
CLASSES OF SINGULAR INTEGRAL

OPERATORS ALONG VARIABLE LINES

Anthony Carbery, Andreas Seeger, Stephen Wainger and James Wright

Abstrat. We prove estimates for lasses of singular integral operators along variable lines in the plane,

for whih the usual assumption of nondegenerate rotational urvature may not be satis�ed. The main

L

p

estimates are proved by interpolating L

2

bounds with suitable bounds in Hardy spaes on produt

domains. The L

2

bounds are derived by almost-orthogonality arguments. In an appendix we derive an

estimate for the Hilbert transform along the radial vetor �eld and prove an interpolation lemma related

to restrited weak type inequalities.

1. Introdution

For a speial lass of non-vanishing smooth vetor �elds v : R

2

! R

2

we study the Hilbert

transform H along the lines `

x

= fy : y = x� tv(x); t 2 Rg, de�ned by

(1.1) Hf(x) = p.v.

Z

1

�1

f(x� tv(x))

dt

t

:

We also onsider the related maximal operator M de�ned by

(1.2) Mf(x) = sup

h>0

1

h

Z

h

0

jf(x� tv(x))jdt

and it is our objetive to prove L

p

estimates for H and M .

Presently it seems to be an open problem whether for every smooth v the operators H and M

are bounded in L

p

(R

2

), for any p 2 (1;1) (although the globally de�ned operators (1.1) and (1.2)

may fail to be L

p

bounded if p � 2, see the remark in x6). If the urvature of the integral urves

of v never vanishes to in�nite order (as a funtion de�ned on an integral urve) then loal versions

of H and M are indeed bounded in L

p

, for all p 2 (1;1); see [3℄, [10℄ and [11℄. We are onerned

here in obtaining estimates in some globally de�ned model examples as well as in ases in whih the

urvature may vanish to in�nite order. We shall assume that our vetor �eld depends only on x

1

,

(1.3) v(x

1

; x

2

) = (1; a(x

1

)):
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It is well known that in this ase the L

2

boundedness of H an be derived from Hunt's extension

of Carleson's Theorem [8℄, [16℄ (this was perhaps �rst pointed out by Coifman and El-Kohen).

However neither the L

p

boundedness for p 6= 2, nor any result on M seems to be a orollary of the

Carleson-Hunt Theorem. In this paper we restrit ourselves to vetor �elds of the form (1.3) where

a

0

is monotone for t 6= t

0

. and lim

t!t

0

a

0

(t) = 0 (here we allow the ases t

0

= �1). It is of ourse

possible to estimate the Hilbert transform for x

1

> t

0

and x

1

< t

0

separately, so without loss of

generality we assume that t

0

<1 and onsider the operators

Hf(x) = �

(t

0

;1)

(x

1

)

Z

1

�1

f(x

1

� s; x

2

� sa(x

1

))

ds

s

(1.4)

Mf(x) = �

(t

0

;1)

(x

1

) sup

h>0

1

h

Z

h

0

jf(x

1

� s; x

2

� sa(x

1

))jds;(1.5)

and we assume that a

0

is nonnegative, monotoni and inreasing in (t

0

;1). Then the monotoniity

of a

0

implies the sets

I(�) = ft > t

0

: �=2 � a

0

(t) � 2�g

are intervals for all � > 0 and we shall always make the following assumptions. The �rst hypothesis

is that the length of I(�) is not hanging too fast, spei�ally

(1.6) 0 < inf

�>0

jI(2�)j

jI(�)j

� sup

�>0

jI(2�)j

jI(�)j

<1:

As a seond hypothesis we impose the ondition

(1.7) sup

�>0

1

�

Z

�

0

jI(�)j

jI(�)j

d� <1;

see also Lemma 1.1 for an alternative hypothesis.

Theorem. Let a : (t

0

;1) ! [0;1) be a C

1

funtion satisfying lim

t!t

0

a

0

(t) = 0 and suppose that

a

0

is inreasing in (t

0

;1). Suppose that the assumptions (1.6) and (1.7) are satis�ed. Then the

operators H and M are bounded on L

p

(R

2

) for 1 < p <1.

Remarks.

(i) If t

0

= 0 and a(t) = t



then jI(�)j � �

1

�1

. If t

0

= �1 and a(t) = e

t

then jI(�)j � 1. In

both ases (1.6) and (1.7) are learly satis�ed. The L

p

version of the theorem is new for globally

de�ned examples suh as a(t) = e

t

.

(ii) Notational hanges in our proof yield loal versions of the Theorem. Assume t

0

= 0. If we

set

Hf(x) = �

[0;1℄

(x

1

) p.v.

Z

�

��

f(x

1

� t; x

2

� ta(x

1

))

dt

t

Mf(x) = �

[0;1℄

(x

1

) sup

0<h<�

1

h

Z

h

0

jf(x

1

� t; x

2

� ta(x

1

))jdt

and if we assume that (1.6) and (1.7) hold with the modi�ation that the supremum in � is only

extended over all � < �

max

for suitable �

max

, then H and M are bounded on L

p

for 1 < p < 1.

This version applies to examples suh as a(t) = exp(�1=t) or a(t) = exp(�exp(1=t)), t > 0.
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(iii) Similarly for the global version it is not neessary to assume that a

0

vanishes at t

0

. If

lim

t!t

0

a

0

(t) = �

min

> 0 then we assume that in (1.6) and (1.7) the supremum in � is only extended

to over all � > 2�

min

, and the onlusion of the Theorem holds. This version applies to examples

suh as a(t) = exp(exp(t)).

We point out that we may always assume that a(t

0

) = 0. To see this let ~a(t) = a(t)�a(t

0

) and let

e

H be as in (1.4) with a replaed by ~a. De�ne Ax = (x

1

; x

2

+ a(t

0

)x

1

), then Hf(Ax) =

e

H[f(A�)℄(x)

and a satis�es our assumptions if and only if ~a does. Moreover we may assume without loss of

generality that a

0

(t) > 0 for t > t

0

. For if a

0

vanishes in (; d) then the Hilbert transform Hf(x)

oinides for x

1

2 (; d) with the translation invariant Hilbert transform along a �xed line and

the L

p

-boundedness of this operator is of ourse well known. Assuming these normalizations an

alternative formulation of the Theorem an be obtained from the following result (whih states that

the hypothesis (1.6) and (1.7) is then equivalent to the hypothesis (1.6) and (1.9) below).

Lemma 1.1. Let a : [t

0

;1) ! [0;1) be a C

1

funtion satisfying lim

t!t

0

a(t) = 0 and

lim

t!t

0

a

0

(t) = 0 and assume that a

0

is stritly inreasing in (t

0

;1). Suppose that ondition (1.6)

is satis�ed. Then there is a positive onstant C suh that

(1.8) sup

t2I(�)

a

0

(t)jI(�)j

a(t)

� C

for all � > 0. Moreover ondition (1.7) is satis�ed if and only if there exists a positive onstant b

suh that

(1.9) inf

t2I(�)

a

0

(t)jI(�)j

a(t)

� b

uniformly in � > 0.

Proof. Let t 2 I(�) and hoose s 2 I(�=16). Then

a(t) � a(t)� a(s) �

Z

I(�=4)

a

0

(�)d� �

�

8

jI(�=4)j � � jI(�)j

where in the last inequality we have used (1.6).

Suppose now that the expression in (1.7) is D. Then for t 2 I(�)

a(t) �

Z

t

t

0

a

0

(s)ds � 

1

X

l�0

jI(�2

�l

)j�2

�l

� 

2

Z

2�

0

jI(�)jd� � 

2

D2� jI(2�)j � 

3

Da

0

(t)jI(�)j;

here we have used (1.6) and (1.7). Conversely if (1.9) holds and if t 2 I(�) and T is the right

endpoint of the interval I(�=8) then

Z

�

0

jI(�)jd� � 

1

X

2

�k

�4�

2

�k

jI(2

�k

)j � 

2

X

2

�k

��=8

2

�k

jI(2

�k

)j � 

3

X

2

�k

��=8

Z

I(2

�k

)

a

0

(s)ds

� 

3

Z

T

t

0

a

0

(s)ds = 

3

a(T ) � 

3

a(t) � 

3

b

�1

a

0

(t)jI(�)j � 

4

b

�1

� jI(�)j: �
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We shall now give an outline of the proof of the Theorem, leaving the main tehnial details to

x2 and x3. We shall assume that lim

t!t

0

a(t) = 0 and that a

0

(t) > 0 for t > t

0

; as pointed out above

this is no loss of generality.

