Lecture 35 Wed Dec 4 12/4/13

Recall $U_q = U_q(sl_2)$

U_q-module $V = V_{a,1}$

dual space V^* is U_q-$module$

LEM 43 Let $\{V_i\}_{i=0}^d$ denote a decomp $f^a V$ or V^*

Then $\{V_i\}_{i=0}^d$ is equal to $[y]$ iff both

(i) n_x is raising $f \{V_i\}_{i=0}^d$

(ii) n_z is lowering $f \{V_i\}_{i=0}^d$

pf Assume (i), (ii) then

$n_z V_0 = 0$ \hspace{1cm} $n_x V_i \leq V_{i+1}$ \hspace{1cm} $0 \leq i \leq d$

and

$n_x V_d = 0$ \hspace{1cm} $n_z V_i \leq V_{i-1}$ \hspace{1cm} $1 \leq i \leq d$

Now $\{V_i\}_{i=0}^d$ is $[y]$ by L42 (i), (ii), (iv).

Converse is similar \square
LEM 44 \(\text{Let } \{V_i\}_{i=0}^d \text{ denote a decom of } V \text{ or } V^* \text{. Then } \{V_i\}_{i=0}^d \text{ is equal to } [y] \text{ iff all } \)

(i) \(x \text{ is quasi-lowering on } \{V_i\}_{i=0}^d \)

(ii) \(\gamma \text{ is diagonal on } \)

(iii) \(\varepsilon \text{ is quasi-rising on } \)

\[pf \begin{array}{c}
\Rightarrow \\
\text{by } \ref{lem:9} \text{ or } \ref{lem:40} \\
\Leftrightarrow \text{ use } \ref{lem:42} (i), (iii)
\end{array} \]

Subspace \(V_0 \) is inv under \(x, y \)

\(n_2 \) is sc mult \(y (1-x) y \)

\(V_0 \) is inv under \(n_2 \)

\(n_2 \) is nilp and \(\dim V_0 = 1 \) so

\(n_2 V_0 = 0 \)

\(\sim n_2 V_d = 0 \)

\(F_0, 0 \leq i \leq d-1, \)

\(\sim V_i \leq V_i + V_{i+1}, \quad y V_i \leq V_i, \quad y V_i \leq V_i \)

\(\text{so } y V_i \leq V_i + V_{i+1} \)

\(n_2 = \text{ sc mult } y (1-x) \)

\(n_2 V_i \leq V_i + V_{i+1} \)
\(\forall x \quad n(x \in \mathbb{N}) \quad \sum_{i=1}^{d} v_i = 1 \quad 0 \leq g \leq d \)

So

\(n_X v_i \leq v_{im} \quad 0 \leq i \leq d\)

Now by L92 (i), (ii)

\(\{ v_i \}_{i=0}^d \in [G] \).

Q
Notation

A flag on V is a sequence of subspaces $\{U_i\}_{i=0}^d$ of V s.t.
$U_i \subseteq U_{i+1}$ for $i \leq d$ and $\dim U_i = i$.

So $U_d = V$.

Given decomposition $\{V_i\}_{i=0}^d$ of V, define

$U_i = V_0 + \cdots + V_i$ for $i \leq d$.

Then $\{U_i\}_{i=0}^d$ is flag on V, said to be induced by $\{V_i\}_{i=0}^d$.

Given two flags $\{U_i\}_{i=0}^d$ and $\{U'_i\}_{i=0}^d$ on V.

Call them opposite whenever

$U_i \cap U'_j = 0$ if $i \neq j$ (or $i = d$).

The above flags are opposite iff \exists decomposition $\{V_i\}_{i=0}^d$ of V

that induces $\{U_i\}_{i=0}^d$ and whose inverse $\{V_i\}_{i=0}^d$ induces $\{U'_i\}_{i=0}^d$.

In this case

$V_i = U_i \cap U'_i$ for $0 \leq i \leq d$.

LEM 45. For $0 \leq i \leq d+1$,

\[n^i_x V \text{ is the sum of components } z_{i+1},...,d \text{ of } \text{decomp } [y] \]

and the sum of components $0,1,...,d-i$ of $\text{decomp } [z]$.

\[(+CP) \]

pf. Let $\{y_j\}_{j=0}^d$ denote $\text{decomp } [y]$.

\[V = \sum_{j=0}^d y_j \quad ds \]

By LEM 38,

\[n_x^i V_j = \begin{cases}
V_j & 0 \leq j \leq d \quad V_{d+1} = 0
\end{cases} \]

So,

\[n_x^i V = V_0 + V_1 + \cdots + V_d \]

Last assertion sim.
Cor 46 \[\bigwedge^{i} V \text{ has dim } d-i \]

for \(0 \leq i \leq d \)

\[(+ CP) \]

pf by L45

Cor 47 the sequence

\[\{ \bigwedge^{d-i} V \}_{i=0}^{d} \]

is a flag on \(V \)

\[(+ CP) \]

pf by Cor 46 + const.
LEM 48. In each row of the table below, we give a decomposition of V and the induced flag on V.

