

I

j

n[

Q2Q[I

j

℄

Q

v(x)dx

i

whih is equal to the right hand side of (2.11). From (2.13) it follows that

1

l(I)

Z

v

I

(x)dx � 2

and if Q is a proper dyadi subube of I then Q � I

j

for some j and

1

l(Q)

Z

Q

v

I

(x)dx =

1

l(Q)

Z

Q

v

I

j

(x)dx � 2

by the indution hypothesis. Altogether (2.10) follows in ase (2.13).

Now suppose that

(2.14)

2

d

X

j=1

Z

v

I

j

(x)dx > 2l(I):

In this ase we an �nd a funtion v

I

so that v

I

(x) �

P

2

d

j=1

v

I

j

(x) and

(2.15) l(I) �

Z

v

I

dx � 2l(I):

6



We then take for Q[I ℄ the singleton set fIg. Then (2.11) is immediate by (2.15). Clearly also by (2.15)

1

l(I)

R

v

I

(x)dx � 2. As above we an use the indution hypothesis to see that if Q is a proper dyadi

subube, thus ontained in an I

j

, we have

1

l(Q)

R

Q

v

I

(x)dx �

1

l(Q)

R

Q

v

I

j

(x)dx � 2, thus altogether (2.10)

also holds in this ase. �

Proof of Proposition 2.1. We de�ne the ritial thikness #

n

(v) to be the largest non-negative number

 suh that the inequality

(2.16) �

n

[v℄ � 2

X

Q2Q

l(Q) +

Z

qn

S

Q2Q

Q

v(x)dx

holds for all �nite olletions Q of dyadi ubes of sidelength 2

�n

(here the empty olletion is admitted).

Equivalently, one an de�ne #

n

(v) by

(2.17) #

n

(v) := inf

Q

R

qn

S

Q2Q

Q

v(x)dx

(�

n

[v℄� 2

P

Q2Q

l(Q))

+

:

Observe that sine v vanishes in the omplement of q and sine all ubes have sidelength at least 2

�n

we

are in e�et taking the in�mum over a �nite set of olletions, eah onsisting of a �nite number of ubes,

so that this in�mum beomes a minimum, and (2.16) holds with  = #

n

(v).

Clearly #

n

(v) � �

n

[v℄

�1

R

v(x)dx. Observe also that #

n

(v) > 0 sine

R

qn

S

Q2Q

Q

v(x)dx is positive

whenever

P

Q2Q

l(Q) � �

n

[v℄=2.

We an now �nd a �nite olletion Q

1

of dyadi ubes in q, of sidelength at least 2

�n

, so that

(2.18) #

n

(v)�

n

[v℄ = 2#

n

(v)

X

Q2Q

1

l(Q) +

Z

E

�

v(x)dx

where

(2.19) E

�

:= qn

[

Q2Q

1

Q:

We laim that

(2.20) �

n

[v�

E

�

℄ � 2#

n

(v):

Indeed, suppose for ontradition that there existed a dyadi ube Q

0

suh that

(2.21)

Z

E

�

\Q

0

v(x)dx > 2#

n

(v)l(Q

0

):

By (2.21) and #

n

(v) > 0 we have jE

�

\ Q

0

j > 0 whih implies that Q

0

=2 Q

1

. If we apply (2.16) to the

olletion Q

1

[ fQ

0

g we obtain

#

n

(v)�

n

[v℄ � 2#

n

(v)

�

l(Q

0

) +

X

Q2Q

1

l(Q)

�

+

Z

E

�

nQ

0

v(x)dx;

but by (2.18) this implies

Z

E

�

v(x)dx � 2#

n

(v)l(Q

0

) +

Z

E

�

nQ

0

v(x)dx

7



ontraditing (2.21). This proves (2.20).

We shall now invoke Lemma 2.2 with  = #

n

(v) and I = q, thus �nding a funtion v

q

and a olletion

Q[q℄ obeying the properties in the lemma. We de�ne

g(x) = v(x)�

E

�

(x) + v

q

(x)�

qnE

�

(x)

and

h(x) =

�

v(x) � v

q

(x)

�

�

qnE

�

(x):

Observe that g and h are nonnegative funtions. To show (2.7) we use that �

n

[h℄ � �(q n E

�

) sine the

latter set is a union of dyadi ubes of sidelength 2

�n

. Thus we observe

�

n

[h℄ �

X

Q2Q

1

l(Q) �

1

2

�

n

[v℄;

by (2.18). This gives (2.7).

To show (2.8) we use that v

q

� v and observe that by (2.11)

Z

g(x)dx �

Z

v

q

(x)dx �

1

2

�

2#

n

(v)

X

Q2Q[q℄

l(Q) +

Z

qn[

Q2Q[q℄

Q

v(x)dx

�

;

sine now  = #

n

(v). By (2.16) we thus see that

Z

g(x)dx �

1

2

�

n

[v℄#

n

(v):

By (2.20) and (2.10)

�

n

[g℄ � �

n

[v�

E

�

℄ + �

n

[v

q

℄ � 2#

n

(v) + 2#

n

(v) = 4#

n

(v);

we see that �

n

[g℄ � 8�

n

[v℄

�1

R

g(x)dx whih is (2.8). �

Remark. There are analogues of Proposition 2.1 where for 0 < � < d the length �(E) is replaed by the

�-dimensional Hausdor� ontent

�

�

(E) = inf

Q

X

Q2Q

l(Q)

�

where again Q ranges over all �nite olletions Q of dyadi ubes with E � [

Q2Q

Q. Then if we de�ne

�

�;n

(v) = �

�

(S

n

(v)) and the �-thikness by

�

�;n

[v℄ := sup

Q

1

l(Q)

�

Z

Q

v(x)dx

then an assertion analogous to Proposition 2.1 holds true. The proof requires only notational hanges.

In what follows it will be onvenient to extend the de�nition of length and thikness to not neessarily

nonnegative funtions, and we simply put

�

n

[f ℄ := �

n

[jf j℄; �

n

[f ℄ := �[jf j℄:

Proposition 2.1 an be applied iteratively. This leads to

8



Proposition 2.3. Suppose that f is integrable and vanishes in the omplement of dyadi ube of length 1.

Set h

0

(x) = f(x). For m � 1 we may deompose

f = h

m

+

m

X

�=1

g

�

almost everywhere, so that the following properties hold.

(i) h

m

(x) and the g

�

(x) are nonnegative if and only if f is nonnegative, and h

m

(x) and the g

�

(x) are

nonpositive if and only if f is nonpositive.

(ii) �

n

[g

�

℄�

n

[h

��1

℄ � 8

R

jg

�

(x)jdx.

(iii) �

n

[h

m

℄ � 2

�m

�

n

[f ℄.

(iv) If m � n then g

m+1

= h

m

, h

m+1

= 0.

Proof. We �rst extend the statement of Proposition 2.1 to not neessarily nonnegative funtions, in the

obvious way. We simply deompose jf j = ~g+

~

h as in Proposition 2.1, and then de�ne g(x) = ~g(x)sign (f(x)),

and h(x) =

~

h(x)sign (f(x)). We an then iterate this proedure (deomposing in the seond step the

funtion jhj = ~g

2

+

~

h

2

et.) and obtain the above deomposition so that statements (i), (ii), (iii) hold.