Following [21℄, [22℄ we deompose the operator, aording to the size of the urvature of the

integral urves. For ` 2 Z let

I

`

= ft > t

0

: 2

�`�1

< a

0

(t) � 2

�`

g;

then I

`

is an interval by the monotoniity assumption on a

0

. Let Æ > 0 be suh that

(1.10)

10Æ < jI

`+1

j=jI

`

j < (10Æ)

�1

Æ � b=10

for all ` 2 Z. Let � 2 C

1

0

suh that �(t) � 0 for all t, �(t) > 0 if jtj � 1=2 and �(t) = 0 if

jtj > Æ + 1=2. Let s

`

be the enter of I

`

and let

�

`

(t) =

�(jI

`

j

�1

(t� s

`

))

P

m2Z

�(jI

m

j

�1

(t� s

m

))

:

Then the family f�

`

g forms a partition of unity of the interval (t

0

;1). Moreover

(1.11) I

`

� supp �

`

� I

`�1

[ I

`

[ I

`+1

and therefore

(1.12) 2

�`�2

� a

0

(t) � 2

�`+2

if t 2 supp �

`

;

also supp �

`

\ supp �

m

= ; if j`�mj � 4. Finally observe that

(1.13) j�

0

`

(t)j � CjI

`

j

�1

:

We hoose an odd funtion  2 C

1

with support in ft : 1=2 � jtj � 2g, suh that

X

j2Z

2

j

Æ

�1

 (2

j

Æ

�1

t) =

1

t

and set

 

j

(t) = 2

j

Æ

�1

 (2

j

Æ

�1

t):

Here the fator Æ is as in (1.10); this normalization is introdued for onveniene and simpli�es the

notation later; note in partiular that supp �

`

+ supp  

j

� I

`�1

[ I

`

[ I

`+1

if 2

�j

� jI

`

j. We split

H = H

1

+ H

2

where

H

2

f(x) =

X

`

�

`

(x

1

)

X

2

�j

�jI

`

j

Z

 

j

(t)f(x

1

� t; x

2

� ta(x

1

))dt :

4



Lemma 1.2. H

2

is bounded on L

p

(R

2

) for 1 < p <1.

Proof. For `;m 2 Z let R

`m

= fy 2 R

2

: y

1

2 I

`

; (m � 1)2

�`

jI

`

j

2

< y

2

� m2

�`

jI

`

j

2

g and let

f

`m

= f�

R

`m

. Set

H

2;`m

f(x) =

X

2

�j

�jI

`

j

Z

 

j

(t)f

`m

(x

1

� t; x

2

� ta(x

1

))dt :

Note that jx

1

� y

1

ja(x

1

) � 2

�j

b

�1

Æ2

�`+2

jI

`

j � 2

�`

jI

`

j

2

if x

1

2 [

`+1

j=`�1

I

j

, x

1

� y

1

2 supp  

j

and

2

�j

� jI

`

j (f. (1.10)).

Therefore H

2

f

`m

(x) = 0 if x does not belong to the union of retangles R

��

with `�2 � � � `+2

and m� 2 � � � m+ 2. It follows that

kH

2

k

L

p

!L

p

� C sup

`;m

kH

2;`m

k

L

p

!L

p

;

hene it suÆes to obtain a uniform L

p

bound for H

2;`m

.

De�ne A

`m

x = (jI

`

j

�1

(x

1

� u

`m

1

); 2

`

jI

`

j

�2

(x

2

� u

`m

2

)) where (u

`m

1

; u

`m

2

) is the enter of R

`m

.

Then the aÆne transformation A

`m

maps the retangle R

`m

to the unit square Q entered at 0 and

H

2;`m

f(x) =

e

H

2;`m

�

f

`m

(A

�1

`m

�)

�

(A

`m

x) with

e

H

2;`m

g(z

1

; z

2

) =

X

2

�j

�jI

`

j

Z

2

j

jI

`

jÆ

�1

 (2

j

Æ

�1

jI

`

jt)g

Q

(z

1

� t; z

2

� a

`m

(z

1

))dt

where a

`m

(z

1

) = 2

`

jI

`

j

�1

a(u

`m

1

+ jI

`

jz

1

) and g

Q

= g�

Q

. Note that a

0

`m

is bounded above and

below, uniformly in `; m. This is essentially the ase of nonvanishing rotational urvature, however

standard theorems ([10℄, [11℄, [15℄ or [20℄) annot be immediately applied sine we are dealing with

a globally de�ned operator and sine a is not smooth enough. Nevertheless standard arguments an

be applied and indeed the operators

e

H

2;`m

and therefore the operators H

2;`m

are uniformly bounded

in L

p

(R

2

), 1 < p <1. More details are arried out in x5. �

The nontrivial ontribution omes from the operator H

1

. We hoose a non-negative C

1

funtion

� supported in f� : 1=2 � j�j � 2g with

P

r2Z

�(2

�r

�) = 1 for � 6= 0. Then H

1

is a sum of operators

(1.14) T

r

j`

f(x) = �

`

(x

1

)

Z

 

j

(x

1

� y

1

)f(y)

Z

�(2

�r

�)e

i�[x

2

�y

2

�a(x

1

)(x

1

�y

1

)℄

d� dy

where jI

`

j < 2

�j

. We deompose H

1

= T +R where

T =

X

`

X

2

�j

>jI

`

j

X

r�2j+`

T

r

j`

The operator R = H

1

� T an be handled by standard arguments from Calder�on-Zygmund theory.

Lemma 1.3. R is bounded on L

p

(R

2

) for 1 < p <1.

Proof. We expand e

�i�a(x

1

)(x

1

�y

1

)

in a power series in �a(x

1

)(x

1

� y

1

) and observe that the terms

(1.14) whih ontribute to R satisfy 2

r

ja(x

1

)(x

1

�y

1

)j � b

�1

Æ2

r�j�`

jI

`

j � 

0

. De�ne operators S

k;r

by

S

k;r

g(x

1

; x

2

) =

X

`

X

2

�j

>jI

`

j

r<2j+`

�

`

(x

1

)

Z

 

j

(x

1

� y

1

)[2

r

a(x

1

)(x

1

� y

1

)℄

k

g(y

1

; x

2

)dy

1

:
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Next de�ne Littlewood-Paley operators L

r

,

e

L

r;k

in the seond variable by

d

L

r

f(�) = �(2

�r

�

2

)

b

f(�)

and

\

e

L

r;k

f(�) = (2

�r

�

2

)

k

e

�(2

�r

�

2

)

b

f(�); here

e

� is supported in �(1=4; 4) and equals 1 on supp �.

Then

R =

1

X

k=0

(�i)

k

k!

X

r2Z

e

L

r;k

S

k;r

[L

r

f ℄:

By standard Calder�on-Zygmund theory







X

r

e

L

r;k

h

r







p

� 

p

10

k







�

X

r

�

�

L

r

h

r

�

�

2

�

1=2







p

for 1 < p < 1. By another appliation of Littlewood-Paley theory it learly suÆes to show that

the vetor-valued operator F = ff

r

g

r2Z

7! fS

k;r

f

r

g

r2Z

maps L

p

(`

2

) into itself with operator norm

bounded by CB

k

,

1

for some positive onstant B.

Observe that S

0;r

is essentially dominated by a maximal Hilbert transform in the �rst variable;

in fat Cotlar's inequality ([24, p.35℄) holds:

�

�

S

0;r

g(x)

�

�

� C

�

M

1

[g℄(x) +M

1

[H

1

g℄(x)

�

;

hereM

1

and H

1

denote the standard Hardy-Littlewood maximal funtion and the Hilbert transform

in the �rst variable, respetively, and C does not depend on r. If k > 0 and r, ` are �xed then for

x

1

2 I

`

�

�

S

k;r

g(x)

�

�

� C

X

`

X

2

�j

>jI

`

j

2j+`>r

�

`

(x

1

)

Z

j2

r

a(x

1

)(x

1

� y

1

)j

k

j 

j

(x

1

� y

1

)jjg(y

1

; x

2

)jdy

1

� C

X

`

�

`

(x

1

)

X

2j+`>r

(2b

�1

Æ2

r�`�2j

)

k

M

1

g(x) � C

0

B

k

M

1

g(x):

By the Fe�erman-Stein inequality for sequenes of maximal funtions ([12℄) and a vetor valued

inequality for the Hilbert transform







�

X

r

�

�

S

k;r

f

r

�

�

2

�

1=2







p

� CB

k

h







�

X

r

�

�

f

r

�

�

2

�

1=2







p

+







�

X

r

�

�

H

1

f

r

�

�

2

�

1=2







p

i

� C

0

B

k







�

X

r

�

�

f

r

�

�

2

�

1=2







p

: �

Our main estimates onern the operator T and we shall introdue a further deomposition. For

nonnegative integers s and n let

(1.15) A

s

= f(j; `) : 2

�j�s

> jI

`

j � 2

�j�s�1

g

and

(1.16) T

sn

=

X

(j;`)2A

s

T

2j+`+n

j`

;

then T =

P

1

s;n=0

T

sn

.

1

Here and in the sequel C will denote some absolute \onstant" whih may depend on p and whose value may

hange from line to line.
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Proposition 1.4. Let 1 < p � 2,  < 1� 1=p. Then for all f 2 L

p

kT

sn

fk

p

� C

;�;p

2

�n

minf1; 2

(n�s)�

gkfk

p

if � < 1=2

and

kT

�

sn

fk

p

� C

;�;p

2

�n

minf1; 2

(n�s)�

gkfk

p

if � < 1� 1=p:

Clearly the Theorem follows from Lemmas 1.2, 1.3 and Proposition 1.4. The appropriate L

2

estimates for Proposition 1.4 will be derived in x2. The diÆulty in obtaining L

p

estimates is

the absene of a Calder�on-Zygmund theory on a suitable spae of homogeneous type. Fortunately

in our present analysis we an interpolate the L

2

estimates with somewhat weaker estimates on

multiparameter Hardy spaes. These are derived in x3. In x4 we shall disuss the modi�ations

needed to estimate the maximal operator M. x5 ontains the estimates needed to omplete the

proof of Lemma 1.2 above. The �nal setion is an appendix where we study the Hilbert transform

along the radial vetor �eld, inluding a general interpolation lemma related to restrited weak type

estimates.

