- Lecture times and location: MWF 1:20PM - 2:10PM, Van Vleck B129
- Textbooks:
- Allen Altman, Steven Kleiman,
*A Term of Commutative Algebra*(version with two pages per sheet) - M. Atiyah, I. Macdonald,
*Introduction to Commutative Algebra* - Serge Lang,
*Algebra*, third ed.

- Allen Altman, Steven Kleiman,
- Course website: http://math.wisc.edu/~svs/742/
- Instructor: Steven Sam email
- Instructor office hours: 321 Van Vleck, Mondays 12-1 (shared with 746), Wednesdays 12-1
- Grader: Eric Ramos
- Grader office hour: 416 Van Vleck, Tuesdays 1:30-2:30
- Course info: link
- Piazza page: link

- Homework 1 (tex file) - due Jan. 29
- Homework 2 (tex file) - due Feb. 5
- Homework 3 (tex file) - due Feb. 12
- Homework 4 (tex file) - due Feb. 19
- Homework 5 (tex file) - due Feb. 26
- Homework 6 (tex file) - due Mar. 4
- Homework 7 (tex file) - due Mar. 14
- Exam 1 (tex file) - due Mar. 28
- Homework 8 (tex file) - due Apr. 1
- Homework 9 (tex file) - due Apr. 11
- Homework 10 (tex file) - due
~~Apr. 15~~Apr. 18 - Homework 11 (tex file) - due Apr. 25
- Homework 12 (tex file) - due May 4
- Exam 2 (tex file) - due May 13

Jan 20 | AK 1-3: Rings, prime ideals, radical ideals |

Jan 22 | AK 4: Modules |

Jan 25 | AK 5: Exact sequences |

Jan 27 | AK 6: Direct limits |

Jan 29 | AK 7: Filtered direct limits |

Feb 1 | AK 8: Tensor products |

Feb 3 | AK 9: Flatness |

Feb 5 | AK 10: Cayley-Hamilton theorem |

Feb 8 | Finish AK 10 |

Feb 10 | AK 11: Localization of rings |

Feb 12 | AK 12: Localization of modules |

Feb 15 | AK 14: Krull-Cohen-Seidenberg theory |

Feb 17 | AK 15: Noether normalization |

Feb 19 | Finish AK 15 |

Feb 22 | AK 16: Chain conditions |

Feb 24 | AK 17: Associated primes |

Feb 26 | AK 18: Primary decomposition |

Feb 29 | Finish AK 18 |

Mar 2 | AK 19: Length |

Mar 4 | Finish AK 19 |

Mar 7 | AK 20: Hilbert functions |

Mar 9 | Finish AK 20 |

Mar 11 | AK 21: Dimension |

Mar 14 | Lang V.1-V.2: Finite and algebraic extensions; algebraic closure |

Mar 16 | Lang V.3: Splitting fields and normal extensions |

Mar 18 | Lang V.4: Separable extensions |

Spring break | |

Mar 28 | Finish V.4 |

Mar 30 | Lang V.5: Finite fields |

Apr 1 | Lang VI.1: Galois extensions |

Apr 4 | Finish VI.1 |

Apr 6 | Lang VI.2: Examples |

Apr 8 | Lang VI.3: Roots of unity |

Apr 11 | Lang V.6: Inseparable extensions; VI.4: Linear independence of characters |

Apr 13 | Lang VI.5: Norm and trace |

Apr 15 | Finish VI.5; Lang VI.6: Cyclic extensions |

Apr 18 | Lang VI.7: Solvable and radical extensions |

Apr 20 | Finish VI.7 |

Apr 22 | Lang XV.8: Alternating forms |

Apr 25 | Lang XV.9: Pfaffians |

Apr 27 | Lang XIX.1: Exterior algebras |

Apr 29 | Finish XIX.1 |

May 2 | Inverse limits; Lang Exercise VI.43: Profinite topology |

May 4 | Lang VI.14: Infinite Galois extensions |

May 6 | Next steps: overview of more advanced algebraic topics |