Also observe that if �

n

[jhj℄ � 2

�n

then S

n

[h℄ is ontained in a dyadi ube of sidelength 2

�n

and we

thus know that �

n

[jhj℄�

n

[jhj℄ =

R

jh(x)jdx. This implies statement (iv). �

We now desribe how the quantities of length and thikness are used in ertain onvolution estimates

involving the measure � and appropriate loalizations �

n

. To de�ne the loalization we hoose a C

1

funtion � with ompat support in fx : jxj � 1=2g suh that

R

�(x)dx = 1 and suh that

Z

�(x)(P (x) � P (0))dx = 0

for all polynomials of degree � d. Set �

n

(x) = 2

nd

�(2

n

x) and let

(2.22) �

n

= �

n

� �:

Lemma 2.4. Let f be supported on a set of diameter at most 10. Then

meas(supp (�

n

� f)) . �

n

[f ℄:

Proof. Note that if Q is a ube with enter x

Q

and sidelength l(Q) with 2

�n

� l(Q) � 100 and f

Q

is

supported in Q then �

n

� f

Q

is supported on the x

Q

-translate of a tubular neighborhood of � of width

O(l(Q)), thus on a set of measure O(l(Q)). The assertion follows by working with an eÆient over of the

support of f arising from the de�nition of �

n

. �

The quantity �

n

[f ℄ an be used to estimate the L

2

norm of the support �

n

� f provided that one has a

lower bound for the urvature. To make this preise we �rst prove a slight variant of an observation in [7℄.

Lemma 2.5. Let  be a real valued C

1

funtion on [�1; 1℄

d

, so that sup

j�j�3

j�

�

 (x)j � A

3

; here A

3

� 1.

Suppose j det 

00

(y

0

)j � � and Q � [�1; 1℄

d�1

is a d� 1 dimensional ube of sidelength "

1

�, ontaining y

0

,

here "

1

� [10(d� 1)

4

A

3

℄

�1

.

Let � be a C

1

funtion supported on Q so that the inequalities k�

�

�k

1

� 

�

("

1

�)

�j�j

hold. De�ne

the measure � by

h�; fi =

Z

�(y

0

)f(y

0

;  (y

0

))dy

0

9



and de�ne the reetion he�; fi = h�; f(��)i.

Then there are onstants C

�

so that

j�

�

x

[� � e�℄(x)j � C

�

�

d�3�2j�j

jxj

�1�j�j

:

Proof. We assume that d � 3 but after notational modi�ation the proof applies also to the ase d = 2.

Sine � � ~� does not hange if we translate the measure we may assume that y

0

= 0.

We ompute

h� � e�; fi =

ZZ

f(x� y)d�(x)d�(y)

=

X

k

Z

�(u

0

+ y

0

)�(u

0

)�

k

(u

0

)f(u

0

;  (y

0

+ u

0

)�  (y

0

))dy

0

du

0

:=

X

k

I

k

(f)

where the �

k

form a partition of unity on the unit sphere in R

d�1

whih is extended to a homogeneous

funtion of degree 0. We assume that the restrition of �

k

to the unit sphere is supported on a set of

diameter � "

1

� and the summation is over O(("

1

�)

1�d

) terms. The �

k

satisfy the natural estimates

j�

�

�

k

(u

0

)j � C

�

("

1

�)

�j�j

ju

0

j

�j�j

:

Note that in the integral de�ning I

k

the variables u

0

and y

0

are restrited to a ball of radius . "

1

� and u

0

is further restrited to a setor with solid angle "

1

�.

Now note that by j�

2

x

i

x

j

 j � A

3

, j det 

00

(0)j � � and Cramer's rule we have

(2.23) ju

0

j � �

�1

(d� 1)

2

A

d�1

3

j 

00

(0)u

0

j:

We now pik a unit vetor �

k

2 supp �

k

.

Let

v

k

=

 

00

(0)�

k

j 

00

(0)�

k

j

and let v

k;2

; : : : ; v

k;d�1

be an orthonormal basis of the orthogonal omplement of Rv

k

, and with t

00

=

(t

2

; : : : ; t

d�1

) de�ne w

k

(t

00

) =

P

d�1

i=2

t

i

v

k;i

. Now write y

0

= w

k

(t

00

) + t

1

v

k

and we get

I

k

(f) =

Z

t

00

Z

u

0

Z

t

1

�(u

0

)�

k

(u

0

)�(u

0

+w

k

(t

00

) + t

1

v

k

)f(u

0

;	

k

(t

1

; t

00

; u

0

))dt

1

du

0

dt

00

where

	

k

(t

1

; t

00

; u

0

)) =  (w

k

(t

00

) + t

1

v

k

+ u

0

)�  (w

k

(t

00

) + t

1

v

k

)

=




u

0

;

Z

1

0

r (w

k

(t

00

) + t

1

v

k

+ su

0

)ds

�

:

We wish to hange variables in the inner t

1

-integral. Observe that

d

dt

	

k

(t

1

; t

00

; u

0

) =ju

0

jh�

k

;  

00

(0)v

k

i

+ ju

0

j

Z

1

0




�

k

;

�

 

00

(w

k

(t

00

) + t

1

v

k

+ su

0

)�  

00

(0)

�

v

k

�

ds

+ ju

0

j

Z

1

0




u

0

ju

0

j

� �

k

;  

00

(w

k

(t

00

) + t

1

v

k

+ su

0

)v

k

�

ds

=ju

0

jj 

00

(0)�

k

j+ e

1

(t

1

; t

00

; u

0

) + e

2

(t

1

; t

00

; u

0

)(2.24)
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where by our assumption on the third derivatives the error term e

1

is bounded by 2(d� 1)

2

A

3

"

1

�ju

0

j, and

sine u

0

2 supp �

k

the error term e

2

is bounded by (d � 1)

2

A

3

"

1

�ju

0

j. The main term is ju

0

jj 

00

(0)�

k

j �

ju

0

j�(d � 1)

�2

A

1�d

3

and thus the derivative �

t

	

k

is single signed and of size � �ju

0

j. Therefore we may

perform the hange of variables t

1

7! u

d

= 	

k

(t

1

; t

00

; u

0

) with inverse t

k

1

(u

d

;u

0

; t

00

) and obtain

h� � e�; fi =

X

k

ZZZ

f(u

0

; u

d

)H

k

(u

0

; u

d

; t

00

)du

d

du

0

dt

00

(2.25)

where

H

k

(u

0

; u

d

; t

00

) =

�

k

(u

0

)�(u

0

)�(u

0

+w

k

(t

00

) + t

1

v

k

)

j�

t

	

k

(t

k

1

(u

d

;u

0

; t

00

); t

00

; u

0

)j

:

We have the estimate

jH

k

(u

0

; s; t

00

)j . �

�1

ju

0

j

�1

and H

k

(u

0

; u

d

; t

00

) vanishes if ju

0

j � Cju

d

j or ju

0

=ju

0

j � �

k

j � "

1

� or jt

00

j � �. Integrating in t

00

yields a

fator of O(�

d�2

) and sine

P

k

�

k

(u

0

) = O(1) we obtain the laimed estimate for � = 0. The estimates for

the derivatives follow by a straightforward examination of the derivatives of t

k

1

(u

d

;u

0

; t

00

) and appliations

of the hain rule. We omit the details. �

Now let �

n

be as in (2.22).

Lemma 2.6. There is a small onstant "

1

depending only on � so that the following holds for � � 1.

Let � 2 C

1

0

is supported on a set of diameter "

1

� and suppose that the support of � ontains a point

P on � where the Gaussian urvature satis�es jK(P )j � �. Let �

n

= �

n

� �. Suppose that f is supported

on a set of diameter 1. Then

ke�

n

� �

n

� fk

1

. �

d�3

(1 + n)�

n

[f ℄:

Proof. After loalization and a hange of variable we may redue to the situation of Lemma 2.5.

