Continue to discuss the split decomp of a T0 system

\(F = \text{any field} \)

\(V = \text{vector space}/IF \text{ with finite pos dim} \)

Fix T0 system in \(V \):

\[F = (A; \{ E_{i}^{d}, A_{i}^{*}; \{ E_{i}^{*}; i = 0 \}) \]

Recall the split decomp \(E_{i}^{d}, A_{i}^{*}; \{ E_{i}^{*}; i = 0 \} \):

\[U_{i} = (E_{i}^{d} + \cdots + E_{i}^{*}) \cap (E_{i}^{d} + \cdots + E_{i}^{*}) \quad o \leq i \leq d \]

Recall

\[\rho_{i} = \dim U_{i} \]

Next goal: show \(\rho_{i+1} = \rho_{i} \quad 1 \leq i \leq d/2 \)

DEF. 7.4 Set

\[R = A - \sum_{h=0}^{d} \theta_{h} F_{h} \]

\[L = A^{*} - \sum_{h=0}^{d} \theta_{h}^{*} F_{h} \]
LEM 7.5. \(F_n \) 0 is defined as follows:

\[R = A - \sigma \cdot I, \quad L = A^* - \sigma^* I \]

Proof: Recall \(F_n \) is projection onto \(U_n \) for \(\sigma \neq 0 \).

COR 7.6. \(F_n \) 0 is defined as:

\[R U_i \leq U_{ir} \]
\[L U_i \leq U_{ir} \]

Proof: By L7.5 and M67 (ii) \(\square \)
LEMMA 7.7 \[Fa \quad 0 \leq i \leq j \leq d \]

Let \(f: \mathbb{R}^j \rightarrow \mathbb{R}^i \) be a linear map.

\[\begin{align*}
 &u_i \rightarrow u_j \\
 &v \rightarrow R^{j-i}v
\end{align*} \]

is injective if \(i+j \leq d \), a bijection if \(i+j = d \),
and surjective if \(i+j > d \).

The map

\[\begin{align*}
 &u_j \rightarrow u_i \\
 &v \rightarrow L^{j-i}v
\end{align*} \]

is an injection if \(i+j \geq d \), a bijection if \(i+j = d \),
and surjective if \(i+j < d \).

\[\text{[Caution: above maps are inverses, even if } i+j = d \text{] } \]

PF. Consider \(R^i \).

Case \(i+j \leq d \):
Given $v \in U_i$ such that $R^{\alpha - i} v = 0$ show $v = 0$.

\[0 = R^{\alpha - i} v \]

\[= (A - \omega_{\alpha - i} I) \cdots (A - \omega_{\alpha - i} I) (A - \omega_{\alpha - i} I) v \]

So

\[v \in E_1 v + E_{\omega_1} v + \cdots + E_{\omega_{\alpha - i}} v \]

\[\subseteq E_0 v + \cdots + E_{\omega_{\alpha - i}} v \]

Also

\[v \in U_i \]

\[\subseteq U_0 + \cdots + U_i \]

\[= E_0^x v + \cdots + E_i^x v \]

So

\[v \in (E_0^x v + \cdots + E_i^x v) \cap (E_0 v + \cdots + E_{\omega_{\alpha - i}} v) \]

\[= 0 \quad \text{(by LLL applied to ω)} \]

Case 1: $\alpha = \omega_i$. U_i, U_j have same dim so abone

\[1 \geq b \cdot j \]
Case $i+1 \geq d$:

Given $w \in U_i$ find $v \in U_i$ s.t. \(R^{d-i} v = w \)

Consider map

\[
U_{d-2} \rightarrow U_2 \\
\hspace{1cm} u \mapsto R^{d-2} u
\]

This is a bijection.

So \(\exists u \in U_{d-2} \) s.t. \(R^{d-2} u = w \)

Define \(v = R^{d-2-i} u \)

Then \(v \in U_i \) and \(R^{d-i} v = w \).

The proof is similar. \(\Box \)
LEM 78 \[\pi c \leq \pi e \leq 1/2 \]

Proof: The map

\[U_{\pi e} \to U_{\pi c} \]

\[v \to RV \]

is arising by LTT so

\[\dim U_{\pi c} \leq \dim U_{\pi e} \]

\[\pi c \leq \pi e \]

\[\square \]
Next goal: The brahmeton diagram

Notation

Given a decom $\{V_i, \beta \} \subseteq V$,

Represent it by a dotted line segment

\[V_0 \quad V_1 \quad V_2 \quad \ldots \quad \cdots \quad V_{d-1} \quad V_d \]

Given two decomps of V:

$\{V_i, \beta \} \subseteq V$

\[W_0 \quad W_1 \quad W_2 \quad \ldots \quad \cdots \quad W_{d-1} \quad W_d \]

means

\[\sum_{n=0}^{d} V_n = \sum_{n=0}^{d} W_n \quad \text{for} \quad 0 \leq \varepsilon \leq d \]
Recall that \mathbf{E}-split decomposition satisfies

$$U_0 + U_1 + \cdots + U_i = E_0^k V + \cdots + E_i^k V$$

$$U_i + U_{i+1} + \cdots + U_d = E_i V + \cdots + E_d V$$

Corresponding diagram 15:

Apply this to \mathbf{E}^Ψ to get:

Other relations of \mathbf{E} give similar diagrams.
Notation

Let \(\{e_i\}_{i=0}^d \) denote a sequence of positive integers whose sum is \(\dim V \).

