1. Exercises

(1) Let S be a subring of R.
 (a) Give an example where R is noetherian and S is not noetherian.
 (b) Assume there is an S-module map $\phi: R \to S$ which is the identity when restricted to S. Show that S is noetherian if R is noetherian.

(2) Let R be a ring and let $\phi: R^n \to R^n$ be a linear map where n is finite.
 (a) Show that $\det \phi \in \text{ann}(\text{coker} \phi)$.
 (b) Give an example where $\det \phi$ is a nonzerodivisor but $\text{ann}(\text{coker} \phi)$ is not equal to the ideal generated by $\det \phi$.

(3) A ring is reduced if its nilradical is 0.
 (a) Show that a ring R is reduced if and only if R_m is reduced for all maximal ideals m.
 (b) Give an example of a field k and a reduced k-algebra R such that $R \otimes_k k$ is not reduced where k is an algebraic closure of k.

(4) Let k be a field. In each case, verify that R is an integral domain and describe, as explicitly as possible, its normalization.
 (a) $R = k[x,y]/(x^4 - y^3)$
 (b) $R = k[x,y,z]/(x^2 - yz)$

(5) Let R be a noetherian ring and let M be a finitely generated R-module. Recall in HW3 #4, we defined the dual $M^\vee = \text{Hom}_R(M, R)$ and the map $\sigma_M: M \to (M^\vee)^\vee$ by $
 \sigma_M(m)(f) = f(m)$ (where $m \in M$ and $f \in M^\vee$).
 (a) Show that σ_M is injective if and only if M is isomorphic to a submodule of $R^\oplus n$ for some finite n.
 (b) If σ_M is bijective, show that there exists a homomorphism $\phi: R^\oplus n \to R^\oplus m$ for some finite n, m such that $M \cong \ker \phi$.

(6) Let $S \subset R$ be an integral extension.
 (a) Show that $\dim S = \dim R$.
 (b) Assume that R is a finitely generated S-module. Let $p \subset S$ be a prime ideal. Show that there are only finitely many prime ideals $q \subset R$ such that $q \cap S = p$.