Notie that j�

n

(x)j . 2

n

sine � is a density on a hypersurfae. By Lemma 2.5 we have

je�

n

� �

n

� f(x)j . �

d�3

Z

minf2

n

;

1

jx� yj

gjf(y)jdy

and we observe that

Z

jx�yj�2

�n

2

n

jf(y)jdy � 2

d

�

n

[f ℄

and

Z

2

�`

�jx�yj�2

�`+1

1

jx� yj

jf(y)jdy � 2

d+1

�

n

[f ℄; 0 � ` � n:

The asserted estimate follows by summing over ` = 0; : : : ; n. �

Finally we also need the behavior of the quantities of length and thikness under nonisotropi dilations.

Here we will have to ompare isotropi dilations to nonisotropi ones. Let � = trae(P ) and denote by �

j

the eigenvalues of P . Then we may hoose positive onstants a, A so that

(2.26) a < Re(�

j

) < A < �:

Then there are positive onstants 

1

� C

1

so that for all x

(2.27) 

1

t

a

jxj � jt

P

xj � C

1

t

A

jxj; t � 1:
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Lemma 2.7. Suppose that f is integrable and vanishes in the omplement of a ompat set.

Then there is a onstant C depending only on the dilation group and the dimension, so that

(2.28) �

n

[f(Æ

j

�)℄ � C2

�j(��A)

�

n

[f ℄; if j � 0

and

(2.29) �

n

[f(Æ

�m

�)℄ � C2

Am

�

n

[f ℄; if m � 0:

Proof. Let j � 0 and let Q be a dyadi ube of sidelength l(Q) � 2

�n

. Then Æ

j

Q is ontained in the

union of at most 2

d

dyadi ubes fq

i

g, of sidelength � 2

jA

l(Q). Thus

l(Q)

�1

Z

Q

jf(Æ

j

x)jdx = 2

�j�

l(Q)

�1

Z

Æ

j

Q

jf(u)jdu

� 2

�j�

X

i

C

0

(2

�Aj

l(q

i

))

�1

Z

q

i

jf(u)jdu � C

0

2

d

2

�j(��A)

�

n

[f ℄:

If we take the supremum over all dyadi ubes we obtain (2.28).

Next let m � 0. Let Q

1

; : : : ; Q

N

be a over of S

n

(jf j). Let Q

�

i

be the double ube (dilated with respet

to the enter of Q

i

).

Now S

n

(jf j) = [

M

1

�=1

R

�

where the R

�

are dyadi 2

�n

ubes with enter x

�

on whih the expetation

E

n

[jf j℄ does not vanish. Let R

�

�;m

be the union of dyadi ubes of sidelength 2

�n

whih interset Æ

m

R

�

.

Then S

n

(jf(Æ

�m

�)j) is ontained in [

M

1

�=1

R

�

�;m

.

Sine m � 0 eah R

�

�;m

is ontained in a 2-dilate of Æ

m

R

�

relative to the enter Æ

m

x

�

. Thus the union

of the R

�

�;m

is ontained in the union of the dilates Æ

m

Q

�

i

. Eah Æ

m

Q

�

i

is ontained in no more than 4

d

dyadi ubes of sidelength 2

[mA+3℄

l(Q

i

). Consequently

�

n

[f(Æ

�m

�)℄ � C2

Am

N

X

i=1

l(Q

i

):

If we work with an eÆient over of S

n

(jf j) we obtain (2.29). �

3. Preliminary Calder�on-Zygmund redutions

We shall begin with some redutions from standard Calder�on-Zygmund theory. The estimates in this

setion together with a trivial L

1

estimate will only imply the known weak-type L logL inequality (see

Corollary 3.1 below) but they apply to more general operators than those disussed in the introdution.

In this setion we shall assume that the measure � satis�es

(3.1) jb�(�)j . (1 + j�j)

�

for some positive  (without loss of generality  � (d� 1)=2).

When estimating the singular integral operator (1.5) we shall assume the additional anellation on-

dition (1.4). We note that the original hypothesis of the urvature not vanishing to in�nite order implies

an estimate (3.1) for some  > 0, by an appliation of van der Corput's lemma.

We shall apply a nonisotropi version of Calder�on-Zygmund theory (see [10℄, [16℄). Let � be a homo-

geneous distane funtion whih satis�es �(t

P

x) = t�(x) for all x and �(x) = 1 if jxj = 1. If x

0

2 R

d

and

12



�

0

> 0 then we set B(x

0

; �

0

) = fx : �(x � x

0

) � �

0

g and we refer to B(x

0

; �

0

) as the ball with enter x

0

and �

0

(see [17℄ for a disussion of suh distane funtions). Notie that

B(x

0

; �

0

) = fx : j�

�P

0

(x� x

0

)j � 1g:

We note that jxj

1=a

. �(x) . jxj

1=A

if jxj � 1 and jxj

1=A

. �(x) . jxj

1=a

if jxj � 1, see (2.26/27) above.

Let M

HL

be the analogue of the Hardy-Littlewood maximal funtion assoiated to the family of these

nonisotropi balls, i.e. M

HL

f(x) = sup

x2B

jBj

�1

R

B

jf(y)jdy where the supremum is taken over all balls

B = B(x

0

; �

0

) whih ontain x.

We now �x � > 0 and de�ne 
 = fx :M

HL

f > �g and thus

j
j . �

�1

kfk

1

:

By an analogue of the Lebesgue di�erentiation theorem we also know that jf(x)j � � for all x 2 R

d

n
.

The Calder�on-Zygmund deomposition is based on a Whitney type deomposition. Aording to [16,

p.15℄ there are onstants K

1

> 1, K

2

> 2, K

3

> 1 (depending only on the distane funtion �), and a

sequene of balls B

1

; : : : ; B

j

; : : : , with B

j

= B(x

j

; �

j

), and a sequene W of measurable sets (`generalized

Whitney ubes') w

1

; : : : ; w

j

; : : : , so that the following properties are satis�ed:

(a) The B

j

are pairwise disjoint.

(b) If B

�

j

= B(x

j

;K

1

�

j

) then the numbers K

1

�

j

belong to f2

j

: j 2 Zg and

S

j

B

�

j

= 
. Moreover eah

x 2 
 is ontained in no more than K

3

of the balls B

�

j

.

() B

j

� w

j

� B

�

j

(d) The w

j

are pairwise disjoint, and we have

S

w

j

= 
.

(e) If B

��

j

= B(x

j

;K

2

�

j

) then B

��

j

\ (R

d

n
) 6= ;.

(f) Eah B

��

j

is ontained in 


�

= fx :M

HL

(�




) > (10K

2

)

��

g and thus

(3.2) meas(


�

) . �

�1

kfk

1

.

Z

�(jf j=�)dx:

We thus get a deomposition f = g +

P

w2W

f

w

where f

w

(x) = f(x) if x 2 w and jf(x)j > � and

f

w

(x) = 0 otherwise; moreover jg(x)j . � and jwj

�1

R

jf

w

jdx . � for eah w. The sets w play the role of

the usual Whitney ubes. For eah w 2W we assign a point x

w

and an integer r(w) by setting x

w

j

= x

j

and r(w

j

) = log

2

(K

1

�

j

).

