Sep 7 
Section 1: Introduction and motivation 

Sep 12 
Section 2.1: SchurWeyl duality 
Sep 14 
Section 2.2: Symmetric functions
Section 2.3: Polynomial representations
Section 2.4: Partitions 

Sep 19 
Section 2.5: Bases for symmetric functions
Section 2.6: Schur functors 
Sep 21 
Section 2.7: Pieri's rule


Sep 26 
Section 2.8: Tensor categories 
Sep 28 
no class 

Oct 3 
Section 2.8 continued
Section 2.9: Categorical SchurWeyl duality

Oct 5 
Section 2.10: Infinite general linear group
Section 2.11: LittlewoodRichardson coefficients
Section 2.12: A few more formulas 

Oct 10 
Sections 3.1, 3.2: Twisted commutative algebras 
Oct 12 
Guest lecture: John WiltshireGordon 

Oct 17 
Section 3.3: Noetherianity of bounded tca's
Section 3.4: Noetherianity of functor categories 
Oct 19 
Section 3.5: Noetherian posets
Section 3.6: Monomial representations 

Oct 24 
Section 3.7: Gröbner categories
Section 3.8: Noetherianity of FI_{d}modules
Section A.1A.3: Definitions of group (co)homology 
Oct 26 
Section 4.1: The complex of injective words 

Oct 31 
Section A.4: Spectral sequences
Section 4.2: Nakaoka stability

Nov 2 
Section 4.3: Homological stability of FImodules
Section 5.1: FIstructure on cohomology of configuration spaces 

Nov 7 
Section 5.2: Representation stability for configuration spaces
Section 6.1: Review of Zariski topology

Nov 9 
Section 6.2: Tensor rank 

Nov 14 
Section 6.4.1: Flattenings
Section 6.4.2: Spaces of infinite tensors 
Nov 16 
Section 6.4 continued 

Nov 21 
Section 6.4.3: Proofs
Section 7.1: Asymptotic combinatorial properties of FImodules 
Nov 23 
no class  holiday 

Nov 28 
Section 7.1: Asymptotic combinatorial properties of FImodules
Stability of Kronecker coefficients 
Nov 30 
Section 7.2: Serre quotient categories
Section 7.3: Generic FImodules 

Dec 5 
Section 7.4: Semiinduced FImodules
Section 7.5: Cohomology of FImodules 
Dec 7 
Section 7.5: Cohomology of FImodules 

Dec 12 
Section 8: Δmodules 