2. L

2

-estimates for osillatory integral operators

The following result is a straightforward onsequene of the almost-orthogonality lemma by

Cotlar and Stein (see [24, p.280℄); in our appliation below we will be able to hoose � = 1=2.

Lemma 2.1. Suppose that 0 < � � 1, 0 < C

1

�

p

C

2

. Let fT

j

g be a olletion of bounded operators

on a Hilbert spae H suh that

kT

j

k � C

1

and

max

�

kT

j

(T

k

)

�

k; k(T

j

)

�

T

k

k

	

� C

2

2

��jj�kj

for all j; k 2 Z. Then the partial sums

P

N

j=�N

T

j

onverge in the strong operator topology to a

bounded operator T as N !1 and T satis�es the bound

kTk � 10�

�1

C

1

log

2

(1 +

p

C

2

=C

1

):

Proof. By the Cotlar-Stein lemma

kTk �

1

X

n=0

sup

jj�kj=n

max

�

kT

j

(T

k

)

�

k

1=2

; k(T

j

)

�

T

k

k

1=2

	

:

Let N = 2�

�1

log

2

(1 +

p

C

2

=C

1

). We dominate the n

th

term in the series by C

1

if n < N and by

p

C

2

2

��n=2

if n � N . Hene

kTk � C

1

log

2

(1 +

p

C

2

=C

1

)(2�

�1

+ (1� 2

��=2

)

�1

):

This implies the asserted inequality. �

In what follows we onsider osillatory integral operators ating on funtions g 2 L

2

(R). Suppose

that 	

j

2 C

2

(R � R) and that

(2.1) 	

j

(x; y) = 0 if jx� yj � Æ2

�j+2

or jx� yj � Æ2

�j�2

;

where Æ is as in (1.10). Suppose also that

(2.2) j�

�

y

	

j

(x; y)j � A2

j

2

j�

; � = 0; 1; 2:

7



Lemma 2.2. For given n 2 Z and � 2 R let j 7! `(j) denote a funtion de�ned on a subset z of Z

satisfying j�j=2 � 2

`(j)+2j+n

� 2j�j and (j; `(j)) 2 A

s

for all j 2 z (here A

s

is as in (1.15)). De�ne

an operator P

j

ating on Shwartz funtions of one variable by

(2.3) P

j

g(x) = �

`(j)

(x)

Z

e

i�a(x)(x�y)

	

j

(x; y)g(y) dy;

here 	

j

is as in (2.1), (2.2). Then P

j

is bounded on L

2

and for all g 2 L

2

(R)

(2.4) kP

j

gk

2

� CAminf2

�s=2

; 2

�n=2

gkgk

2

where C does not depend on j and the partiular funtion `. Moreover (P

j

)

�

P

k

= 0 for jj � kj � 10

and the L

2

operator norm of P

j

P

�

k

satis�es

(2.5) kP

j

P

�

k

k

L

2

!L

2

� CA

2

2

�jj�kj=2

:

Finally if P =

P

j2z

P

j

then P is bounded on L

2

(R) with norm � CA(1+ s+ n)minf2

�s=2

; 2

�n=2

g.

Proof. The asserted L

2

bound for P follows from (2.4), (2.5) and Lemma 2.1. The modulus of the

kernel K

jk

of P

j

P

�

k

is given by

(2.6) jK

jk

(x; z)j =

�

�

�

�

`(j)

(x)�

`(k)

(z)

Z

	

j

(x; y)	

k

(z; y)e

�i�y[a(x)�a(z)℄

dy

�

�

�

:

A rude estimate yields jK

jk

(x; z)j � CA

2

minf2

j

; 2

k

g and in turn

(2.7)

Z

jK

jk

(x; z)jdx +

Z

jK

jk

(x; z)jdz � CA

2

2

�s

:

If j = k then ja(x) � a(z)j � 2

�`(j)

jx � zj and if jx � zj > 2

j+`(j)

�

�1

we may improve the previous

estimate by integrating by parts twie. This yields

jK

jj

(x; z)j � CA

2

minf2

j

; 2

3j+2`(j)

�

�2

jx� zj

�2

g

and therefore

Z

jK

jj

(x; z)jdx +

Z

jK

jj

(x; z)jdz � CA

2

2

2j+`(j)

�

�1

� CA

2

2

�n

:

This together with (2.7) implies (2.4).

Now assume that jj � kj � 10; then also j`(j)� `(k)j � 10. By taking adjoints we may without

loss of generality assume that k < j. There is an interval I

l

between I

`(j)

and I

`(k)

whih does not

interset either I

`(k)

or I

`(j)

but satis�es jl � `(j)j � 5. Then by assumption (1.6) we obtain

ja(x)� a(z)j � 2

�l�1

jI

l

j � 2

�`(j)

jI

`(j)

j

if x 2 supp �

`(j)

and z 2 supp �

`(k)

. Integrating by parts one in (2.6) yields the pointwise bound

jK

jk

(x; z)j � CA

2

2

j+k

j�j

�1

jI

`(j)

j2

�`(j)

� A

2

2

�n

2

k�j

jI

`(j)

j

�1

:

For �xed z we integrate over x 2 supp �

`(j)

and obtain

Z

jK

jk

(x; z)jdx � CA

2

2

�n

2

k�j

:

If we also use (2.7) we obtain by the ontinuous version of Shur's lemma the asserted estimate (2.5),

where A is atually replaed by the smaller value A2

�(s+n)=4

. �

The usefulness of the following Lemma has been demonstrated for example in [19℄. It follows by

a two-fold appliation of Planherel's theorem.
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Lemma 2.3. Let m 2 L

1

(R), let fP

�

g be a family of bounded linear operators on L

2

(R). Suppose

that for every f in the Shwarz spae S(R

2

) the funtion (x

1

; y

2

; �) 7! P

�

�

f(�; y

2

)℄(x

1

) is ontinuous

and suppose that the L

2

operator norms of P

�

are uniformly bounded by B. For Shwartz funtions

f 2 S(R

2

) de�ne T by

Tf(x) =

ZZ

m(�)e

i�(x

2

�y

2

)

P

�

[f(�; y

2

)℄(x

1

)d�dy

2

:

Then T extends to a bounded operator on L

2

(R

2

) with operator norm bounded by B.

Corollary 2.4. The operator T

sn

de�ned in (1.16) is bounded on L

2

(R

2

) with operator norm �

C(1 + s+ n)minf2

�n=2

; 2

�s=2

g.

Proof. We write T

sn

=

P

4

i=0

T

sn;i

where T

sn;i

is as in (1.16), with the additional spei�ation that

only values of ` with ` = i mod 5 our in the sum. As an immediate onsequene of Lemma 2.2

and Lemma 2.3 we obtain the L

2

boundedness of T

sn;i

, with the required bounds.

The following variant of Lemma 2.3 will be used when f has some anellation property with

respet to the y

2

variable.

Lemma 2.5. Let fP

�

g be a family of bounded linear operators on L

2

(R) satisfying the assumptions

of Lemma 2.3. For Shwartz funtions f 2 S(R

2

) and �xed u

2

de�ne S

r

by

S

r

f(x) =

ZZ

�(2

�r

�)e

i�x

2

(e

�i�y

2

� e

�i�u

2

)P

�

[f(�; y

2

)℄(x

1

)d�dy

2

:

Then

kS

r

fk

2

� CB2

r

�

Z

jy

2

� u

2

j

2

jf(y)j

2

dy

�

1=2

where C does not depend on u

2

.

Proof. We write the di�erene of exponentials as an integral over a derivative and see that S

r

=

R

1

0

S

r;�

d� where

S

r;�

f(x) = �i

ZZ

��(2

�r

�)e

i�(x

2

�(1��)u

2

��y

2

)

(y

2

� u

2

)P

�

[f(�; y

2

)℄(x

1

)dy

2

d�:

Set G

�

(y

1

) =

R

e

�i�y

2

(y

2

� u

2

)f(y

1

; y

2

) dy

2

= F

2

�

(� � u

2

)f(y

1

; �)

�

(�) where F

2

denotes the Fourier

transform in the y

2

variable. Then

S

r;�

f(x) = i

Z

��(2

�r

�)e

i�(x

2

�(1��)u

2

)

P

�

[G

��

℄(x

1

) d�:

From appliations of Planherel's theorem and Fubini's theorem it follows that

kS

r;�

fk

2

=

p

2�

�

ZZ

�

�

��(2

�r

�)

�

�

2

�

�

P

�

[G

��

℄(x

1

)

�

�

2

dx

1

d�

�

1=2

� B

p

2�

�

ZZ

�

�

��(2

�r

�)

�

�

2

�

�

G

��

(y

1

)

�

�

2

d� dy

1

�

1=2

� C�

�1=2

B2

r

�

Z

jy

2

� u

2

j

2

jf(y)j

2

dy

�

1=2

and the desired estimate is obtained by integrating in �. �
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3. Estimates for retangle atoms

The L

p

estimates for T

sn

and their adjoints are derived by interpolation of the L

2

estimates

in the previous setion with appropriate estimates on the Hardy spae H

1

prod

(R � R) with the

multiparameter dilation struture. The interpolation theorem an be found in [9℄. In order to prove

the H

1

estimates we use the version of Calder�on-Zygmund theory as developed by Journ�e [17℄. A

partiularly elegant variant of it whih is valid in two parameters was proved by R. Fe�erman [12℄.