In what follows we hoose  > 0 small, spei�ally the hoie

(3.3)  <

1

2

minf1; g

works. We then further deompose f

w

by setting

f

n

w

(x) = f

w

(x) if 2

(n�1)

� < jf

w

(x)j � 2

n

�:

Observe that f

w

=

P

1

n=1

f

n

w

and

1

X

n=1

1

jwj

Z

jf

n

w

(x)jdx . �:

We also let

g

n

w

(x) = �

w

(x)

1

jwj

Z

w

f

n

w

(y)dy;

b

n

w

(x) = f

n

w

(x)� g

n

w

(x);
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and

g

n

(x) =

X

w

g

n

w

(x); b

n

(x) =

X

w

b

n

w

(x):

Now

(3.4)

1

X

n=1

jg

n

w

(x)j �

1

jwj

Z

w

1

X

n=1

jf

n

w

(y)jdy �

w

(x) �

1

jwj

Z

w

jf

w

(y)jdy �

w

(x) . �;

moreover

(3.5)

1

X

n=1

jg

n

(x)j . �

and

(3.6)

1

X

n=1

�

kg

n

w

k

1

+ kb

n

w

k

1

�

.

Z

w

jf(x)jdx . �jwj:

It will also be neessary to deompose the measure � further. Let �

n

be the regularization de�ned in

(2.22) and let

�

n

k

(x) = 2

�k�

�

n

(2

�kP

x):

For our basi deomposition of the singular Radon transform we set f

n

=

P

w

f

n

w

and using f =

g +

P

n

f

n

= g +

P

n

g

n

+

P

n

b

n

we split

X

k2Z

�

k

� f = H

I;1

+H

I;2

+H

I;3

+H

b

where

(3.7)

H

I;1

=

X

k2Z

�

k

� g

H

I;2

=

X

k2Z

X

n�1

(�

k

� �

n

k

) � f

n

H

I;3

=

X

k2Z

X

n�1

�

n

k

� g

n

H

b

=

X

k2Z

X

n�1

�

n

k

� b

n

:

A further deomposition is neessary for H

b

. For given n � 1, l 2 Z we de�ne

(3.8)

I

n

l

= [ln; (l+ 1)n)

(I

n

l

)

�

= [(l � 1)n; (l + 1 +

2

a

)n℄

and set

B

n

l

=

X

w:r(w)2I

n

l

b

n

w

:
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We split H

b

= H

II

+H

III

where

(3.9)

H

II

=

X

n�1

X

l2Z

X

k2Zn(I

n

l

)

�

�

n

k

�B

n

l

H

III

=

X

n�1

X

l2Z

X

k2(I

n

l

)

�

�

n

k

�B

n

l

:

Note that H

II

is the portion of H

b

where the saling of the measures �

n

k

is very di�erent from the saling of

the balls w, whih enables us to use standard L

1

arguments in the omplement of the set 


�

. The diÆult

term to estimate is H

III

.

We shall show that

3

X

i=1

kH

I;i

k

2

. �

1=2

kfk

1=2

1

(3.10.1)

kH

II

k

L

1

(R

d

n


�

)

. kfk

1

(3.10.2)

From (3.10.1/2) we get by Chebyshev's inequality

meas

�n

x :

3

X

i=1

jH

I;i

(x)j > �=10g

�

. �

�2







3

X

i=1

jH

I;i

j







2

2

. �

�2

h

3

X

i=1

kH

I;i

k

2

i

2

. �

�1

kfk

1

(3.11)

and

(3.12) meas

��

x 2 R

d

n


�

: jH

II

(x)j > �=10g

�

. �

�1

kfk

1

:

We now prove the L

2

bounds (3.10.1) using standard arguments. The anellation of � = �

0

implies

that



�

0

(�) = O(j�j) and sine �

0

is smooth we get

(3.13) j



�

0

(�)j . minfj�j; j�j

�N

g

for large N .

Even without suh a anellation assumption the di�erene �

n

��

n�1

does have anellation and using

the deay assumption (3.1) on the Fourier transform of � it is straightforward to hek that for m � 1

(3.14) j



�

m

(�)�

\

�

m+1

(�)j . 2

�m

minf2

�m

j�j; (2

�m

j�j)

�N

g:

Indeed the left hand side of (3.14) is . (1 + j�j)

�

j

b

�(2

�m

�) �

b

�(2

�m�1

�)j and sine

b

�(�) = 1 + O(j�j

d

)

we obtain the bound 2

�m

(2

�m

j�j)

d�

whih yields the laim for j�j � 2

m+1

sine also d �  > 1. For

j�j � 2

m+1

we use that jb�

m

(�)j � C

N

j�j

�

(1 + 2

�m

j�j)

�N

.

Sine



�

n

k

(�) =



�

n

(Æ

�

k

�) we obtain using (3.13), (3.14) that

(3.15)

X

k2Z

j



�

0

k

(�)j . 1

X

k2Z

j



�

m

k

(�)�

\

�

m�1

k

(�)j . 2

�m

:

15



We reover the well-known result that T is L

2

bounded, and as a onsequene of the last displayed

inequality we also get







X

k2Z

(�

k

� �

n

k

) � f







2

.

1

X

m=n







X

k2Z

(�

m+1

k

� �

m

k

) � f







2

. 2

�n

kfk

2

:

Now learly





H

I;1





2

2

=







X

k2Z

�

k

� g







2

2

. kgk

2

2

. �kfk

1

and using (3.13) and (3.14) we also obtain





H

I;2





2

2

�

�

X

n�1







X

k2Z

(�

k

� �

n

k

) � f

n







2

�

2

.

�

X

n�1

2

�n

kf

n

k

2

�

2

.

X

n�1

2

�n

kf

n

k

2

2

.

X

n�1

2

�n

kf

n

k

1

2

(n+1)

� . �kfk

1

by our hoie of  in (3.3). Moreover





H

I;3





2

2

=







X

k2Z

X

n�1

�

�

0

k

+

n�1

X

m=0

(�

m+1

k

� �

m

k

) � g

n

�







2

2

�

�







X

k2Z

�

0

k

�

X

n�1

g

n







2

+

1

X

m=0







X

k2Z

(�

m+1

k

� �

m

k

) �

X

n>m

g

n







2

�

2

.

�

1

X

m=0

2

�m







X

n>m

g

n







2

�

2

. �kfk

1

:

Finally we prove the L

1

bound (3.10.2). Suppose that r(w) 2 I

n

l

. For k � max(I

l

n

)

�

(thus k � r(w) �

2n=a) we use the anellation of b

n

w

and obtain with y

w

2 w

�

n

k

� b

n

w

(x) =

Z

2

�k�

�

�

n

(Æ

�k

(x � y))� �

n

(Æ

�k

(x � y

w

))

�

b

n

w

(y)dy

= 2

�k�

Z

hÆ

�k

(y � y

w

);r�

n

(Æ

�k

(x� y

w

+ s(y � y

w

)))ib

n

w

(y)dy

and sine jÆ

�k

(y � y

w

)j . 2

(r(w)�k)a

for y 2 w and kr�

n

k

1

= O(2

n

) we get

Z

j�

n

k

� b

n

w

(x)jdx . 2

n

2

(r(w)�k)a

kb

n

w

k

1

:

Moreover notie that by our assumption that � is supported in the unit ball we have that �

n

k

� b

n

w

is

supported in 


�

if k < min(I

n

l

)

�

.

Thus

kH

II

k

L

1

(R

d

n


�

)

�

X

n�1

X

l2Z

X

k�max(I

n

l

)

�

k�

n

k

�B

n

l

k

1

.

X

n�1

X

l2Z

X

k�max(I

n

l

)

�

X

r(w)2I

n

l

2

n

2

(r(w)�k)a

kb

n

w

k

1

.