A flag \(mV \) of shape \(\{e_i\}_{i=0}^d \) is a nested sequence of subspaces

\[V_0 \leq V_1 \leq \ldots \leq V_d \]

such that

\[\dim V_i = e_0 + e_1 + \ldots + e_i \quad \text{for } 0 \leq i \leq d. \]

So \(V_d = V \).

Examples: Let \(\{W_i\}_{i=0}^d \) denote a decomposition of \(V \)

define \(e_i = \dim W_i \) for \(0 \leq i \leq d \).

Define

\[V_i = W_0 + \ldots + W_i \quad \text{for } 0 \leq i \leq d. \]

Then \(\{e_i\}_{i=0}^d \) is a flag \(mV \) of shape \(\{e_i\}_{i=0}^d \).

Given two flags \(mV \), denote

\[\mathcal{E} \{e_i\}_{i=0}^d, \quad \mathcal{E} \{e_i\}_{i=0}^d \]

call these opposite whenever \(\mathcal{E} \) decomposes \(\{e_i\}_{i=0}^d \).

\(\mathcal{E} \) is.
\[V_i = W_0 + \ldots + W_i \quad (0 \leq i \leq d) \]
\[V_i^\prime = W_i + \ldots + W_d \]

In this case,

\[W_i = V_i \wedge V_{i+1} \quad (0 \leq i \leq d) \]

\[V_i \wedge V_{i+1} = 0 \quad \text{if } i < d \quad (0 \leq i \leq d) \]

So the decompo \(\{ W_i \}_{i=0}^d \) is determined by

the part of opp flag: "associated decompo"

Def 79. For our IP system \(E \) we now define 4 flags in \(V \), denoted \([0], [0], [0^*], [0^*] \)

Each flag has shape \(\{ p_i \}_{i=0}^d \)

<table>
<thead>
<tr>
<th>Flag</th>
<th>1st component</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>(E_0 V + \ldots + E_i V)</td>
</tr>
<tr>
<td>[0]</td>
<td>(E_0 V + \ldots + E_0 i V)</td>
</tr>
<tr>
<td>[0^*]</td>
<td>(E_0^* V + \ldots + E_i^* V)</td>
</tr>
<tr>
<td>[0^*]</td>
<td>(E_0^* V + \ldots + E_0^* i V)</td>
</tr>
</tbody>
</table>
LEM 80 The four flaps in Oct 79
are mutually opposite.

pf Show \([a^*], [0]\) are opp.

Consider \(E\)-split decom \(\{u_i\}_{i=0}^d 1V\)

\[\text{Favored} \]
\[\text{in component of } [a^*] = E_0^*V + \cdots + E_k^*V \]
\[= u_0 + t\alpha \]
\[\text{in component of } [0] = E_0V + \cdots + E_0V \]
\[= u_d + \cdots + u_d \]

Rest of pf is same.

Notation Given ordered pair of dist
flaps in Oct 79
\([a], [\beta]\)

Let \([a, \beta]\) denote the associated decom \(1V\).
We have

<table>
<thead>
<tr>
<th>$[0; 0]$</th>
<th>E_iV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0^, 0^]$</td>
<td>E_i^*V</td>
</tr>
<tr>
<td>$[0^*, 0]$</td>
<td>$(E_0^*V + \cdots + E_i^*V) \cap (E_iV + \cdots + E_0V)$</td>
</tr>
<tr>
<td>$[0^, 0^]$</td>
<td>$(E_0^*V + \cdots + E_i^*V) \cap (E_iV + \cdots + E_0V)$</td>
</tr>
<tr>
<td>$[0^, 0^]$</td>
<td>$(E_0^*V + \cdots + E_{i-1}^*V) \cap (E_iV + \cdots + E_0V)$</td>
</tr>
<tr>
<td>$[0^, 0^]$</td>
<td>$(E_0^*V + \cdots + E_{i-1}^*V) \cap (E_iV + \cdots + E_0V)$</td>
</tr>
</tbody>
</table>

We now describe the actions of A, A^* on the above decomp.
Thm 31. Let \(\{ w_i \} \) denote any one of the above 6 decomps of \(V \).

Then for \(0 \leq i \leq 6 \), the action of \(A, A^* \) on \(W_i \) is:

<table>
<thead>
<tr>
<th>(A) action</th>
<th>(A^*) action</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0, 0]) ((A - \Theta; I) w_i = 0) (A^* w_i \leq w_i + r w_i + w_{in})</td>
<td></td>
</tr>
<tr>
<td>([0^, 0]) (A W_i \leq w_i + r w_i + w_{in}) ((A^ - \Theta; I) w_i = 0)</td>
<td></td>
</tr>
<tr>
<td>([0^, 0^]) ((A - \Theta; I) w_i \leq w_{in}) ((A^* - \Theta; I) W_i \leq w_i)</td>
<td></td>
</tr>
<tr>
<td>([0^, 0]) ((A - \Theta; I) w_i \leq w_{in}) ((A^ - \Theta; I) W_i \leq w_{in})</td>
<td></td>
</tr>
<tr>
<td>([0^, 0]) ((A - \Theta; I) w_i \leq w_{in}) ((A^ - \Theta; I) W_i \leq w_{in})</td>
<td></td>
</tr>
<tr>
<td>([0^, 0]) ((A - \Theta; I) w_i \leq w_{in}) ((A^ - \Theta; I) W_i \leq w_{in})</td>
<td></td>
</tr>
</tbody>
</table>

Proof: Rows \([0, 0]\) and \([0^*, 0^*]\) are from left TD system.

Row \([0^*, 0]\) is from \(\Theta \rightarrow (ii) \).

To get remaining rows, apply \(\Theta \) to relations of \(\Theta \).