1. **Diagonalizable Operators on Invariant Subspaces.** Let $T : V \to V$ be a diagonalizable operator on a finite dimensional vector space V over a field \mathbb{F}. Suppose $W \subset V$ is a T-invariant subspace. Show that $T|_W$ is diagonalizable by considering the minimal polynomial $m_{T|_W}$.

 Hint: Use the fact that T is diagonalizable if and only if its minimal polynomial is the product of distinct monic linear polynomials.

2. **Simultaneous Diagonalizability.** Let $S, T : V \to V$ be linear transformations. We say that S, T are simultaneously diagonalizable if there exists a direct sum decomposition $V = \bigoplus_{i=1}^k V_i$, and scalars $\lambda_i, \mu_i \in \mathbb{F}$, such that $T|_{V_i} = \lambda_i \text{Id}_{V_i}$, $S|_{V_i} = \mu_i \text{Id}_{V_i}$ for $i = 1, \ldots, k$.

 (a) Assume that S, T are diagonalizable. Show that $ST = TS$ if and only if S, T are simultaneously diagonalizable. Recall, that you showed one direction of this in a previous HW.

 (b) Let V be a finite dimensional vector space over a field \mathbb{F}. Denote by $L(V)$ the set of linear transformations from V to itself.

 (i) Show that $L(V)$ is an algebra over \mathbb{F} in a natural way. That is, it has a natural addition and multiplication.

 (ii) Let $C \subset L(V)$ be a subalgebra, i.e. closed under multiplication and addition, consisting of diagonalizable operators. Show that all elements of C are simultaneously diagonalizable if and only if C is commutative.

 Here simultaneously diagonalizable means there exists a decomposition $V = \bigoplus_{i=1}^k V_i$ such that $T|_{V_i} = \lambda_T \cdot \text{Id}_{V_i}$ for any $T \in C$. Recall, an algebra C is commutative if for any $C_1, C_2 \in C$ we have $C_1 C_2 = C_2 C_1$.

3. **Nilpotent Operators.** Let $T : V \to V$ be a linear transformation on a finite dimensional vector space V over \mathbb{F}. We say that T is **nilpotent** if there exists a flag of subspaces of V,

$$\{0_V\} = V_0 \subset V_1 \subset \cdots \subset V_k = V,$$

such that $T(V_i) \subset V_{i-1}$ for all $i = 1, \ldots, k$. We define the nilpotency degree of a nilpotent operator T as the smallest positive integer m such that $T^m = 0$.

(a) Show the following operators are nilpotent by constructing a flag as above. In each case, compute the nilpotency degree of the given operator.

(i) The derivative operator D on $F_{\leq 3}[x]$, the space of polynomials over F of degree at most 3.

(ii) The operator $T_A : \mathbb{R}^5 \to \mathbb{R}^5$, defined by multiplication by

$$A = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}.$$

(b) Show T is nilpotent if and only if $T^k = 0$ for some integer $k > 0$.

(c) Show T is nilpotent if and only if there is a basis B of V such that $[T]_B$ is a strictly upper-triangular matrix, i.e. all entries on and below the diagonal are 0.

(d) Let V be a vector space over \mathbb{F}. Consider a flag of the form:

$$\mathcal{F} : \{0_V\} = V_0 \subset V_1 \subset \cdots \subset V_k = V.$$

Denote by $N_{\mathcal{F}}$ the set of all linear transformations $T : V \to V$, such that $T(V_i) \subset V_{i-1}$ for $i = 1, \ldots, k$. Show $N_{\mathcal{F}}$ is a subalgebra of $L(V)$, i.e. it is closed under addition and composition.

(e) Let $\mathcal{N} \subset L(V)$ be a maximal collection of commuting nilpotent operators. Show that \mathcal{N} is a subalgebra.

4. **Generalized Eigenspaces.** Let $T : V \to V$ be a linear transformation on a finite dimensional vector space V over \mathbb{F}. Suppose that $m_T(x) = (x - \lambda_1)^{r_1} \cdots (x - \lambda_s)^{r_s}$. Denote by W_{λ_k} the generalized eigenspace of V associated to λ_k, that is, W_{λ_k} is the set of $v \in V$ such that $(T - \lambda_k \cdot Id_V)^m v = 0$ for some $m > 0$. Show that

$$W_{\lambda_k} = \ker(T - \lambda_k \cdot Id_V)^{r_k}.$$

5. **Similar Transformations.** Let $T, S : V \to V$ be two transformations of a finite dimensional vector space V over \mathbb{C}.

2
(a) Suppose \(\text{dim}(V) = 2 \) and that \(m_T = m_S \). Is it true that \(T \) and \(S \) are similar?
(b) Suppose \(\text{dim}(V) = 3 \) and that \(m_T = m_S \). Is it true that \(T \) and \(S \) are similar?
(c) Suppose \(\text{dim}(V) = 3 \) and that both \(m_T = m_S \) and \(p_T = p_S \). Is it true that \(T \) and \(S \) are similar?

Remark
The grader and the Lecturer will be happy to help you with the homework. Please visit office hours.

Good luck!