Given an algebra A with mult

$m : A \odot A \rightarrow A$
$a \odot b \rightarrow ab$

Recall the opposite algebra A^{op} has mult

$m^{op} : A \odot A \rightarrow A$
$a \odot b \rightarrow ba$

Given a coalg C with comult

$\Delta : C \rightarrow C \odot C$
$c \rightarrow \Sigma c \odot c$

The opposite coalg C^{op} has comult

$\Delta^{op} : C \rightarrow C \odot C$
$c \rightarrow \Sigma c \odot c$
Given a bialgebra H with data m, Δ.

Get four bialgebras with data

\begin{array}{c|c}
 m, \Delta & m^\text{op}, \Delta \\
\hline
 m, \Delta^\text{op} & m^\text{op}, \Delta^\text{op}
\end{array}

"relates"

Next goal:

Suppose H is Hopf alg with antipode S.

Are H's relatives also Hopf algebras, and if so, what are their antipodes?
Case $m^\circ \Delta$

Antipode \tilde{S} must satisfy:

$\forall a \in H,$

$$\sum_{a_i} \tilde{S}(a_2) = \delta(a_{\downarrow}) l_H = \sum_{a_i} \tilde{S}(a_1) a_2$$

By prev LEM,

\tilde{S} exists iff S^τ exists, and in this case

$$\tilde{S} = S^\tau$$
Case m, Δ^op

Antipode S^ν must satisfy:

$\forall a \in H,$

$$\sum_{a_1} S^\nu(a_2) = \mathcal{E}(a_1 | H) = \sum_{a_1} S^\nu(a_1, a_2) \quad (\circ)$$

Here

$$\sum_{a_1, a_2} = \Delta^\text{op}(a_1) = \sum_{a_1, a_2} a_2 \otimes a_1 \quad (\circ)$$

In terms of Δ, (\circ) becomes

$$\sum_{a_2} S^\nu(a_2) = \mathcal{E}(a_1 | H) = \sum_{a_1} S^\nu(a_1, a_2) a_1 \quad (\circ)$$

By prev. lem, S^ν exits iff S^ν exists, and in the case

$$S^\nu = S^\nu$$
Case m^n, Δ^n

This bi-algebra has antipode $S(x)$.
Prop. Given a connected graded bialgebra $H = \bigoplus_{n \in \mathbb{N}} H_n$

Recall H has an antipode S.

Then S^{-1} exists.

pf. For the bialg H, m^o, Δ.

(\ast) is still a connected grading.

So its antipode exists.

But this antipode is S^{-1} by previous comments. \Box
Next goal: Given coalgebra C

Define a subcoalgebra of C

Aside on tensor products

Given k-module V

Given k-submodule $U \subseteq V$

Incl map:

$$i : U \rightarrow V$$

is injective k-mod hom.

Consider the k-mod hom:

$$u \in U \rightarrow v \in V$$

$$i \circ i : \mathbb{F} \circ \mathbb{F} \rightarrow \mathbb{F} \circ \mathbb{F}$$

(\star) might not be injective, as the next example shows.
Ex Given

\(F = \text{a field} \)

\(x = \text{indeterminate} \)

\(k = F[x] \text{ polynomials in } x \)

Obs \(k \) is comm. ring with 1.

let \(V = \text{vector space over } F \) with dimension 2

pick a basis \(e, f \in V \)

\(V \) becomes a \(k \)-module with \(x \)-action

\(xe = 0, \quad xf = e \)

let \(U = \text{subspace of } V \) with basis \(e \)

Obs \(U \) is \(k \)-submodule of \(V \)

Consider incl map

\(i: U \to V \)

\(e \mapsto e \)
Describe $U \oplus U$, $V \otimes V$, $\Theta = \Theta_k$.

$U \oplus U$ is a vector space over F.

$U \oplus U$ has basis eae.

Moreover,

$x(eae) = (xe)ae = 0$

$V \otimes V$ is a vector space over F.

$V \otimes V$ has a basis $eaf = fae$, faf.

Moreover,

$x(eaf) = (xe)af = 0$

$x(faf) = (xf)af = eaf$

Observe $eae = (xe)ae$

$= f\circ (xe)$

$= 0$

Now, let's define $\theta : U \oplus U \to V \otimes V$ sends

$eae \to eae$

$0 \to 0$
Ex. Given a k-module V.

Given a k-submodule $U \subseteq V$

Consider each map

$i : U \rightarrow V$

Assume $\exists k$-module W s.t

$V = U + W$ \hspace{1cm} (15)

"W is k-module complement of U in V"

Then the k-module hom

$i @ i : U \otimes U \rightarrow V \otimes V$

is injective.

pf. The k-module iso $V = U \otimes W$

induces k-module isomorphisms

$V \otimes V \cong (U \otimes W) \otimes (U \otimes W)$

$= (U \otimes U) \oplus (U \otimes W) \oplus (W \otimes U) \oplus (W \otimes W)$

Result follows.
Given k-coalgebra C

Define a subcoalgebra of C

Naive definition: A subcoalgebra of C is a k-submodule D of C s.t.

$$\Delta_C(D) \subseteq \iota \circ i(D00)$$

Using this def, let $i:D \to C$ into a k-coalgebra C s.t.

$$i : D \to C$$

is a coalgebra morph.

First assume i is injective.

Via $i \circ i$, identify $i(i(000))$ with $D00$

Define

$$\Delta_0 : D \to D00$$

$$\Delta_0 : x \to \Delta_C(x)$$

By adjoint $i : D \to C$ is coalgebra morphism.

Next assume i is not injective.

Now the restriction of Δ_C to D does not induce a map $D \to D00$. D does not inherit a coalgebra from C.
So, naive def of subcoalg often works if i is injective.

Here is our official def of subcoalg:

Def. Given a k-coalg C,

A subcoalgebra of C is a k-coalg D together with an injective coalg morphim

$\phi : D \to C$

such that

- If we identify D with a k-submodule of C
- Then ϕ becomes the incl map

The def of subbialgebra, subHopf algebra are similar.
Given u, v, u', v'

Given surjective k-module hom $\phi : V \to V'$

$\phi \circ \psi : u \otimes v \to u' \otimes v'$

$u \otimes v \to \psi(u) \otimes \phi(v)$

has kernel

$\ker(\phi \circ \psi) = \ker(\psi) \otimes V + u \otimes \ker(\phi)$

Moreover, if K is a field, then (*) still holds if the surjectivity assumption is dropped.
LEM Assume K is a field.

Given a K-coalgy C and a K-module U

Given a K-module hom $f: C \to U$

Consider the composition

$$C \to C \otimes C \to C \otimes C \otimes C \to C \otimes U \otimes C$$

$\theta: C \to \Delta \quad \text{id} \otimes \text{id} \otimes \text{id} \otimes \text{id}$

$$C \to \sum C \otimes C \to \sum C \otimes C \otimes C \to \sum C \otimes f(C) \otimes C$$

Then $\ker(\theta)$ is a subcoalgy of C

pf Since K is field, we need to show

$$\Delta(J) \leq J \otimes J$$

Show both

$$\Delta(J) \leq J \otimes C$$

$$\Delta(J) \leq C \otimes J$$

The following diagrams commute: