Basic definition
Def: For a group G, a representation is a homomorphism \(\rho : G \to GL(V) \) for some vector space \(V \) over a field. We suppose \(V \) is finite-dimensional over \(\mathbb{C} \) here.

Notice that: a representation of \(G \) is the same as a \(\mathbb{C} \)-algebra (left) \(\mathbb{C} \)-module \(V \).

Here, if \(S \) is a set, then \(\mathbb{C}S \cong \mathbb{C}[-S] \) denotes the free \(\mathbb{C} \)-module with basis \(S \).

\(\mathbb{C}G \) is the group algebra of \(G \) over \(\mathbb{C} \).

Def: A \(\mathbb{C}G \)-module \(V \) is completely determined up to isomorphism by its character \(\chi_V : G \to \mathbb{C} \)
\[\chi_V(g) = \text{trace}(g : V \to V) \]

The character \(\chi_V \) is a class function, meaning it is constant on \(G \)-conjugacy classes.

The space \(R_\mathbb{C}(G) \) of class functions \(G \to \mathbb{C} \) has a Hermitian, positive definite form
\[\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)} \]

Schur's Lemma: two \(\mathbb{C} \)-modules \(V_1, V_2 \) are isomorphic if and only if \(\text{Hom}_G(V_1, V_2) \neq 0 \).

For any two \(\mathbb{C}G \)-modules \(V_1, V_2 \), \(\langle \chi_{V_1}, \chi_{V_2} \rangle = \dim \text{Hom}_G(V_1, V_2) \)

The set of all irreducible characters \(\text{Irr}(G) \) forms an orthonormal basis of \(R_\mathbb{C}(G) \) with respect to this form, and spans a \(\mathbb{Z} \)-sublattice \(R(G) \leq \mathbb{Z} \cdot \text{Irr}(G) \leq R_\mathbb{C}(G) \) sometimes called the virtual characters of \(G \).

For every \(\mathbb{C}G \)-module \(V \), the character \(\chi_V \) belongs to \(R(G) \).

Def: Define a \(\mathbb{C} \)-bilinear form \(\langle , \rangle_\mathbb{C} \) on \(R_\mathbb{C}(G) \) by
\[\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)} \]

\(\langle , \rangle_\mathbb{C} \neq \langle , \rangle_0 \), \(\langle \chi_{V_1}, \chi_{V_2} \rangle = \dim \text{Hom}_G(V_1, V_2) \)

\(\langle , \rangle_\mathbb{C} \) is identical with \(\langle , \rangle_\mathbb{C} \) on \(R(G) \times R(G) \). So we use \(\langle , \rangle_0 \) instead of \(\langle , \rangle_\mathbb{C} \).
4.1.4. Induction and restriction

Def: Given a subgroup \(H \triangleleft G \) and \(CH \)-module \(U \), one can use the fact that \(CG \) is a \((CG, CH)\)-bimodule to form the induced \(CG \)-module.

\[\text{Ind}_{H}^{G} U \cong CG \otimes_{CH} U \] \[CG \times CG \otimes_{CH} U \rightarrow CG \otimes_{CH} U. \]

The fact that \(CG \) is free as a \((\text{right})\) \(CH \)-module on basis element \(g \in gCH \),

\[\times \text{Ind}_{H}^{G} U(g) = \frac{1}{|G|} \sum_{k \in gCH} X_{U}(kg^{-1}) \]

a \(CG \)-module \(V \) is isomorphic to \(\text{Ind}_{H}^{G} U \) for some \(CH \)-module \(U \) iff \(\exists \) an \(H \)-stable subspace \(U \subseteq V \) having the property that \(V = \bigoplus_{g \in CH} U \).

The above construction of a \(CG \)-module \(\text{Ind}_{H}^{G} U \) corresponding to any \(CH \)-module \(U \) is part of a functor \(\text{Ind}_{H}^{G} \) from the category of \(CH \)-modules to the category of \(CG \)-modules, whose functor is called induction.

Def: The restriction operation \(\text{Res}_{H}^{G} : V \rightarrow \text{Res}_{H}^{G} V \) restricts a \(CG \)-module \(V \) to a \(CH \)-module.