X

n�1

X

l2Z

2

�n

X

r(w)2I

n

l

kb

n

w

k

1

. kfk

1

;
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by the de�nition of (I

n

l

)

�

. Thus (3.10.2) is proved.

A deomposition similar to (3.7), (3.9) applies to the maximal operator where no anellation on � is

assumed. We have

sup

k

j�

k

� f j �M

I;1

+M

I;2

+M

I;3

+M

II

+M

III

where

(3.16)

M

I;1

= sup

k2Z

j�

k

� gj

M

I;2

=

X

n�1

sup

k2Z

j(�

k

� �

n

k

) � f

n

j

M

I;3

=

X

n�1

sup

k2Z

j�

n

k

� g

n

j

M

II

=

X

n�1

X

l2Z

sup

k2Zn(I

n

l

)

�

j�

n

k

�B

n

l

j

M

III

=

X

n�1

X

l2Z

sup

k2(I

n

l

)

�

j�

n

k

�B

n

l

j

Conerning the L

2

boundedness we observe that sup

k

j�

0

k

� f j is pointwise ontrolled by the Hardy-

Littlewood maximal funtion M

HL

f , assoiated to the given dilation group. Therefore

(3.17)





sup

k

j�

0

k

� f j





2

. kfk

2

:

Again by Fourier transform arguments as above





sup

k

j(�

m

k

� �

m�1

k

) � f j





2

.







�

X

k

j(�

m

k

� �

m�1

k

) � f j

2

�

1=2







2

. 2

�m

�

Z

X

k

j



�

m

k

(�)�

\

�

m�1

k

(�)j

2

j

b

f(�)j

2

d�

�

1=2

. 2

�m

k

b

fk

2

. 2

�m

kfk

2

:

This shows that we an repeat the arguments for H

I

above and get

(3.18)

3

X

i=1

kM

I;i

k

2

. �

1=2

kfk

1=2

1

:

In the de�nition of M

II

we may replae the sup over k =2 (I

n

l

)

�

by the sum and the estimation is exatly

the same as for H

II

above. This yields

(3.19) kM

II

k

L

1

(R

d

n


�

)

. kfk

1

:

We ombine these estimates with (3.2) and we see that in order to prove Theorems 1.1 and 1.2 we are left

to prove the inequalities

measfx : jM

III

j >

4

5

�g .

Z

jf(x)j

�

log log(e

2

+

jf(x)j

�

)dx(3.20)

measfx : jH

III

j >

4

5

�g .

Z

jf(x)j

�

log log(e

2

+

jf(x)j

�

)dx(3.21)

This will be done in x5 and x6 below.

Weak type L logL estimates. We note that weak type L logL inequalities for T and M an be already

obtained from trivial L

1

estimates for H

III

and M

III

. Here we are essentially reproving the result in [4℄.
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Corollary 3.1. Let � be a ompatly supported Borel measure satisfying

jb�(�)j � C(1 + j�j)

�

:

Then M is of weak type L logL. If in addition the anellation ondition

R

d�(x) = 0 holds, then T is of

weak type L logL.

Proof. Given our previous estimates we just have to estimate the measure of the sets where M

III

> �

or jH

III

j > �. We simply use Chebyshev's inequality and are left with estimating �

�1

kM

III

k

1

and

�

�1

kH

III

k

1

, respetively. Using that the L

1

norm of �

n

k

is uniformly bounded in k; n we get

kH

III

k

1

�

X

n�1

X

l2Z

X

k2(I

n

l

)

�

k�

n

k

�B

n

l

k

1

.

X

n�1

X

l2Z

X

k2(I

n

l

)

�

X

r(w)2I

n

l

kb

n

w

k

1

.

X

n�1

X

l2Z

X

r(w)2I

n

l

nkb

n

w

k

1

.

X

n�1

nkf

n

k

1

.

Z

jf(x)j log(e+

jf(x)j

�

)dx

and the same argument applies to M

III

. �

4. A stopping time argument

In order to re�ne the previous estimates for M

III

and H

III

we need a further deomposition of b

n

w

.

Here we use a stopping time argument based on length �

n

(and thikness �

n

). The reader will note some

similarities with Christ's stopping time argument in [2℄.

In what follows Q

0

will denote the set of dyadi unit ubes of the form (n

1

; : : : ; n

d

) + [0; 1)

d

, n

i

2 Z.

Proposition 4.1. For every n and every w with r(w) 2 I

n

l

there is a deomposition

(4.1) b

n

w

=

X

�2(I

n

l

)

�

f

n;�

w

so that the following properties are satis�ed.

(i)

(4.2)

X

�2(I

n

l

)

�

jf

n;�

w

j = jb

n

w

j:

(ii) For every q 2 Q

0

, � 2 (I

n

l

)

�

(4.3) �

n

�

X

r(w)<�

f

n;�

w

(Æ

�

�)�

q

�

� �

�1

X

r(w)<�

Z

q

jf

n;�

w

(Æ

�

y)jdy:

(iii) For every q 2 Q

0

, and for every � 2 (I

n

l

)

�

and s � 1 with �+ s 2 (I

n

l

)

�

,

(4.4) �

n

�

X

r(w)��

f

n;�

w

(Æ

�+s

�)�

q

�

� 16(n+ 1)�:

Proof. This is proved by an indutive onstrution.

We shall give a deomposition of

G

0

=

X

w:r(w)2I

n

l

b

n

w

;

sine the w are disjoint this will yield a deomposition of eah b

n

w

. Set �

max

n;l

= max(I

n

l

)

�

and �

j

= �

max

n;l

�j.

We shall establish the following
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Claim. For N = 0; 1; : : : we an deompose

G

0

=

N

X

j=0

[H

j

+ S

j

℄ +G

N

so that

(i) G

j�1

= H

j

+ S

j

+G

j

if j � 1

(ii) G

j

=

P

q2Q

0

P

L(j;Q)

�=1

G

j;q

�

, where G

j;q

�

vanishes in the omplement of Æ

�

j

q and

�

n

[G

j;q

�

(Æ

�

j

�)℄ � 8�:

Moreover

L(j;Q) � n+ 1:

(iii)

H

j

(x) = 0 if x =2

[

r(w)<�

j

w

S

j

(x) = 0 if x =2

[

r(w)=�

j

w

G

N

(x) = 0 if x =2

[

r(w)<�

N

w:

(iv) For eah q 2 Q

0

,

�

n

�

H

j

(Æ

�

j

�)�

q

�

� �

�1

Z

q

jH

j

(Æ

�

j

y)jdy:

(v) For � > �

j

, � 2 (I

n

l

)

�

and eah q 2 Q

0

,

�

n

�

H

j

(Æ

�

�)�

q

�

+�

n

�

S

j

(Æ

�

�)�

q

�

� 16(n+ 1)�:

(vi) The funtions G

j

, G

j;q

�

, H

j

, S

j

are nonnegative at x (nonpositive) if and only if f(x) is nonnegative

(nonpositive).

If we aept the laim then in order to omplete the proof of the proposition we observe that in the

above statement � = �

j

= �

max

n;l

� j and thus we merely have to de�ne

f

n;�

w

(x) =

8

>

<

>

:

H

�

max

n;l

��

(x) if x 2 w; r(w) < � � �

max

n;l

;

S

�

max

n;l

��

(x) if x 2 w; r(w) = �

0 if x =2 w or if � < r(w):

Then (4.1) follows from (iii) and (4.2) from (4.1) and (vi). (4.3) is a onsequene of (iv) and (4.4) follows

from (v).

Proof of the Claim. We argue by indution and assume that either N = 0 or that N > 0 and statements

(i)-(vi) hold for all j � N � 1.