<table>
<thead>
<tr>
<th>Decomposition of V</th>
<th>Induced Flag on V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[x]$</td>
<td>${ n^{d-i}V }_{i=0}^d$</td>
</tr>
<tr>
<td>$[x]^\mathbb{N}$</td>
<td>${ n^{d-i}V }_{i=0}^d$</td>
</tr>
</tbody>
</table>

$(+ CP)$
LEM 49 \textbf{the flags}

\[
\{ n_{x-d-1}^d V \}_i \subseteq \{ n_{y-d} V \}_i \subseteq \{ n_{z}^d V \}_i \subseteq \{ n_{x-d-1}^d V \}_i
\]

are mutually opposite.

\textbf{pf.} By L48 and of opposite flags.

\begin{center}
\begin{tabular}{ccc}
\textbf{Decomp of } V & \textbf{ith comp} \\
$[x]$ & $n_{y-d} V \cap n_{z}^d V$ \\
$[x]^{i \forall}$ & $n_{y}^d V \cap n_{x-d-1}^d V$
\end{tabular}
\end{center}

\textbf{pf.} Use L45
Given decompostion of \(V \): \(\mathfrak{F}_{V_i} \mathfrak{F} \)

Represented by line segment

\[V_0 \quad V_1 \quad V_2 \quad \cdots \quad V_{a+b} \]

Given 2nd decompostion of \(V \): \(\mathfrak{F}_{V_i'} \mathfrak{F} \)

\[V_0 \quad V_1 \quad V_2 \quad \cdots \quad V_{a+b} \]

Means

\[V_0 + V_i = V_0' + V_i' \]

\[\forall i \in \mathbb{N} \]

\[\mathfrak{F} \text{ is induced by } \mathfrak{F}_{V_i'} \mathfrak{F} \]

\[= \cdots \cdots \quad \mathfrak{F}_{V_i'} \mathfrak{F} \]
The diagram

\[\begin{array}{c}
\text{The diagram} \\
\times \\
\rightarrow \rightarrow \\
\end{array} \]

means: displayed decom is eigenspace decom of \(x \),
with eigenvalues

\[\begin{array}{c}
\text{get } \lambda_1, \lambda_2, \ldots, \lambda_d \\
\end{array} \]

The chy-module \(V \):
the Aug $\bigoplus_{n_2} \bigoplus_{u_1} \bigoplus_{\cdots}$
Action of π_2 on V_1
the action of y on V:
LEM 51 \quad F_{n} \quad 0 \leq i \leq d + 1.

\text{n}_{x}^{i}V \quad \text{is the unique} \quad (d-i+1)-\text{dim} \quad \text{subspace of} \quad V

\text{that is} \quad n_{x} \quad \text{under} \quad y_{i+2}.

pf \quad \text{n}_{x}^{i}V \quad \text{has desired features by above disc.}

Now let \(W = (d-i+1)-\text{dim} \quad \text{subspace of} \quad V \) \quad \text{that is} \quad n_{x} \quad \text{under} \quad y_{i+2}.

Show \quad W = n_{x}^{i}V

Case \quad i = d + 1:

\[W = 0 = n_{x}^{i-1}V \]

Case \quad i = i - 1:

\[W + o \]

Let \(\{ v_{i} \}_{i=0}^{d} \) = \text{decomp} \quad [y_{i}] \quad \text{of} \quad V.

\(y \) is diagonalizable \quad mV, \quad \text{W is} \quad y_{-}mV.

\(y \) is diagonalizable \quad mV

\[W = \sum_{i} v_{i} \quad S = \{ 0 / o \text{stabilized} \quad v_{i} \in W \} \]

\(s + o \) since \(W + o \)

\[nx = sc \quad \text{mult} \quad 1 - y_{2} \]

\(W \) is \quad n_{x} \quad \text{under} \quad y_{i+2} \)

\[nx \quad v_{i} = v_{y_{2}} \quad 0 \leq i \leq d + 1 \]

\(\geq S \rightarrow y_{2} \in S \quad 0 \leq i \leq d + 1 \)
\[\exists t \ (0 \leq t < d) \ \text{s.t.} \]

\[S = \{ t, t+1, \ldots, d \} \]

\[W = \sum_{g=t}^{d} V_g \]

\[\dim W = d - t \]

\[d - \text{in} \]

\[t = i \]

\[W = \sum_{g=i}^{d} V_g \]

\[= n x V \]

\[\square \]