In this setting it suÆes to hek the behavior of the singular integral operator on retangle atoms.

Let R = J

1

� J

2

be a retangle with edges parallel to the oordinate axes and enter (u

1

; u

2

).

Then f is alled a retangle atom assoiated to R if f is supported in R, if

kfk

2

� jRj

�1=2

and if

Z

f(x

1

; x

2

)dx

1

= 0 for almost every x

2

2 J

2

;

Z

f(x

1

; x

2

)dx

2

= 0 for almost every x

1

2 J

1

:

Let w

R;�

(x) =

Q

2

i=1

(1 + jx

i

� u

i

j=jJ

i

j)

�

. Suppose that the operator T is bounded on L

2

and

suppose that there is � > 0 suh that for all R and all retangle atoms f

R

assoiated to R

(3.1)

Z

jTf

R

(x)jw

R;�

(x)dx � B

where B does not depend on R. Then aording to Fe�erman's theorem the operator T maps

H

1

prod

(R � R) to L

1

(R

2

) and there is the estimate

kTk

H

1

!L

1

� kTk

L

2

!L

2

+ C

�

B:

In what follows we �x a retangle atom f assoiated to a retangleR and estimate T

sn

f in retangular

regions in the omplement of R. Given m = (m

1

;m

2

) with nonnegative integers m

1

, m

2

and given

a retangle R = J

1

� J

2

as above we de�ne J

1

(m

1

), J

2

(m

2

) and R(m) by

(3.2) J

i

(m

i

) =

�

fx

i

: jx

i

� u

i

j � 8jJ

i

jg if m

i

= 0

fx

i

: 2

m

i

+3

jJ

i

j < jx

i

� u

i

j � 2

m

i

+4

jJ

i

jg if m

i

> 0

and

(3.3) R(m) = J

1

(m

1

)�J

2

(m

2

):

It is our objetive to prove the following proposition whih together with Corollary 2.4 implies

Proposition 1.4.

Proposition 3.1. Let f be a retangle atom assoiated to the retangle R = J

1

� J

2

with enter

(u

1

; u

2

) and let R(m) be as in (3.3). Then for 0 < � < 1=2

Z

R(m)

jT

sn

f(x)j dx � C

�

2

2(s+n)�

2

��(m

1

+m

2

)

minf1; 2

(n�s)=2

g(3.4)

Z

R(m)

jT

�

sn

f(x)j dx � C

�

2

2(s+n)�

2

��(m

1

+m

2

)

:(3.5)
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Consequently T

sn

and T

�

sn

map H

1

prod

(R � R) boundedly into L

1

and, for every � > 0, the operator

norms are bounded by C

�

2

�n

and C

�

2

�(s+n)

, respetively.

We now deompose T

sn

=

P

r

T

r

sn

where

T

r

sn

=

X

(j;`)2A

s

`+2j=r�n

T

r

j`

:

Lemma 3.2. Let f be a retangle atom assoiated to the retangle R = J

1

� J

2

with enter (u

1

; u

2

)

and let R(m) be as in (3.3). Then

(3.6) kT

sn

fk

L

1

(R(m))

+ (2

r

jJ

2

j)

�1

kT

r

sn

fk

L

1

(R(m))

� C(1 + s+ n))2

(m

1

+m

2

)=2

minf2

�s=2

; 2

�n=2

g:

and the same estimates hold if T

sn

and T

r

sn

are replaed by their adjoints.

Proof. We have already proved the L

2

bounds for T

sn

in x2 (see Corollary 2.4), and the asserted

estimate for T

sn

follows by the Cauhy-Shwarz inequality and the size estimate for the atom.

Similarly, in view of the y

2

anellation of f we an use Lemma 2.5 instead of Lemma 2.3 to obtain

also the estimate for T

r

sn

. �

Lemma 3.3. Let f be a retangle atom assoiated to the retangle R = J

1

� J

2

with enter (u

1

; u

2

)

and let J

2

(m

2

) be as in (3.2). Then for M = 0; 1; 2; : : :

(3.7)

Z

J

2

(m

2

)

�

Z

J

1

(0)

jT

r

sn

f(x)j

2

dx

1

�

1=2

dx

2

� C

M

2

n=2

(1 + s+ n)

�

2

n�m

2

2

r

jJ

2

j

�

M

minf1; 2

(n�s)=2

gminf1; 2

r

jJ

2

j+ 2

�m

2

gkfk

L

1

(L

2

)

where kfk

L

1

(L

2

)

=

R
�
R

jf(x

1

; x

2

)j

2

dx

1

�

1=2

dx

2

. The same estimates remain true when T

r

sn

is re-

plaed by its adjoint.

Proof. Denote by K

r

j`

the kernel of the operator T

r

j`

. By an integration by parts with respet to

the frequeny variable � and the Leibniz rule we express K

r

j`

=

P

M+1

�=0

K

r

j`�

, where

(3.8) K

r

j`�

(x; y) = �

`

(x

1

)e�

`

(x

1

)

Z

�

�;M+1

(x

2

� y

2

)	

j;�;�

(x

1

; y

1

)e

i�a(x

1

)(x

1

�y

1

)

d�;

where �

�;M+1

(u) = e

i�u

u

�M�1

and

	

j;�;�

(x

1

; y

1

) = 

�

e�

`

(x

1

)

�

a(x

1

)(x

1

� y

1

)

�

�

2

�r(M+1��)

�

(M+1��)

(�2

�r

) 

j

(x

1

� y

1

);

here e�

`

(x

1

) is supported in [

2

i=�2

I

`+i

and equal to 1 on the support of �

`

. If ` = r � n � 2j the

funtions 	

j;�;�

satisfy (2.2) with A = A

�

where

A

�

� C(jI

`

j2

�`�j

)

�

2

�r(M+1��)

� C

0

2

�s�

2

�(2j+`)�

2

�r(M+1��)

� C

00

2

�s�

2

(n�r)(M+1)

and C may depend onM . We �x � and � 2 supp �(2

�r

�) and de�ne an osillatory integral operator

by

P

�;�

g(u) =

X

(j;`)2A

s

`=r�n�2j

�

`

(u)

Z

	

j;�;�

(u;w)e

�i�a(u)(u�w)

g(w)dw:
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The left hand side of (3.7) is bounded by a linear ombination of terms of type

Z

J

2

(m

2

)

jx

2

� y

2

j

�M�1

Z





P

�;�

[f(�; y

2

)℄





L

2

(R)

d�dy

2

dx

2

;

note also that P

�;�

[f(�; y

2

)℄ = 0 if 2

�r

� =2 supp �. The operator norm of P

�;�

is bounded by

minf2

�s=2

; 2

�n=2

g(s+ n+ 1)A

�

; this follows from Lemma 2.2. Therefore we obtain

Z

J

2

(m

2

)

�

Z

jT

r

sn

f(x)j

2

dx

1

�

1=2

dx

2

� C

M

2

n=2

(n+ s+ 1)

�

2

n�m

2

2

r

jJ

2

j

�

M

minf1; 2

(n�s)=2

g

Z

�

Z

jf(x

1

; x

2

)j

2

dx

1

�

1=2

dx

2

:

This proves one of the estimates laimed in (3.7). If we also use the anellation of the atom in the

y

2

variable we may replae the term �

�;M+1

(x

2

� y

2

) in (3.8) by

�

�;M+1

(x

2

� y

2

)� �

�;M+1

(x

2

� u

2

) = O

�

jJ

2

jjx

2

� y

2

j

�M�1

[jx

2

� y

2

j

�1

+ j�j℄

�

and the previous argument yields the seond estimate in (3.7), with the fator 2

r

jJ

2

j+ 2

�m

2

. The

same argument applies to the adjoint operator. �

Lemma 3.4. Let f be a retangle atom assoiated to the retangle R = J

1

�J

2

with enter (u

1

; u

2

).

Let M

1

> 0 and let R(m) be as in (3.3). Assume jI

`

j � 2

�j

. Then T

r

j`

f(x) = (T

r

j`

)

�

f(x) = 0 if

x 2 R(m) and 2

j

jJ

1

j > 2

�m

1

.