If N = 0 we set S

0

= H

0

= 0 and G

0

= G

0

. If N � 1 we begin by de�ning funtions S

N

, G

N

where

S

N

(x) = G

N�1

(x) if x 2

S

r(w)=�

N

w and S

N

(x) = 0 otherwise, and G

N

(x) = G

N�1

(x) � S

N

(x). Thus

G

N

is supported on

S

r(w)<�

N

w and oinides with G

N�1

there. Note that G

N

vanishes if �

j

< min I

n

l

and the onstrution stops then.

19



We now use Proposition 2.3 to deompose for q 2 Q

0

G

N

(Æ

�

N

x)�

q

(x) =

L

X

�=1

g

N;q

�

+ h

N;q

L

so that �

n

[g

N;q

�

℄�

n

[h

N;q

��1

℄ � 8

R

jg

N;q

�

jdx and h

N;q

L

vanishes for L � n + 1. Also the signs of the funtions

g

N;q

�

, h

N;q

L

oinides with the sign of G

N

(Æ

�

N

(x))�

q

(x) and we have h

N;q

��1

= g

N;q

�

+ h

N;q

�

for � � 1 with

�

n

[h

N;q

�

℄ � �

n

[h

N;q

��1

℄=2.

Let L(N; q) be the minimal integer L so that

(4.5) �

n

[h

N;q

L

℄ � �

�1

Z

jh

N;q

L

(y)jdy:

Then L(N; q) � n+ 1 (sine h

N;q

L

vanishes for L � n+ 1).

Now, �

n

[h

N;q

��1

℄ � �

�1

R

jh

N;q

��1

(y)jdy for � � L(N; q), by the minimality of L(N; q), and sine jg

N;q

�

j �

jh

N;q

��1

j we get

(4.6) �

n

[g

N;q

�

℄ � 8

R

jg

N;q

�

(y)jdy

�

n

[h

N;q

��1

℄

� 8�:

Now de�ne G

N;q

�

(x) = g

N;q

�

(Æ

��

N

x), for � � L(N; q), and G

N

(x) =

P

q2Q

0

P

L(N;q)

�=1

G

N;q

�

(x). Moreover

H

N;q

(x) = h

N;q

L(N;q)

(Æ

��

N

x) and H

N

(x) =

P

q2Q

0

H

N;q

(x). Then the statement (vi) about the sign of G

N;q

�

,

G

N

and H

N

holds. (iv) follows from (4.5). Statements (i) and (iii) hold by onstrution, and the inequality

for the thikness in (ii) holds by (4.6) by (4.6).

In view of (i), (vi) we also have jH

N

j + jS

N

j � jG

N�1

j � jG

N�s

j for s � 1 so that by statement (ii)

for j � N � 1 we get

�

n

[H

N

(Æ

�

N

+s

�)�

q

℄ + �

n

[S

N

(Æ

�

N

+s

�)�

q

℄ = �

n

[H

N

(Æ

�

N�s

�)�

q

℄ + �

n

[S

N

(Æ

�

N�s

�)�

q

℄

� 2�

n

[G

N�s

(Æ

�

N�s

�)�

q

℄ � 16

L(N�s;q)

X

�=1

�

n

[G

N�s;q

�

(Æ

�

N�s

�)℄ � 16L(N � s; q)� � 16(n+ 1)�

This implies (v) for j = N and the Claim is proved. �

5. The main estimate for the maximal funtion

We shall prove the nontrivial estimate (3.20) for the maximal funtion, assuming again that the ur-

vature assumption in the introdution is satis�ed, and prove the inequality

(5.1) meas

�n

x : sup

k

�

�

X

n;l

k2(I

n

l

)

�

�

n

k

�B

n

l

�

�

> �

o�

�

Z

�(jf j=�)dx

with �(t) = t log log(e

2

+ t).

We use the deomposition in Proposition 4.1 and form an additional exeptional set O

1

. To de�ne it

we set for q 2 Q

0

, � 2 (I

n

l

)

�

,

(5.2) F

n;l;�

q

(x) =

X

r(w)2I

n

l

r(w)<�

f

n;�

w

(x)�

q

(Æ

��

x):
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and de�ne

(5.3) O

1

=

1

[

n=1

[

l2Z

[

�2(I

n

l

)

�

[

q2Q

0

[

k2(I

n

l

)

�

k��

supp

�

�

n

k

� F

n;l;�

q

�

;

moreover we de�ne

(5.4) O = O

1

[ 


�

where 


�

is as in (3.2).

To estimate the measure of O

1

observe that supp (�

n

k

� F

n;l;�

q

) = Æ

k

supp (�

n

0

� [F

n;l;�

q

(Æ

k

�)℄) and sine

for k � � the funtion F

n;l;�

q

(Æ

k

�) is supported in a set of bounded diameter we get by (2.29) and (4.3)

meas

�

supp (�

n

k

� F

n;l;�

q

)

�

= 2

k�

meas

�

supp (�

n

0

� [F

n;l;�

q

(Æ

k

�)℄)

�

. 2

k�

�

n

[F

n;l;�

q

(Æ

k

�)℄ . 2

k�

2

(��k)A

�

n

[F

n;l;�

q

(Æ

�

�)℄

. 2

k�

2

(��k)A

�

�1

Z

jF

n;l;�

q

(Æ

�

y)jdy . 2

(k��)(��A)

�

�1

Z

jF

n;l;�

q

(y)jdy:

Thus, we an sum a geometri series in k � � and obtain

meas(O

1

) .

1

X

n=1

X

l2Z

X

�2(I

n

l

)

�

X

q2Q

0

�

�1

Z

jF

n;l;�

q

(y)jdy .

1

X

n=1

X

w

�

�1

Z

jb

n

w

(y)jdy

. �

�1

1

X

n=1

X

w

Z

jf

n

w

(y)jdy . �

�1

Z

jf(y)jdy(5.5)

and the measure of O = O

1

[ 


�

satis�es the same estimate. Note that the ontributions for k � �,

r(w) = � are also supported in O sine � is assumed to be supported in the unit ball and thus

1

[

n=1

[

l2Z

[

w:r(w)2I

n

l

[

k�r(w)

supp

�

�

n

k

� f

n;r(w)

w

�

� 


�

:

It now remains to handle the ontribution in the omplement of O whih only involves the sales k > �

and ontributions for r(w) 2 I

n

l

with r(w) � �; to simplify the notation below we set

I

n;�

l

= fr 2 I

n

l

: r � �g:

We shall �rst ut out a ontribution from 'at' parts of �. We reall that the urvature does not vanish

to in�nite order on � and therefore there is a number � > 0 suh that

(5.6)

Z

�

jK(x)j

��

d�(x) <1:

This is well known (for example, one may use an argument in [16, p.343℄ to redue to an inequality in one

dimension where one an use H�older's inequality and ompatness).

By Chebyshev's inequality (5.6) implies that

(5.7) jfx 2 � : jK(x)j � n

�3=�

gj . n

�3

:
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Now we use a partition of unity to write

� =

X

i2J

n

�

i;n

where eah �

i;n

is supported on a ube R

i

of diameter "

1

n

�3=�

(here "

1

will be as in Lemma 2.6) and the

supports of the �

i;n

have bounded overlap, independent of n. Note that then

(5.8) ard(J

n

) . n

3(d�1)=�

:

We split the index set into disjoint subsets as J

n

= J

n

1

[ J

n

2

where J

n

2

onsists of all i 2 J with the

property that jK(x

0

)j � n

�3=�

for all x

0

2 supp R

i

.