Frobenius reciprocity asserts the adjointness between \(\text{Ind}_{H}^{G} \) and \(\text{Res}_{H}^{G} \)

\[\text{Hom}_{CG}(\text{Ind}_{H}^{G} U, V) \cong \text{Hom}_{CH}(U, \text{Res}_{H}^{G} V) \]

as a special case \((S = A = CG, R = CH, B = U, C = V)\) of the general adjoint associativity

\[\text{Hom}_{S}(A \otimes_{R} B, C) \cong \text{Hom}_{R}(B, \text{Hom}_{S}(A, C)) \]

for \(S, R \) two rings, \(A \) is an \((S, R)\)-bimodule, \(B \) is a left \(R \)-module, \(C \) is a left \(S \)-module.

Def: When \(H \) is a subgroup of \(G \), the restriction \(\text{Res}_{H}^{G} \) of an \(f \in \text{Rc}(A) \) is defined as

the result of restricting the map \(f : G \rightarrow C \) to \(H \). Then \(\text{Res}_{H}^{G} f \in \text{Rc}(H) \).

So \(\text{Res}_{H}^{G} \) is a \(CG \)-linear map \(\text{Rc}(A) \rightarrow \text{Rc}(H) \).

This map restricts to a \(CH \)-linear map \(A \rightarrow X_{H}(CH) \), since we have \(\text{Res}_{H}^{G} X_{U} = X_{\text{Res}_{H}^{G} U} \) for any \(CG \)-module \(V \).
4.1.6. Inflation and fixed points.

Suppose one has a normal subgroup \(K \triangleleft G \). Given a \(C[G/K] \)-module \(U \), say defined by the homomorphism \(\varphi : G/K \to GL(U) \), the inflation of \(U \) to a \(C[G] \)-module \(\text{Infl}^G U \) is defined by the composite homomorphism \(G \to G/K \to GL(U) \). It has the same underlying space \(U \). \text{Infl}^G U \) is actually a pull back \(U \to C[G] \)-module.

We will later use the fact that when \(H \triangleleft G \) is any other subgroup, one has

\[
\text{Res}^H_G \text{Infl}^G_U = \text{Infl}^H_{H/H\cap K} \text{Res}^G_{H/H\cap K} U
\]

(We regard \(H/H\cap K \) as a subgroup of \(G/K \), since the canonical homomorphism \(H/H\cap K \to G/K \) is injective.)

Ref: \(V^K = \{ v \in V : kv = v \text{ for } k \in K \} \). Inflation turns out to be adjoint to the \(K \)-fixed space construction sending a \(C[G] \)-module \(V \) to the \(C[G/K] \)-module \(V^K \).

Note that \(V^K \) is indeed a \(G \)-stable subspace:

\[P^G : \forall v \in V^K, g \in G, \; Kg(v) = (g, g^{-1}) \cdot Kg(v) = g \cdot (g^{-1}K \cdot g(v)) = g(v) \in V^K \]

One has the adjointness

\[
\text{Hom}_{C[G]}(\text{Infl}^G_U, V) = \text{Hom}_{C[G/K]}(U, V^K)
\]

We will also need the following formula for the character \(X_v \) in terms of the character \(X_v^K \):

\[
X_v^K(gK) = \frac{1}{|K|} \sum_{k \in K} X_v(gk) = \text{trace } gK : V^K \to V^n
\]

To see this, note that when one has a \(C \)-linear endomorphism \(\varphi \) on a space \(V \) that preserve some \(C \)-subspace \(W \subset V \), if \(\pi : W \to W \) is any idempotent projection onto \(W \), then the trace of the restriction \(\varphi|_W \) is equal to the trace of \(\varphi \circ \pi \) on \(V \).

Applying this to \(W = V^K \) and \(\varphi = gK \), with \(\pi = \frac{1}{|K|} \sum_{k \in K} k : V \to V^K \) we can check \(\pi \) is idempotent projection.

Another way to restate \((4.12)\) is \(X_v^K(gK) = \frac{1}{|K|} \sum_{k \in K} X_v(gk) \) \((4.13)\), equivalent.
We have discussed the inflation on modules.

(Important: K-fixed space construction can be also defined on class functions.)

For inflation; Inflation Infl^G_{χ} of an $f \in R_C(G/K)$ is defined as the composition

$\chi : G/K \to C \to G/K$. This is a class function of G and thus lies in $R_C(G/K)$.

(Thus, inflation Infl^G_{χ} is a C-linear map $R_C(G/K) \to R_C(G)$.)

We can check that for every $(C \times G/K)$-module U satisfies $\text{Infl}^G_{\chi} Xu = \chi \text{Infl}^G_{\chi} u$, then Infl^G_{χ} restricts to a C-linear map $R_C(G/K) \to R_C(G)$.

We can also use (4.12) or (4.13) as inspiration for defining a "K-fixed space construction" on class functions.