If r = `+ 2j + n and (j; `) 2 A

s

then for 0 � �

1

; �

2

� 1

Z

R(m)

jT

r

j`

f(x)jdx � C2

�s

(1 + 2

n�s

)

�

1

(2

j

jJ

1

j)

�

1

(2

r

jJ

2

j)

�

2

(3.9)

Z

R(m)

j(T

r

j`

)

�

f(x)jdx � C(1 + 2

n

+ 2

s

)

�

1

(2

j

jJ

1

j)

�

1

(2

r

jJ

2

j)

�

2

;(3.10)

moreover if also 2

r

jJ

2

j � 10b

�1

2

n�s

2

�m

2

then

Z

R(m)

jT

r

j`

f(x)jdx � C2

�s

(1 + 2

n�s

)

�

1

(2

j

jJ

1

j)

�

1

(2

m

2

2

r

jJ

2

j)

�1

(3.11)

Z

R(m)

j(T

r

j`

)

�

f(x)jdx � C(1 + 2

n

+ 2

s

)

�

1

(2

j

jJ

1

j)

�

1

(2

m

2

2

r

jJ

2

j)

�1

:(3.12)

Proof. The �rst statements are obvious and we give the proof for (3.9-12). It suÆes to prove these

inequalities for �

1

; �

2

2 f0; 1g; the general ase then follows by taking geometri means. Denote by

K

r

j`

and

e

K

r

j`

the kernels of T

r

j`

and (T

r

j`

)

�

, respetively. Then

e

K

r

j`

(x; y) = K

r

j`

(y; x) and

K

r

j`

(x; y) = �

`

(x

1

) 

j

(x

1

� y

1

)2

r

F

�1

�(2

r

(x

2

� y

2

� a(x

1

)(x

1

� y

1

)))

where F

�1

� is the inverse Fourier transform of �. Let !

r;M

(x; y) = 2

r

(1 + 2

r

jx

2

� y

2

� a(x

1

)(x

1

�

y

1

)j)

�M

. Then it is straightforward to hek from (1.11-1.13) that for �

1

; �

2

2 f0; 1g

j�

�

1

y

1

�

�

2

y

2

K

r

j`

(x; y)j � C2

j

(2

j

+ 2

r�`

jI

`

j)

�

1

2

r�

2

!

r;M

(x; y)

j�

�

1

y

1

�

�

2

y

2

e

K

r

j`

(x; y)j � C2

j

(2

j

+ 2

r�`�j

+ jI

`

j

�1

)

�

1

2

r�

2

!

r;M

(y; x):

12



Sine K

r

j`

(x; y) = 0 if jx

1

� y

1

j � C2

�j

or x

1

=2 supp �

`

we use the anellation properties of the

atom to obtain

Z

jT

r

j`

f jdx � C2

�s

2

j

jI

`

j(1 + 2

r�`�2j

)

�

1

(2

j

jJ

1

j)

�

1

(2

r

jJ

2

j)

�

2

Z

j(T

r

j`

)

�

f jdx � C(1 + 2

r�`�2j

+ 2

�j

jI

`

j

�1

)

�

1

(2

j

jJ

1

j)

�

1

(2

r

jJ

2

j)

�

2

whih implies (3.9) and (3.10).

Note that if also 2

r

jJ

2

j � 10b

�1

2

n�s

2

�m

2

then 2

m

2

jJ

2

j � b

�1

2

�`�j

jI

`

j and therefore

!

r;M

(x; y) + !

r;M

(y; x) � C

M

2

r

(1 + 2

r

jx

2

� y

2

j)

�M

for x 2 R(m), y 2 R. Now the previous argument yields also (3.11) and (3.12). �

We now deompose T

sn

=

P

j

T

j;s;n

where

T

j;s;n

=

X

`:(j;`)2A

s

T

`+2j+n

j`

:

The proof of the following Lemma is similar to the proof of Lemma 3.4.

Lemma 3.5. Let f be a retangle atom assoiated to the retangle R = J

1

� J

2

with enter (u

1

; u

2

)

and let J

1

(m

1

) be as in (3.2). Assume jI

`

j � 2

�j

. Then T

j;s;n

f(x) = 0 if x 2 R(m) and 2

j

jJ

1

j >

2

�m

1

; moreover for 0 � � � 1

Z

J

1

(m

1

)

�

Z

jT

j;s;n

f(x

1

; x

2

)j

2

dx

2

�

1=2

dx

1

� C2

�s

(1 + 2

n�s

)

�

(2

j

jJ

1

j)

�

Z

�

Z

jf(y)j

2

dy

2

�

1=2

dy

1

(3.13)

Z

J

1

(m

1

)

�

Z

jT

�

j;s;n

f(x

1

; x

2

)j

2

dx

2

�

1=2

dx

1

� C(1 + 2

n

+ 2

s

)

�

(2

j

jJ

1

j)

�

Z

�

Z

jf(y)j

2

dy

2

�

1=2

dy

1

(3.14)

Proof. The �rst statement is obvious. Let E(x

1

; y

1

; �) = �

`

(x

1

) 

j

(x

1

� y

1

)e

i�a(x

1

)(x

1

�y

1

)

, then

jE(x

1

; y

1

; �)� E(x

1

; u

1

; �)j � C2

j

�

2

j

+ 2

�`

jI

`

jj�j

�

jJ

1

j

jE(x

1

; y

1

; �)� E(u

1

; y

1

; �)j � C2

j

�

jI

`

j

�1

+ 2

j

+ 2

�`�j

j�j

�

jJ

1

j

Note that in the present ase, if j�j � 2

r

then 2

�`

jI

`

jj�j � C2

j+n�s

, 2

�`�j

j�j � 2

j+n

and jI

`

j

�1

�

2

j+s

.

Let F

2

f denote the Fourier transform of f in the seond variable. If 2

j

jJ

1

j � 1 we use the the

anellation of f in the y

1

variable and we obtain the estimate

�

Z

jT

j;n;s

f(x

1

; x

2

)j

2

dx

2

�

1=2

�

C minf1; (1 + 2

n�s

)2

j

jJ

1

jg

Z

�

Z

�

�

�

X

r

�(2

�r

�)F

2

f(y

1

; �)

�

�

�

2

d�

�

1=2

dy

1

13



where the sum is extended over all r that an be written as r = ` + 2j + n with (j; `) 2 A

s

. Also

note that the expression on the left hand side is supported on I

`

. We apply Planherel's theorem

and perform the x

1

integration to arrive at (3.13), with � = 1. The general ase follows by taking

geometri means. A similar argument yields also (3.14). �

Proof of Proposition 3.1. Sine (3.4) implies (3.1) we only have to prove the estimate for retangle

atoms by Fe�erman's theorem. This in turn follows from the above Lemmas by appliations of the

Cauhy-Shwarz inequality and by summing geometri series. Spei�ally we use Lemma 3.2 for T

sn

if m

1

+m

2

� 10 + (n+ 1)(1 + �). For m

1

� 10 and m

2

� (n+ 1)(1 + �) we estimate the operators

T

r

sn

and their adjoints and then sum in r. Here we use Lemma 3.2 if 2

r

jJ

2

j � 2

�m

2

, Lemma 3.3

with M = 0 if 2

�m

2

� 2

r

jJ

2

j � 2

�2m

2

�

and Lemma 3.3 with M = 10=� if 2

r

jJ

2

j � 2

�2m

2

�

.

For m

2

� 10 and m

1

� (n+ 1)(1 + �) we estimate the operators T

j;s;n

and T

�

j;s;n

and then sum

in j. Only terms with 2

j

jJ

1

j � C2

�m

1

will our and the desired estimate follows from Lemma 3.5,

with � = �.

For m

2

� 10 and m

1

� (n + 1)(1 + �) we estimate T

r

j`

with ` = r � 2j � n, (j; `) 2 A

s

using

Lemma 3.4 with �

1

= � and sum in r,j; again only terms with 2

j

jJ

1

j � C2

�m

1

will our. We

onsider T

sn

and distinguish two ases, depending on whether 2

n�m

2

=2

10b

�1

is large or small. In

the �rst ase where 2

n�m

2

=2

10b

�1

� 1 we have also 2

m

2

� C2

2n

and we use (3.9) with �

2

= 1 if

2

r

jJ

2

j � 2

�n

, (3.9) with �

2

= 0 if 2

�n

< 2

r

jJ

2

j � 10b

�1

2

n

, and (3.11) if 2

r

jJ

2

j < 10b

�1

2

n

. In the

seond ase where 2

n�m

2

=2

10b

�1

< 1 we use (3.9) with �

2

= 1 if 2

r

jJ

2

j � 2

�n�m

2

=2

10b

�1

, (3.11)

with �

2

= 1 if 2

r

jJ

2

j > 2

�n�m

2

=2

10b

�1

. Finally this analysis applies also to the operator (T

r

j`

)

�

if in

the previous argument we replae (3.9) by (3.10) and (3.11) by (3.12). �

Remarks.

(i) It should be possible to extend our result to over similar lasses of vetor �elds in R

n

.

Instead of Fe�erman's theorem one would have to use the version of Calder�on-Zygmund theory in

[5℄. In our two-dimensional setting we used Fe�erman's theorem for onveniene, but we veri�ed in

e�et the hypotheses of Theorem 1 in [5℄.

(ii) There is the open problem of L

p

boundedness for the Hilbert transform assoiated to an

arbitrary C

1

vetor �eld. As a �rst step one might try to �nd a version of our Theorem for vetor

�elds v whih do not neessarily depend on only one variable.

(iii) It would be interesting whether there is an underlying Calder�on-Zygmund theory for our

operators whih is di�erent from the produt theory. In a di�erent ontext suh variants have been

onsidered in [6℄.

4. The maximal operator

The arguments in the previous setions apply equally well to prove the L

p

boundedness for the

maximal operatorM; in fat some of those arguments simplify. Let 	 be a nonnegative C

1

funtion

with support in (1=2; 2) and assume that 	(t) = 1 for t 2 (1=

p

2;

p

2). Let 	

j

(t) = 2

j

Æ

�1

	(2

j

Æ

�1

t):

Then it is straightforward to see that

Mf(x) � C sup

j

X

`

�

`

(x

1

)

Z

	

j

(t)jf(x

1

� t; x

2

� ta(x

1

))jdt

and we may learly assume that f is nonnegative. Then the estimate

(4.1)

�

Z

�

�

�

X

`

�

`

(x

1

) sup

2

�j

�jI

`

j

Z

	

j

(t)f(x

1

� t; x

2

� ta(x

1

))dt

�

�

�

p

dx

�

1=p

� Ckfk

p
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follows by the resaling argument in Lemma 1.2 and known estimates for maximal operators in the

ase of nonvanishing rotational urvature.