Then by (5.7) we have that the sum of the total variations of the �

i;n

, for whih i 2 J

n

2

, satis�es the

bound

X

i2J

n

2





�

i;n





. n

�3

:

Let

�

i;n

= �

i;n

� �

n

and �

i;n

k

= 2

�k�

�

i;n

(2

�kP

�).

Sine the ardinality of (I

n

l

)

�

is O(n) and

P

i2J

n

2

k�

i;n

k

k

1

= O(n

�3

) the ontribution of the measures

P

i2J

n

2

�

i;n

k

, k 2 (I

n

l

)

�

an be handled by a straightforward L

1

estimate:

meas

�n

x : sup

k

�

�

�

X

n;l

k2(I

n

l

)

�

X

�2(I

n

l

)

�

��k

X

i2J

n

2

j�

i;n

k

�

X

r(w)2I

n;�

l

f

n;�

w

�

�

�

> �=10

o�

. �

�1







X

n;l

X

k2(I

n

l

)

�

X

�2(I

n

l

)

�

��k

X

i2J

n

2

j�

i;n

k

�

X

r(w)2I

n;�

l

f

n;�

w

j







1

. �

�1

X

n;l

X

�2(I

n

l

)

�

X

k2(I

n

l

)

�

X

i2J

n

2





�

i;n

k





1

X

r(w)2I

n;�

l

kf

n;�

w

k

1

. �

�1

X

n;l

X

�2(I

n

l

)

�

n

�2

X

r(w)2I

n;�

l

kf

n;�

w

k

1

. �

�1

kfk

1

:(5.9)

Next hoose a large onstant C

0

; spei�ally the hoie

(5.10) C

0

�

100

a

(1 +

d

�

)maxf1;

A

� �A

g+ 10 + log

2

�

C

1



1

�

will work where 

1

� C

1

are as in (2.27). Then the ontribution for the sales � � k � �+C

0

logn is also

handled by an L

1

estimate:
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meas

�n

x : sup

k

�

�

�

X

n;l

k2(I

n

l

)

�

X

�2(I

n

l

)

�

��k��+C

0

logn

X

i2J

n

1

�

i;n

k

�

X

r(w)2I

n;�

l

f

n;�

w

(x)

�

�

�

> �=10

o�

. �

�1







X

n;l

X

k2(I

n

l

)

�

X

�2(I

n

l

)

�

��k��+C

0

logn

X

i2J

n

1

j�

i;n

k

�

X

r(w)2I

n;�

l

f

n;�

w

j







1

. �

�1

X

n;l

X

�2(I

n

l

)

�

X

w:r(w)2I

n;�

l

X

��k��+C

0

logn

kf

n;�

w

k

1

. �

�1

X

n;l

X

�2(I

n

l

)

�

X

r(w)2I

n;�

l

lognkf

n;�

w

k

1

. �

�1

X

n

lognkf

n

k

1

.

Z

jf(x)j

�

log log

�

e

2

+

jf(x)j

�

�

dx(5.11)

It remains to show

(5.12) meas

�n

x : sup

k

�

�

�

X

n;l

k2(I

n

l

)

�

X

�2(I

n

l

)

�

k>�+C

0

logn

X

i2J

n

1

�

i;n

k

�

X

r(w)2I

n;�

l

f

n;�

w

(x)

�

�

�

> �=10

o�

. �

�1

kfk

1

and this will be aomplished by proving L

2

estimates.

Reintroduing anellation. The deomposition in (4.1) was needed to exploit the geometry of the

exeptional set; however we paid the prie of destroying the anellation properties of the b

n

w

. As the

information on the support of the f

n;�

w

has been used and is not needed anymore for the sales k >

�+C

0

logn we shall now modify the funtions f

n;�

w

to reintrodue some anellation. Namely let fP

i

g

M

d

i=1

be an orthonormal basis of the spae of polynomials of degree � d on the unit ball fx : jxj � 1g and for

given w de�ne the projetion operator �

w

by

�

w

[h℄(x) = �

w

(x)

M

d

X

i=1

P

i

(Æ

�r(w)

(x� x

w

))

Z

w

h(y)P

i

(Æ

�r(w)

(y � x

w

))2

�r(w)�

dy:

Note that

(5.13)

�

�

�

w

[h℄(x)

�

�

� C

1

jwj

Z

w

jh(y)jdy

where C is independent of h and w.

Let

g

n;�

w

(x) = �

w

[f

n;�

w

℄(x);

b

n;�

w

(x) = f

n;�

w

(x)� g

n;�

w

(x);

so that b

n;�

w

vanishes o� w and for polynomials p

(5.14)

Z

w

b

n;�

w

(x)p(x)dx = 0 if deg(p) � d:

We observe that sine the w's are generalized Whitney ubes for 
 (see x3), we have

(5.15)

X

n;�

�

�

�

w

[f

n;�

w

℄(x)

�

�

. �

w

(x)

1

jwj

Z

w

jf(x)jdx . �;
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moreover by (5.13)

(5.16)

X

n;�

�

kb

n;�

w

k

1

+ kg

n;�

w

k

1

�

.

X

n;�

kf

n;�

w

k

1

.

Z

w

jf(x)jdx:

Now (5.12) will follow from







sup

k

�

�

�

X

n;l

k2(I

n

l

)

�

X

�2(I

n

l

)

�

k>�+C

0

logn

X

i2J

n

1

�

i;n

k

�

X

r(w)2I

n;�

l

g

n;�

w

�

�

�







2

2

. �kfk

1

(5.17)







sup

k

�

�

�

X

n;l

k2(I

n

l

)

�

X

�2(I

n

l

)

�

k>�+C

0

logn

X

i2J

n

1

�

i;n

k

�

X

r(w)2I

n;�

l

b

n;�

w

�

�

�







2

2

. �kfk

1

:(5.18)

The estimation (5.17) is straightforward. If d� denotes surfae measure on � and d�

k

the dilate

2

�k�

d�(Æ

�k

�) then the maximal funtion

Mf(x) = sup

k2Z

jd�

k

� f j

de�nes a bounded operator on L

2

. By the positivity of this maximal operator the left side of (5.17) is

bounded by a onstant times







M

HL

M

�

X

n;l

X

�2(I

n

l

)

�

X

w

jg

n;�

w

j

�







2

2

. �

X

n;l

X

�2(I

n

l

)

�

X

w





g

n;�

w





1

. �kfk

1

;

here we used (5.15/16).

For the remainder of this setion we prove (5.18).

We �rst replae the sup in k by an `

2

sum and then, for �xed k, we apply Shwarz' inequality in the

form [

P

n

ja

n

j℄

2

.

P

jna

n

j

2

. Next we observe that for �xed n the number k is ontained in at most 3+2=a

of the intervals (I

n

l

)

�

. Then we apply Shwarz' inequality for the sim in � yielding a fator of O(n) and

for the sum in i yielding a fator of O(n

3(d�1)=�

). Finally we group the sum over w into groups for whih

r(w) = r, r 2 I

n

l

and apply Shwarz' inequality in r whih yields one more fator of O(n). Thus we see

that the left side of (5.18) is dominated by a onstant times

(5.20)

X

k;n;l

k2(I

n

l

)

�

X

�:�<

k�C

0

logn

X

i2J

n

1

X

r2I

n;�

l

n

(4+

3(d�1)

�

)







�

i;n

k

�

X

r(w)=r

b

n;�

w







2

2

We note that the some of the appliations of Shwarz' inequality above are not really neessary but it

turns out that the polynomial fators in n are irrelevant in the range � < k � C

0

logn.

