So, \(b \) is aligned whereas

\[
\hat{\Psi}_i(b), \quad \hat{\varepsilon}_i(b) \quad \text{even} \quad 1 \leq i \leq r
\]

\[
\hat{\Psi}_r(b) = \hat{\Psi}_m(b)
\]

\[
\hat{\varepsilon}_r(b) = \hat{\varepsilon}_m(b)
\]

In this case

\[
\Psi_i(b) = \frac{\hat{\Psi}_i(b)}{Z}
\]

\[
\varepsilon_i(b) = \frac{\hat{\varepsilon}_i(b)}{Z}
\]

\[
\Psi_r(b) = \Psi_r(b) = \Psi_m(b)
\]

\[
\varepsilon_r(b) = \varepsilon_r(b) = \varepsilon_m(b)
\]

For the moment, assume \(B \) consists of all the aligned \(b \in A \).

Check if \(B \) satisfies axioms \(A_1, A_2 \).
Al: For $x, \eta \in B$ and is i.s.r

Assume

$$x \xrightarrow{\epsilon} \eta$$

Show

$$\text{wt}(\eta) - \text{wt}(x) = x$$

$$\psi_i(\eta) - \psi_i(x) = 1$$

$$\varepsilon_i(x) - \varepsilon_i(\eta) = 1$$

Case is i.s.r

We have

$$x \xrightarrow{i} j \xrightarrow{\omega} \eta$$

$$\text{So}$$

$$\text{wt}(\eta) - \text{wt}(x) = 2 \times x$$

$$\psi(\text{wt}(\eta)) - \psi(\text{wt}(x)) = 4(x)$$

So i holds.

Also

$$\psi_i(\eta) - \psi_i(x) = 2$$

$$\psi_i(\eta) - 2 \psi_i(x)$$

So i holds.

Sim i holds.
Case $i=r$

We have

\[
\hat{\omega}(y) - \hat{\omega}(x) = \hat{\xi}(r) + \hat{\xi}(r^*)
\]

So

\[
\hat{\Psi}(\hat{\omega}(y)) \quad \hat{\Psi}(\hat{\omega}(x)) \quad \hat{\Psi}(\hat{\xi}(r^*))
\]

So \(\Psi \) holds

Also

\[
\hat{\phi}_r(y) - \hat{\phi}_r(x) = 1
\]

So \(\Psi \) holds

Sim \(\Psi \) holds
A2

For \(b \in B \) and \(i \in s \rho \), show:

\[
\langle \text{wt}(b), \langle \omega^i \rangle^X \rangle = \Psi_i(b) - \varepsilon_i(b)
\]

This follows from:

\[
\text{wt}(b) = \sum_{i=1}^{r} \left(\Psi_i(b) - \varepsilon_i(b) \right) \bar{w}^i X
\]
Next we check that \(B \cup \phi \) is closed under the virtual operation.

For this consider \(\phi \cdot \) - root string

Case 1: is even

String of even length:

\[
\begin{array}{ccccccc}
\psi & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\phi & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\end{array}
\]

For \(b \in B \), require \(\phi(b), \phi(b) \) even.

Circle the aligned nodes:

\[
\begin{array}{ccccccc}
\psi & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\phi & 3 & 2 & 1 & 0 & & & \\
\end{array}
\]

Get

\[
\begin{array}{ccccccc}
\psi & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\phi & 3 & 2 & 1 & 0 & & & \\
\end{array}
\]
String of odd length:

\[0 \ 1 \ 2 \ 3 \ 4 \ 5 \]

\[5 \ 4 \ 3 \ 2 \ 1 \ 0 \]

\(\Phi_i \) and \(\Phi_j \) never both even.
None of these nodes aligned.

Conclude \(BV \) is closed under \(\Phi_i \), \(\Phi_j \).

Case \(i = 0 \)

Consider edges in \(B \).

Each connected component is a rectangle.
For a node \(b \) in above rectangle, describe

\[
\hat{\varphi}_r (b), \quad \hat{c}_r (b), \quad \hat{u}_{\text{in}} (b), \quad \hat{m}_r (b)
\]

Since \(\hat{B} \) is seminormal,

\[
\hat{\varphi}_r (b) = W, \quad \hat{\varepsilon}_r (b) = E
\]

\[
\hat{c}_r (b) = S, \quad \hat{\varepsilon}_m (b) = N
\]

For \(b \in B \) require

\[
\hat{\varphi}_r (b) = \hat{\varphi}_{\text{in}} (b), \quad \hat{c}_r (b) = \hat{c}_m (b)
\]

No nodes in rectangle are aligned unless \(B \) is a square, in which case the aligned nodes are circled below:
For each circled node b_i,

$\rho_r (a) = \hat{\rho}_r (a) = \hat{\rho}_{mn} (a)$

$\omega_r (a) = \hat{\omega}_r (a) = \hat{\omega}_{mn} (a)$

But ϕ is closed under ρ_r, ω_r
We have shown that $BV \delta$ is closed under virtual ops, and is hence a crystal for the X system.

By this, the crystal B is semi-normal.

Note As we construct B, we do not require that B
contain all the aligned elements.

We only require that $BV \delta$ is closed under the virtual ops, and resulting crystal B is SN.

Def A **virtual crystal** (in the X system) is
a nonempty subset $B \subseteq \mathcal{V}$ such

$V1$: \mathcal{V} is Skewbridge

$V2$: each $b \in B$ is aligned

$V3$: $BV \delta$ is closed under virtual ops, and $V6 \in B$

$$\psi_i(b) = \max \left\{ k \mid f^*_i(b + \delta) \right\}, \quad \varepsilon_i(b) = \max \left\{ k \mid e_i \delta(b) + b \right\}$$
$E_x \quad r=2 \quad B_2 \text{ vs } D_3$

Recall standard crystal for D_3:

\[\begin{array}{ccc}
 & 3 & 1 \\
1 & \rightarrow & 2 \\
-1 & \rightarrow & 3 \\
\end{array} \]

highest wt is $e_i = \omega_i$

Call this crystal B_{ω_i}

Take $\Lambda_B = B_{\omega_i} \otimes B_{\omega_i}$

For B_3, describe the aligned elements and virtual ops.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ϵ_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ψ_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ϵ_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ψ_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ϵ_3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Find \(\hat{\psi}_i, \hat{\xi}_i \) s.t. \(\hat{\beta} \) > \(\bigcirc \)

\[\text{\(\bigcirc \) } \geq \text{\(\bigcirc \)} \]

\[\frac{\text{\(\bigcirc \)}}{\hat{\psi}_i} \quad \frac{\text{\(\bigcirc \)}}{\hat{\xi}_i} \]
Find $\psi_3, \phi_3 \neq \beta$.
Next describe the virtual operators on the aligned elements.