Let S

r

j`

be de�ned as T

r

j`

in (1.14), but with  

j

replaed by 	

j

. For k = 0; 1; : : : de�ne

S

r

j`k

f(x) = �

`

(x

1

)

Z

(2

r

a(x

1

)(x

1

� y

1

))

k

	

j

(x

1

� y

1

)f(y)

Z

(2

�r

�)

k

�(2

�r

�)e

i�[x

2

�y

2

℄

d� dy

so that S

r

j`

=

P

1

k=0

(�i)

k

(k!)

�1

S

r

j`k

. In order to omplete the proof we have to show that







�

X

j

�

�

�

X

`:2

�j

>jI

`

j

�

`

X

r�2j+`

S

r

j`

f

�

�

�

2

�

1=2







p

� C

p

kfk

p

(4.2)







X

`

�

`

sup

j:2

�j

>jI

`

j

�

�

�

X

r�2j+`

S

r

j`k

f

�

�

�







p

� C

p

B

k

kfk

p

(4.3)

Note that the anellation of  was not used in the estimates for T and in fat straightforward

modi�ations of the arguments in x2 and x3 also yield (4.2). In order to see (4.3) we argue as in the

proof of Lemma 1.3. Let M

1

, M

2

be the Hardy-Littlewood maximal operators ating in the �rst

and the seond variable, respetively, and let

�

k

f(x) = sup

m

�

�

�

X

r<m

e

L

r;k

L

r

f(x)

�

�

�

where L

r

,

e

L

r;k

are as in the proof of Lemma 1.3. Then Cotlar's inequality ([24, p.35℄) applies:

j�

k

f(x)j � CM

2

f(x) + CM

2

�

1

X

r=�1

e

L

r;k

L

r

f

�

(x);

moreover

X

`

�

`

(x

1

) sup

2

�j

>jI

`

j

�

�

�

X

r�2j+`

S

r

j`k

f(x)

�

�

�

� C10

k

M

1

[�

k

f ℄(x):

Sine the operator

P

1

r=�1

e

L

r;k

L

r

is bounded on L

p

with norm O(

p

B

k

) and suitable B the two

previous inequalities imply (4.3). The asserted estimate for the maximal operator M follows from

(4.1), (4.2) and (4.3).

5. The ase of nonvanishing rotational urvature, revisited

We onsider the operator de�ned for smooth funtions by

(5.1) Tf(x) = �(x

1

)

X

j�0

Z

	

j

(x

1

; y

1

)f(y

1

; x

2

+ S(x

1

; y

1

))�(y

1

)dy

1

:

Here � and 	

j

are C

2

funtions; � is supported in the interval [�1; 1℄, and 	

j

(x

1

; y

1

) = 0 unless

2

�j�3

� jx

1

� y

1

j � 2

�j+3

. We assume that (2.2) holds and that 	

j

has the additional anellation

property

(5.2)

Z

	

j

(x; y)dy =

Z

	

j

(x; y)dx = 0:

As a model ase for S we onsider the example S(x

1

; y

1

) = �a(x

1

)(x

1

�y

1

), and with the approptiate

hoie of 	

j

we reover a loal version of the Hilbert transform in (1.1). The assumption of rotational

urvature is that the mixed derivative S

x

1

y

1

does not vanish from below.
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Proposition 5.1. Suppose that S is a C

1

funtion on [�1; 1℄

2

and assume that the partial derivatives

S

x

1

y

1

, S

x

1

y

1

y

1

, S

x

1

y

1

y

1

y

1

exist and are ontinuous in [�1; 1℄. Assume that S

x

1

y

1

does not vanish in

[�1; 1℄. Then T extends to a bounded operator on L

p

, 1 < p <1.

As previously mentioned the proof is quite standard, and we shall be skethy. If � is as in

(1.14) then we de�ne �

r

(x; y) = 2

r

F

�1

[�℄(2

r

(x

2

� y

2

+ S(x

1

; y

1

))) and �

k

= 1 �

P

r>k

�

r

. Then

T =

P

1

n=1

T

1;n

+ T

2

where

T

1;n

f(x) =

X

j�0

Z

�(x

1

)�(y

1

)	

j

(x

1

; y

1

)�

2j+n

(x; y)f(y)dy

T

2

f(x) =

X

j�0

Z

�(x

1

)�(y

1

)	

j

(x

1

; y

1

)�

2j

(x; y)f(y)dy:

It turns out that for 1 < p � 2

kT

1;n

fk

p

� C

p

n

�1+2=p

2

�n(1�1=p)

kfk

p

(5.3)

kT

2

fk

p

� C

p

kfk

p

(5.4)

and that the same estimates hold for the adjoint operators. This of ourse proves Proposition 5.1. �

By Lemma 2.3 the ase p = 2 an be redued to estimates for ertain osillatory integral operators

in one dimension. Let � be �xed, j�j � 1=2 and de�ne the operator

P

j

g(u) = �(u)

Z

e

i�S(u;w)

	

j

(u;w)�(w)g(w) dw:

For the �rst result we assume that 	

j

is as above, but we do not atually need the anellation

ondition (5.2).

Lemma 5.2. Suppose that S is a C

1

funtion on [�1; 1℄

2

and assume that the partial derivatives

S

uw

, S

uww

, S

uwww

exist and are ontinuous in [�1; 1℄

2

. Assume that S

uw

does not vanish in [�1; 1℄

2

.

Then for 2

2j

� j�j the L

2

! L

2

operator norm of P

j

is bounded by CA2

j

j�j

�1=2

.

Proof. This is a version of the argument in Lemma 2.2. One writes out the kernel K

j

(u; z) of the

operator P

j

P

�

j

, and integrates by parts twie if ju� zj � 2

j

j�j

�1

. If �(u;w; z) = S(u;w)� S(z; w)

then our assumptions guarantee that j�

w

(u;w; z)j is bounded below by ju� zj and that �

ww

and

�

www

are O(ju� zj). Therefore a onsequene of the integration by parts is the pointwise estimate

jK

j

(u; z)j � 2

j

(1 + j�2

�j

(u� z)j

2

)

�1

and the desired estimate follows by Shur's Lemma. �

In the next Lemma we use the anellation of the 	

j

but not the assumption of rotational

urvature.

Lemma 5.3. Suppose that 	

j

is as above and satis�es the additional anellation property (5.2)

Suppose that S is a C

1

funtion on [�1; 1℄

2

and assume that the partial derivative S

uw

exists and is

ontinuous in [�1; 1℄. Then the operator

P

2

2j

��

P

j

is bounded on L

2

.

Proof. We verify that kP

�

j

P

k

k + kP

j

P

�

k

k � 2

�jj�kj

, provided that 2

2j

� j�j, 2

2k

� j�j. We may

assume j � k. The kernel of P

�

j

P

k

is given by

K

jk

(u; z) = �(u)�(z)

Z

q

k

(u; z; w)	

j

(u;w)dy
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where q

k

(u; z; w) = e

i�[S(u;w)�S(z;w)℄

j�(w)j

2

	

k

(z; w). Observe that for u; z 2 supp �, jw�uj � 2

�j

,

jw � zj � 2

�k

we have jS

y

(u;w)� S

y

(z; w)j � C2

�k

and, sine �2

�2k

� 1,

jq

k

(u; z; w)� q

k

(u; z; u)j � C2

k

+ j�(S

y

(u;w)� S

y

(z; w))j � C

0

2

k

:

Now using the anellation of 	

j

in the seond variable we see that

R

jK(u; z)jdz � 2

�j+k

and

R

jK(u; z)jdu � 2

�j+k

and the desired estimate for P

�

j

P

j

follows.

Next, the kernel of P

j

P

�

k

is given by

L

jk

(u; z) = �(u)�(z)

Z

r

k

(u; z; w)	

j

(w; u)dw

where r

k

(u; z; w) = j�(w)j

2

e

i�S(w;u)�S(w;z)

	

k

(w; z). The desired estimate follows from the anel-

lation of 	

j

in the �rst variable sine j�

w

r

k

j = O(j�j2

�k

+ 1) = O(2

k

). �

The L

2

estimates for T

1;n

and T

2

immediately follow from the two previous Lemmas and Lemma

2.3. In order to show the L

p

estimates one shows that T

2

and its adjoint are of weak type (1; 1),

moreover T

1;n

and its adjoint satisfy a weak-type inequality with onstant O(n). From this the L

p

estimates follow by the Marinkiewiz interpolation theorem.