Now, for �xed �; k, de�ne

(5.21) M(�; k) =

�

k � (k � �)

a

2A

+ log

2

C

1



1

+ 2℄

where [v℄ denotes the largest integer � v. Note that for � < k�C

0

logn we haveM(�; k) < k. Let R(�; k)

be the olletion of dilates Æ

M(�;k)

q, where q 2 Q

0

. For eah w with r(w) = r � � we assign R 2 R(�; k)

so that w \ R 6= ;. We write R = R

�;k

(w) or simply R = R(w) if the dependene on k; � is lear.
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Let

e

R(�; k) be a subolletion of R(�; k) with the property that if R;R

0

2 R(�; k), R 6= R

0

and

R = Æ

M(�;k)

q, R

0

= Æ

M(�;k)

q

0

then dist(q; q

0

) > 10.

We shall show for �xed n, l, k 2 (I

n

l

)

�

, � 2 (I

n

l

)

�

, r 2 I

n;�

l

that

(5.22)







X

R2

e

R(�;k)

�

i;n

k

�

X

r(w)=r

R

�;k

(w)=R

b

n;�

w







2

2

. n

2+3(d+3)=�

2

�(k��)

0

�

X

r(w)=r

kb

n;�

w

k

1

where

(5.23) 

0

=

a

2

min

�

1;

� � A

A

	

Given (5.22), the proof of (5.18) is a quik onsequene. First note that R(�; k) an be split into O(10

d

)

families of type

e

R(�; k). Thus Minkowski's inequality and (5.22) imply that (5.22) holds also with

e

R(�; k)

replaed by R(�; k). Then we obtain from (5.20) and the modi�ed (5.22) that the left side of (5.18) is

ontrolled by

X

n;l

X

k2(I

n

l

)

�

X

�2(I

n

l

)

�

:

�<k�C

0

logn

X

i2J

n

1

X

r2I

n;�

l

n

6(1+

d�1

�

)

2

�(k��)

0

�

X

r(w)=r

kb

n;�

w

k

1

.

X

n;l;�

n

6+

9(d�1)

�

X

k��+C

0

logn

2

�(k��)

0

�

X

r2I

n

l

r<�

X

r(w)=r

kb

n;�

w

k

1

:

Now we sum the geometri series

X

k��+C

0

logn

2

�(k��)

0

. n

�

0

C

0

and using (5.23) and our hoie of C

0

in (5.10) we observe that n

�

0

C

0

� n

�50(1+d=�)

; this yields that the

left side of (5.18) is ontrolled by

�

X

n;l;�

X

r2I

n;�

l

X

r(w)=r

kb

n;�

w

k

1

. �kfk

1

:

Thus the proof will be �nished when inequality (5.22) is veri�ed.

Proof of (5.22).

We split for �xed n; l, k; � 2 (I

n

l

)

�

, i 2 J

n

1

and r 2 I

n;�

l

,







X

R2

e

R(�;k)

�

i;n

k

�

X

r(w)=r

R(w)=R

b

n;�

w







2

2

= I + II

where

I =

X

R2

e

R(�;k)

Z

g

�

i;n

k

� �

i;n

k

�

X

r(w)=r

R(w)=R

b

n;�

w

(x)

X

r(w

0

)=r

R(w

0

)=R

b

n;�

w

0

(x) dx(5.24)

II =

X

R;R

0

2

e

R(�;k)

R6=R

0

Z

g

�

i;n

k

� �

i;n

k

�

X

r(w)=r

R(w)=R

b

n;�

w

(x)

X

r(w

0

)=r

R(w

0

)=R

0
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We shall �rst estimate II . Fix w, w

0

ouring in the expression (5.25). Then using the anellation of

the b
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w
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by Lemma 2.5 applied to the measure �

i;n

0

, with � = n

�3=�

.
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6= ;, w \ R 6= ;, and if R 6= R

0
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Combining this with (5.28) yields the bound
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whih is ontrolled by the right hand side of (5.22).

We now estimate the ontribution I . Unfortunately, in introduing the anellation and passing from

f

n;�

w

to b

n;�

w

we have obsured the geometrial information on the thikness of f

n;�

w

. As the anellation is
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Finally for the main term I
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(5.33/34) and (5.29) ertainly imply (5.22). This onludes the proof of Theorem 1.1. �

Remark. The above argument also applies to maximal funtions assoiated to ertain surfaes with low

odimension, for example if we assume that for every normal vetor the Gaussian urvature is bounded

away from zero. In this ase we have to work with the notions �

n;�

, �

n;�

in the remark following the proof

of Proposition 2.1; here � is the odimension. The ondition about nonvanishing Gaussian urvature is

never satis�ed for manifolds with high odimension suh as urves in three or more dimensions. In those

ases it is presently open whether the weak type L logL inequality of Corollary 3.1 above an be improved.

6. Estimates for the singular integral operators

The proof of the weak type L log logL estimate for the singular Radon transforms relies to a large extent

on the same arguments as for the maximal operator. We shall just indiate the neessary modi�ations.

We need to prove inequality (3.21). The de�nition of the exeptional set O and estimate (5.5) remains

the same. Thus we are left to show (again with �(s) = s log log(e

2

+ s))
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We use the nonisotropi version of an inequality in [6, p. 548℄ for the maximal version of the singular

integral, namely we have

(6.5)







sup

K

1

;K

2

�

�

�

K

2

X

k=K

1

e�

k

� u

�

�

�







2

. kuk

2

:

Here e�
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is the reetion of �
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. Indeed for (6.5) one just needs jb�(�)j � minfj�j; j�j
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g for some  > 0 (f.

(3.15)). In order to use (6.5) we have to split �
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From (6.5) and (5.17) we get
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Moreover for �xed n, and m � n we get using (3.15)
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whih by the argument above is dominated by a onstant times �kfk

1

. Combining these estimates with

Chebyshev's inequality we see that (6.4) holds.

We are left to prove
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We now let �
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We show that
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(6.10/11) imply that the sets where jI j > �=10, jII j > �=10, and

P
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. Combining this with the estimate (3.2) for the measure of 
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yields (6.8).
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and
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The inner produt in the seond term is estimated by Planherel's theorem. By van der Corput's

Lemma and anellation there is the Fourier transform estimate
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We may apply Cauhy-Shwarz and Parseval's theorem to bound

V

m

.

X

n�m

n

4+6(d�1)=�

X

l;l

0

jl�l

0

j�C

2

2

�njl�l

0

j

Z

j

d

E

l;n

(�)jj

d

E

l

0

;n

(�)jd�

.

X

n�m

n

4+6(d�1)=�

X

l;l

0

jl�l

0

j�C

2

2

�njl�l

0

j

kE

l;n

k

2

kE

l

0

;n

k

2

.

X

n�m

n

4+6(d�1)=�

2

�C

2

an

X

l

kE

l;n

k

2

2

Now

kE

l;n

k

2

2

. 2

(n+1)

�







X

r(w)2I

n;�

l

jb

n;�

w

j







1

where  is as in (3.3) and hene we obtain
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For the term IV

m

we have by Cauhy-Shwarz for the k summation and other appliations of Cauhy-

Shwarz leading to (5.20)
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Now �

i;n;m

k

satis�es similar quantitative properties as �

i;n;n

k

� �

i;n

k

onsidered in x5; in partiular we

have j�
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. Thus the estimates for expression (5.20),

are appliable and we obtain the bound
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This shows (6.11) and thus (6.8) and the proof of Theorem 1.2. is omplete. �
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