For every class function $f \in R_C(G)$, we define a class function $f^K \in R_C(G/K)$ by

$f^K(gK) = \frac{1}{|K|} \sum_{k \in K} f(\chi_k gK)$, the map $(\cdot)^K : R_C(G) \to R_C(G/K)$ is C-linear

and restricts to a C-linear map $R_C(G) \to R_C(G/K)$.

Then we have $X^f \chi^K = (X^f)^K$ for every $C \times G$-module V. (Creation of K-fixed space between module and class function)

If we take this in (4.11), we obtain $(\text{Infl}^G_{\chi} Xu, Xv) = (Xu, Xv)^K$ for any $(C \times G/K)$-module U and any $C \times G$-module V (since $X^f \chi^K = \text{Infl}^G_{\chi} Xu, Xv^K = (Xv)^K$).

By C-linearity, we have $(\text{Infl}^G_{\chi} \alpha, \beta) = (\alpha, \beta)^K$ for any class functions $\alpha \in R_C(G/K)$ and $\beta \in R_C(G)$.

Lem 4.8. Let G_1 and G_2 be two groups, and $K_1 \triangleleft G_1$, and $K_2 \triangleleft G_2$ be two respective subgroups.

Let U_i be a CG_i-module for each $i \in \{1, 2\}$. Then,

$$\text{(4.15)} \quad (U_1 \otimes U_2)^{K_1 \times K_2} = U_1^{K_1} \otimes U_2^{K_2} \quad \text{(as subspaces of } U_1 \otimes U_2)\text{.}$$

pf: The subgroup $K_1 = K_1 \times 1$ of $G_1 \times G_2$ acts on $U_1 \otimes U_2$.

Its fixed points are $(U_1 \otimes U_2)^{K_1} = U_1^{K_1} \otimes U_2$

Similarly, for $K_2 = 1 \times K_2$ of $G_1 \times G_2$ acts on $U_1 \otimes U_2$, we have $(U_1 \otimes U_2)^{K_2} = U_1 \otimes U_2^{K_2}$

Then we have $(U_1 \otimes U_2)^{K_1 \times K_2} = (U_1 \otimes U_2)^{K_1} \cap (U_1 \otimes U_2)^{K_2}$

$= (U_1^{K_1} \otimes U_2) \cap (U_1 \otimes U_2^{K_2}) = U_1^{K_1} \otimes U_2^{K_2}$

The last equation is true from the fact that if P, Q are subspaces of two vector spaces U and V respectively, then

$$(P \otimes V) \cap (U \otimes Q) = P \otimes Q$$
4.2. Three towers of groups.

Here we consider three towers of groups $G_\kappa = (G_0 < G_1 < G_2 < G_3 < \ldots)$
where either
- $G_\kappa = S_\kappa$, the symmetric group
- $G_\kappa = (S_\kappa)^\Pi$, the wreath product of the symmetric group with some arbitrary finite group Π.
- $G_\kappa = GL_n(F_\kappa)$, the finite general linear group

Here, $(S_\kappa)^\Pi$ is the semidirect product $S_\kappa \times \Pi^n$ in which S_κ acts on Π^n via

$\sigma((i_1, \ldots, i_n)) = (\sigma^{-1}(i_1), \ldots, \sigma^{-1}(i_n))$.

For each of the three towers G_κ, there are embeddings $G_i \times G_j \hookrightarrow G_{ij}$
and we introduce maps ind^{ij}_{ij} taking $C[G_i \times G_j]$-modules to $C[G_{ij}]$-modules, as well as maps res^{ij}_{ij} carrying modules in the reverse direction which are adjoint:

$\text{Hom}_{C[G_{ij}]}(\text{ind}^{ij}_{ij} U, V) = \text{Hom}_{C[G_i \times G_j]}(U, \text{res}^{ij}_{ij} V)$

Def 4.18. For $G_\kappa = S_\kappa$, one embeds $G_i \times G_j$ into G_{ij} as the permutations as the permutations that permute $\{1, 2, \ldots, i, i+1, i+2, \ldots, i+j\}$ separately.

Here one defines $\text{ind}^{ij}_{ij} U \equiv \text{Ind}_{G_i \times G_j}^{S_\kappa}$, $\text{res}^{ij}_{ij} V \equiv \text{Res}_{G_i \times G_j}^{S_\kappa}$.