The weak-type estimates rely on Calder�on-Zygmund theory in [�1; 1℄ � R whih is made into

a suitable spae of homogeneous type (f. [24, h.I℄). The underlying distane funtion is d(x; y) =

jx

1

�y

1

j+ jx

2

�y

2

+S(x

1

; y

1

)j

1=2

, with the balls B(y; Æ) = fx : d(x; y) < Æg. Our assumption is that

S 2 C

1

and the mixed derivative S

x

1

y

1

exists and is ontinuous. Then the standard properties of

this metri were derived in [14℄, in a more general ontext; see also [19℄. In partiular d is essentially

symmetri, d(x; y) � d(y; x). Let K

j;n

(x; y) = �(x

1

)�(y

1

)	

j

(x

1

; y

1

)�

2j+n

(x; y) and L

j

(x; y) =

�(x

1

)�(y

1

)	

j

(x

1

; y

1

)�

2j

(x; y). It is a straightforward exerise to verify that for suitable large D

and for y

0

2 B(y; Æ)

Z

R

2

nB(y;DÆ)

jK

j;n

(x; y

0

)�K

j;n

(x; y)jdx � Cminf1; 2

n

2

j

Æ; 2

n

2

�j

Æ

�1

g

Z

R

2

nB(y;DÆ)

jL

j

(x; y

0

)�L

j

(x; y)jdx � Cminf2

j

Æ; 2

�j

Æ

�1

g;

we omit the details. This implies the asserted weak-type estimates for T

1;n

, T

2

and by the symmetry

of the situation the estimates for the adjoints follow in the same way.

Similar onsiderations an be applied to the analogous maximal operator, de�ned by

(5.5) Mf(x) = sup

j

jA

j

f(x)j

where

A

j

f(x) = �(x

1

)

Z

�

j

(x

1

; y

1

)f(y

1

; x

2

+ S(x

1

; y

1

))�(y

1

)dy

1

;

here S satis�es the assumptions of Proposition 5.1, and �

j

is as 	

j

above, but does not neessarily

have any anellation property. Let Æ

0

be an even Shwartz funtion on the real line suh that

b

Æ

0

(�) = 1 for j�j � 1. Let

B

j

f(x) = �(x

1

)

ZZ

�

j

(x

1

; y

1

)2

2j

Æ

0

(2

2j

y

2

)f(y

1

; x

2

� y

2

+ S(x

1

; y

1

))�(y

1

)dy

1

dy

2

;
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then

(5.6) Mf(x) � sup

j

jB

j

f(x)j+

�

X

j�0

jA

j

f(x)�B

j

f(x)j

2

�

1=2

:

The maximal funtion sup jB

j

f j is pointwise ontrolled by the Hardy-Littlewood maximal funtion

with respet to the nonisotropi balls B(y; Æ) de�ned above; it is bounded on L

p

for 1 < p � 1.

The square-funtion in (5.6) an be onsidered as the `

2

norm of a vetor valued singular integral

and the L

p

boundedness follows as above.

6. Appendix

6.1. The Hilbert transform in the radial diretion.

We now study the operators H and M for the radial vetor �eld v(x) = x=jxj, in d dimensions,

d � 2, i.e.

(6.1) Hf(x) = p.v.

Z

1

�1

f(x+ tx=jxj)

dt

t

and the maximal operator M de�ned by

(6.2) Mf(x) = sup

h>0

1

2h

Z

h

�h

jf(x+ tx=jxj)j dt :

For this example the ritial exponent for L

p

boundedness turns out to be the dimension d, and

for p = d we prove a restrited weak type inequality (for a similar result on the Kakeya maximal

operator ating on radial funtions see [4℄). In what follows let L

p;q

denote the Lorentz spae.

Proposition. Let H and M be as in (6.1), (6.2), respetively. Then H is bounded on L

p

(R

d

) if

and only if d < p <1. M is bounded on L

p

(R

d

) if and only if d < p � 1.

Moreover H and M map L

d;q

(R

d

) to L

d;r

(R

d

) if and only if q = 1 and r =1.

Proof. The proof of these results is elementary. One introdues polar oordinates to redue mat-

ters to standard estimates for Hilbert transforms, maximal operators and Hardy operators in one

dimension. We shall only give the proof for the operator H . The proof for the maximal operatorM

is similar.

We split

H = H

1

+H

2

+H

3

where

H

1

f(x) = p.v.

Z

jtj�4jxj

f(x+ tx=jxj)

dt

t

H

2

f(x) = p.v.

Z

4jxj

�jxj=4

f(x+ tx=jxj)

dt

t

H

3

f(x) =

Z

�4jxj�t��jxj=4

f(x+ tx=jxj)

dt

t

:

18



We �rst show that H

1

is bounded on L

p

(R

d

) for 1 < p <1. For l = 0; 1; 2; : : : set

H

1;l

f(x) =

Z

2

l+2

jxj�jtj�2

l+3

jxj

f(x+ tx=jxj)

dt

t

;

then H

1

=

P

l=0

H

1;l

. Let F

p

(s; �) = f(s�)s

(d�1)=p

and let M

1

denote the Hardy-Littlewood

maximal operator in the s-variable. Then

kH

1;l

fk

p

�

�

ZZ

S

d�1

�R

+

h

Z

2

l+2

r�jtj�2

l+3

r

jf((r + t)�)j

dt

t

i

p

r

d�1

dr d�

�

1=p

� C2

�l(d�1)=p

�

ZZ

S

d�1

�R

+

h

Z

2

l+2

r�jtj�2

l+3

r

jf((r + t)�)(r + t)

(d�1)=p

j

dt

jtj

i

p

dr d�

�

1=p

� C2

�l(d�1)=p

�

ZZ

S

d�1

�R

+

�

M

1

[F

p

(�; �)℄(r)

i

p

dr d�

�

1=p

� C2

�l(d�1)=p

�

ZZ

S

d�1

�R

+

jF

p

(r; �)j

p

dr d�

�

1=p

� C

0

2

�l(d�1)=p

kfk

p

and the L

p

boundedness of H

1

follows.

Next, we show that H

2

is bounded on L

p

(R

d

) for 1 < p < 1. For a funtion of two variables

denote by H

�

the maximal Hilbert transform in the �rst variable. Let �

k

be the harateristi

funtion of the interval [2

k�3

; 2

k+4

℄. Let F

k;p

(s; �) = 2

k(n�1)=p

f(s�)�

k

(s). Then

kH

2

fk

p

�

�

X

k

Z

S

d�1

Z

2

k+1

2

k

�

�

�

p.v.

Z

4jxj

�jxj=4

f(x+ t�)

dt

t

�

�

�

p

r

d�1

dr d�

�

1=p

� C

�

Z

S

d�1

X

k

Z

�

�

H

�

F

k;p

(r; �) +M

1

(F

k;p

)(r; �)

�

�

p

dr d�

�

1=p

� C

�

Z

S

d�1

X

k

Z

�

�

F

k;p

(s; �)

�

�

p

ds d�

�

1=p

� C

0

kfk

p

:

Finally we estimate H

3

where the restrition p > d is needed. Observe that

kH

3

fk

p

�

�

ZZ

S

d�1

�R

+

h

4

r

Z

�r=4

�4r

jf((r + t)�)j dt

i

p

r

d�1

dr d�

�

1=p

� 2

�

ZZ

S

d�1

�R

+

h

4

r

Z

4r

0

jf(s�)j ds

i

p

r

d�1

dr d�

�

1=p

:

Let for j = 0; 1; : : :

S

j

g(r) =

1

r

Z

2

�j+1

r�jsj�2

�j+2

r

g(s) ds:

Then

�

Z

1

0

jS

j

g(r)j

p

r

d�1

dr

�

1=p

� C2

�j(1�1=p)

�

Z

1

0

r

d�2

Z

2

�j+2

r

2

�j+1

r

jg(s)j

p

dsdr

�

1=p

� C2

�j(1�d=p)

�

Z

1

0

jg(s)j

p

s

d�1

ds

�

1=p

:
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Now for f 2 L

p

(R

d

) de�ne H

3;j

by H

3;j

f(r�) = S

j

[f(��)℄(r). Then jH

3

f(r�)j �

P

1

j=0

jH

3;j

[jf j℄(r�)j

and H

3;j

is bounded on L

p

(R

d

) with operator norm � C2

j(�1+d=p)

. This implies the asserted L

p

estimate for p > d. It also implies that H

3

is of restrited weak type (d; d) , that is T

3

maps L

d;1

into L

d;1

, see x6.2 below.

We now turn to the neessary onditions. It is easy to see that H does not map L

1

to L

1

. In

order to hek the sharpness of the L

p

estimates we test H on the harateristi funtion � of the

ball of radius 1, entered at the origin. Then kfk

p

� C and jHf(x)j � jxj for jxj � 2. This implies

that L

p

boundedness only holds for p > d, moreover if H maps L

d;q

to L

d;r

then neessarily r =1.

We still have to show that L

d;q

! L

d;1

boundedness an only hold for q = 1. Sine by interpolation

the above estimates show that H

1

and H

2

are bounded on all L

p;q

spaes for 1 < p <1, it suÆes

to onsider H

3

. For large N de�ne f

N

(x) = 1=jxj if 1 � jxj � N and f

N

(x) = 0 otherwise. Then

kf

N

k

L

d;q
� [logN ℄

1=q

and for 10 � jxj � N=2 we have jH

3

f

N

(x)j � jxj

�1

logN . This shows that

kH

3

f

N

k

L

d;1=kf

N

k

L

d;q � C[logN ℄

1�1=q

. Now if H is bounded from L

d;q

to L

d;1

then H

3

is bounded

from L

d;q

to L

d;1

and this an only happen if q = 1. �

Remark. One may onstrut a C

1

vetor �eld whih oinides with v(x) = x=jxj if jxj � 1 and

jx

d

j � jxj=2. There are the same obstrutions to L

p

boundedness as for the radial vetor �eld and

in fat L

p

boundedness for the Hilbert transform (1.1) will fail if p � d. The same remark applies

to the maximal funtion (1.2). These obstrutions are not present if one onsiders loal versions of

the Hilbert transform or the maximal operator.

6.2. An interpolation lemma.

Suppose A = (A

0

; A

1

), B = (B

0

; B

1

) are two ouples of normed vetor spaes, ompatible in

the sense of interpolation theory. Suppose that we are given a sequene of operators T

j

mapping

A

0

+A

1

to B

0

+B

1

suh that

(6.3) kT

j

ak

B

s

�M

s

2

j�

s

kak

A

s

; s = 0; 1

where �

0

< 0 < �

1

. Then it is easy to see that T =

P

T

j

maps A

0

\ A

1

to B

0

+ B

1

. In fat if

a 2 A

0

\ A

1

, we obtain







X

j>m

T

j

a







B

0

+ t







X

j�m

T

j

a







B

1

�

X

j>m

M

0

2

j�

0

kak

A

0

+ t

X

j�m

M

1

2

j�

1

kak

A

1

� C

�

M

0

2

m�

0

kak

A

0

+ tM

1

2

m�

1

kak

A

1

℄:(6.4)

Reall the de�nition of the Peetre K-funtional

K(t; a; A) = inffka

0

k

A

0

+ tka

1

k

A

1

: a = a

0

+ a

1

; a

0

2 A

0

; a

1

2 A

1

g

and the de�nition of the real interpolation spae A

�;q

= K

�;q

(A) with norm

kak

A

�;q

=

�

Z

�

t

��

K(t; a; A)℄

q

dt

t

�

1=q

;

with the natural modi�ation in the ase q =1.

If for �xed t we hoose m in (6.4) suh that 2

m(�

1

��

0

)

�M

0

kak

A

0

=(tM

1

kak

A

1

) we see that for

� = �

0

=(�

0

� �

1

) 2 (0; 1) and a 2 A

0

\ A

1

(6.5) kTak

B

�;1

= sup

t>0

t

��

K(t; Ta;B) � CM

1��

0

M

�

1

kak

1��

A

0

kak

�

A

1

:
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This inequality is an extension of an inequality impliitly in [2℄, for L

p

spaes. For the onrete ase

A

s

= B

s

= L

p

s

, s = 0; 1 we may apply (6.5) for a being the harateristi funtion of a measurable

set and then (6.5) beomes a restrited weak type inequality. This implies ([26, h. V℄) that T maps

the Lorentz spae L

p;1

into L

p;1

if (1� �)=p

0

+ �=p

1

= 1=p and � = �

0

=(�

0

� �

1

).

The following lemma is an abstrat extension of this interpolation result. It implies (6.5), sine

K

�;1

is an interpolation funtor of exponent � (see [1, p.40℄).

Lemma. Let fT

j

g be a sequene of operators mapping A

0

+ A

1

to B

0

+ B

1

and satisfying (6.3),

with �

0

< 0 < �

1

. Let � = �

0

=(�

0

� �

1

). Then T =

P

T

j

extends to a bounded operator mapping

A

�;1

to B

�;1

, with operator norm bounded by CM

1��

0

M

�

1

; here C = O((�

1

� �

0

)2

(�

1

��

0

)�

).

Proof. Sine A

0

\A

1

is dense in A

�;1

(see [1, p. 47℄) it suÆes to prove the required inequality for

a 2 A

0

\ A

1

. Fix t and for every j 2 Z split a = a

j

0

+ a

j

1

suh that

(6.6) ka

j

0

k

A

0

+ 2

j(�

1

��

0

)

tM

1

M

�1

0

ka

j

1

k

A

1

� 2K(2

j(�

1

��

0

)

tM

1

M

�1

0

; a; A):

Then

t

��

K(t; Ta;B) � t

��

h







X

j

T

j

a

j

0







B

0

+ t







X

j

T

j

a

j

1







B

1

i

� t

��

h

X

j

M

0

2

j�

0

ka

j

0

k

A

0

+ t

X

j

M

1

2

j�

1

ka

j

1

k

A

1

i

�M

0

X

j

(2

j(�

1

��

0

)

t)

��

h

ka

j

0

k

A

0

+ 2

j(�

1

��

0

)

tM

1

M

�1

0

ka

j

1

k

A

1

i

:

By (6.6) and the monotoniity of the K funtional one easily obtains

(2

j(�

1

��

0

)

t)

��

h

ka

j

0

k

A

0

+ 2

j(�

1

��

0

)

tM

1

=M

0

ka

j

1

k

A

1

i

�

2

�

1

� �

0

�

0

2

�

0

� 1

Z

2

(j+1)(�

1

��

0

)

t

2

j(�

1

��

0

)

t

s

��

K(sM

1

=M

0

; a; A)

ds

s

and therefore

kTak

B

�;1

� CM

0

Z

1

0

s

��

K(sM

1

=M

0

; a; A)

ds

s

= CM

1��

0

M

�

1

kak

A

�;1

: �

Referenes

1. J. Bergh and J. L�ofstr�om, Interpolation spaes, Grundlehren der mathematishen Wissenshaften, 223, Springer

Verlag, 1976.

2. J. Bourgain, Estimations de ertaines fontions maximales, C. R. Aad. S. Paris 310 (1985), 499-502.

3. , A remark on the maximal funtion assoiated to an analyti vetor �eld, Analysis at Urbana, edited by

E. Berkson, T. Pek and J. Uhl, Cambridge University Press, 1989, pp. 111-132.

4. A. Carbery, E. Hernandez and F. Soria, Estimates for the Kakeya maximal operator on radial funtions, Pro.

ICM-90 Satellite Conferene on Harmoni Analysis, ed. by S.Igari, Springer-Verlag, 1991, pp. 41-50.

5. A. Carbery and A. Seeger, H

p

and L

p

variants of multiparameter Calder�on-Zygmund theory, Trans. Amer. Math.

So. 334 (1992), 719{747.

21



6. A. Carbery, S. Wainger and J. Wright, Hilbert transforms and maximal funtions along at variable plane urves,

J. Fourier analysis and its appliations, speial issue, Proeedings of the 1993 onferene in honor of Jean-Pierre

Kahane (1995), 119{139.

7. , A variant of the notion of a spae of homogeneous type, J. Funt. Anal. 132 (1995), 119{140.

8. L. Carleson, On onvergene and growth of partial sums of Fourier series, Ata Math. 116 (1966), 135{157.

9. S.Y.A. Chang and R. Fe�erman, The Calder�on-Zygmund deomposition on produt domains, Amer. J. Math 104

(1982), 445{468.

10. M. Christ, Hilbert transforms along urves III, Rotational urvature, unpublished manusript, 1986.

11. M. Christ, A. Nagel, E. M. Stein and S. Wainger, Singular and maximal Radon transforms, in preparation.

12. C. Fe�erman and E.M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107{115.

13. R. Fe�erman, Harmoni analysis on produt spaes, Annals of Math. 126 (1987), 109{130.

14. G. B. Folland and E. M. Stein, Estimates for the �

b

omplex and analysis on the Heisenberg group, Comm. Pure

Appl. Math. 27 (1974), 429{522.

15. A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudo-di�erential operators with

singular symbols, J. Funt. Anal. 89 (1990), 202{232.

16. R. A. Hunt, On the onvergene of Fourier series, Proeedings of the S. I. U. onferene on orthogonal expansions,

Southern Illinois Univ. Press, Carbondale, 1968, pp. 235-255.

17. J.L. Journ�e, Calder�on-Zygmund operators on produt spaes, Rev. Mat. Iberoameriana 1 (1985), 55{91.

18. A. Nagel, E. M. Stein and S. Wainger, Hilbert transforms and maximal funtions related to variable urves,

Harmoni analysis in Eulidean spaes, I, ed. by S. Wainger and G. Weiss, pro. Symp. Pure Math., vol 35, Amer.

Math. Soiety.

19. D. H. Phong and E.M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Ata Math. 157 (1986),

99{157.

20. , Singular Radon transforms and osillatory integrals, Duke Math. J. 58 (1989), 347{369.

21. , Radon transforms and torsion, International Mathematis Researh Noties, appeared as an appendix

in Duke Math. J. (1991), 49{60.

22. A. Seeger, Degenerate Fourier integral operators in the plane, Duke Math. J. 71 (1993), 685{745.

23. , L

2

estimates for a lass of singular osillatory integrals, Math. Res. Lett. 1 (1994), 65{73.

24. E.M. Stein, Harmoni analysis: Real variable methods, orthogonality and osillatory integrals, Prineton Univ.

Press, 1993.

25. E. M. Stein and S. Wainger, Problems in harmoni analysis related to urvature, Bull. Amer. Math. So. 84

(1978), 1239{1295.

26. E. M. Stein and G. Weiss, Introdution to Fourier analysis on Eulidean spaes, Prineton Univ. Press, Prineton,

N.J., 1971.

Department of Mathematis and Statistis, University of Edinburgh, King's Buildings, Mayfield

Rd., Edinburgh EH3 9JZ, U.K. (address of the first author)

Department of Mathematis, University of Wisonsin, Madison, WI 53706, USA (address of the

seond and the third author)

Shool of Mathematis, University of New South Wales, P.O. Box 1, Kensington, NSW 2033,

Australia (address of the fourth author)

22