For $G_\kappa = (S_\kappa)^\Pi$, one embeds $G_i \times G_j \times G_{i+j}$ into $G_{ij} \times G_{ij}$ as block monomial matrices whose two diagonal blocks have sizes i, j respectively and define

$\text{ind}^{ij}_{ij} U \equiv \text{Ind}_{G_i \times G_j \times G_{i+j}}^{(S_\kappa)^\Pi}$, $\text{res}^{ij}_{ij} V \equiv \text{Res}_{G_i \times G_j \times G_{i+j}}^{(S_\kappa)^\Pi}$.

For $G_\kappa = GL_n(F_\kappa)$, denote just GL_n, one embeds $GL_i \times GL_j$ into GL_{i+j} as block diagonal matrices whose two diagonal block have sizes i, j respectively.

Notice that, we can also introduces as an intermediate the parabolic subgroup P_{ij}
consisting of the block upper-triangular matrices of the form $
\begin{pmatrix}
G_i & 0 \\
0 & G_j
\end{pmatrix}$

where G_i, G_j lie in GL_i, GL_j, respectively and L in F_{ij}^{*} is arbitrary.

We have a quotient map $P_{ij} \rightarrow GL_i \times GL_j$ whose kernel K_{ij} is the set of matrices

of the form $\begin{pmatrix}
0 & L \\
0 & 0
\end{pmatrix}$ with L again arbitrary. One defines

$\text{ind}^{ij}_{ij} U \equiv \text{Ind}_{P_{ij}}^{GL_i \times GL_j}$, $\text{res}^{ij}_{ij} V \equiv \text{Res}_{P_{ij}}^{GL_i \times GL_j}$.
In the case $G_1 = G_{1,2}$, the operation $\text{ind}_{i,j}^{N_2}$ is sometimes called parabolic induction or Harish-Chandra induction. The operation $\text{res}_{i,j}^{N_2}$ is essentially the $K_{i,j}$-fixed point construction $V \mapsto V_{i,j}$. Via (4.7), (4.11), $\text{res}_{i,j}^{N_2}$ is adjoint to $\text{ind}_{i,j}^{N_2}$.

Proposition 4.19. For each of the three towers G_i, define a graded \mathbb{Z}-module.

$$A \cong A(C_0) = \bigoplus_{n \geq 0} R(CG_i)$$

with a bilinear form $\langle \cdot, \cdot \rangle_A$ whose restriction to $A_n \equiv R(CG_i)$ is the usual form $\langle \cdot, \cdot \rangle_{A_n}$, and set $Z \equiv \bigoplus_{n \geq 0} \text{Irr}(CG_i)$ gives an orthonormal \mathbb{Z}-basis.

Notice that $A_0 = \mathbb{Z}$ has its basis element 1 equal to the unique irreducible character of the trivial group G_0.

Notice that $A_i \otimes A_j = R(CG_i \times CG_j) \cong R(CG_i \times CG_j)$, then we have candidates for product and coproduct defined by $m : \text{ind}_{i,j}^{N_2} : A_i \otimes A_j \to A_{i+j}$

and $\Delta : \text{res}_{i,j}^{N_2} : A_n \to \bigoplus_{i+j=n} A_i \otimes A_j$.

We first show that m and Δ are adjoint with respect to the forms $\langle \cdot, \cdot \rangle_A$ and $\langle \cdot, \cdot \rangle_{A_0 \otimes A_0}$.

Suppose U, V, W are modules over CG_i, CG_j, CG_{i+j}, respectively, then we can write the $(CG_i \times CG_j)$-module $\text{res}_{i,j}^{N_2} W$ as a direct sum $\bigoplus X_k \otimes Y_k$ with X_k being CG_i-modules and Y_k being CG_j-modules, then we have

$$\text{(4.19)} \quad \text{res}_{i,j}^{N_2} X_k = \bigoplus X_k \otimes Y_k.$$

and $c(m(Xu \otimes XV), XV)A = (\text{ind}_{i,j}^{N_2}(Xu \otimes XV), XV)A = (\text{ind}_{i,j}^{N_2}(Xu \otimes XV), XV)G_{i+j}$

$$= (Xu \otimes XV, \text{res}_{i,j}^{N_2} XV)G_{i+j} = (Xu \otimes XV, \bigoplus X_k \otimes Y_k)G_{i+j}$$

$$= \bigoplus_k (Xu \otimes XV, X_k \otimes Y_k)G_{i+j} = \bigoplus_k (Xu \otimes XV, X_k \otimes Y_k)A \otimes B$$

$$= \bigoplus_k (Xu \otimes XV, X_k \otimes Y_k)A \otimes B = \bigoplus_k (Xu \otimes XV, X_k \otimes Y_k)A \otimes B.$$