We continue to study the graph $\Gamma = P_D$, a path of length $2D$. x is an end-vertex of Γ.

Recall $\eta \in \mathbb{C}$ is a $(20+4)$-th root of unity.

$A^* = \text{diag}\left(\theta_0^*, \ldots, \theta_D^*\right)$

$\theta_i^* = \eta^{i+1} + \eta^{-i+1}$ \hspace{1cm} $0 \leq i \leq 0$

Theorem: The eigenvalues of $\Gamma = P_D$ are

$\theta_i = \eta^{i+1} + \eta^{-i+1}$ \hspace{1cm} $(0 \leq i \leq 0)$

For this ordering A^* is a dual adjacency matrix with respect to x.

Moreover

$E_i A^* E_i = 0$ \hspace{1cm} $(0 \leq i \leq 0)$

"dual bipartite"
Proof: For the time being let
\[\Theta \] denote any ordering of the eigenvalues of \(\Gamma \). We saw earlier \(\Theta \geq 0 \).

But \(\Theta + 1 \leq |x| = 0 + 1 \)

So \(\Theta = 0 \)

and \(\dim E_i \nu = 1 \) for \(0 \leq i \leq D \).

Draw a diagram on the nodes \(0, 1, \ldots, D \).

For \(0 \leq i \leq D \) node \(i \) represents \(\Theta_i \) in \(E_i \).

For \(0 \leq i, j \leq D \) attach nodes \(i, j \) by an arc \(i \rightarrow j \) whenever \(E_i A^* E_j \neq 0 \)

(\(i \rightarrow j \) gets a loop \(i \) whenever \(E_i A^* E_i \neq 0 \))

Note that \(E_i A^* E_j = 0 \) iff \(E_j A^* E_i = 0 \)

Since \(E_i A^* E_j = E_j A^* E_i \)

Therefore the diagram is undirected.
Claim 1. For \(0 \leq t \leq 1\) assume

nodes \(x, y\) are connected by an arc. Then

\[
\theta_i^2 - \beta \theta_i \theta_j + \theta_j^2 = -(9 - q^2)^2
\]

Proof. Consider eq. (i) in Prop 9

\[
o = E_i \left(\text{LHS} - \text{RHS} \right) E_j
\]

\[
= E_i A^* E_j \left(\theta_i^2 - \beta \theta_i \theta_j + \theta_j^2 + (9 - q^2)^2 \right)
\]

\[= 0 \quad \text{must be 0}\]

Claim 2. Each node \(x\) in diagram is connected by an arc to at most 2 nodes in the diagram.

Proof. For each node \(y\) that is connected to node \(x\) by an arc, \(\theta_j\) is a root of the quadratic polynomial

\[
\lambda^2 - \beta \theta_i \lambda + \theta_i^2 + (9 - q^2)^2 = 0
\]
Claim 3: In the diagram, assume node \(i \) is adjacent node \(r, a \) (\(r \neq a \)).

Then

\[\theta_r - \beta \theta_i + \theta_a = 0 \]

Proof of Claim:

Both

\[\theta_i^2 - \beta \theta_i \theta_r + \theta_r^2 = - (r - q^{-1})^2, \]

\[\theta_i^2 - \beta \theta_i \theta_a + \theta_a^2 = - (r - q^{-1})^2. \]

Take the difference:

\[\theta_r^2 - \theta_a^2 = \beta \theta_i (\theta_r - \theta_a) \]

Hence

\[(\theta_r - \theta_a)(\theta_r + \theta_a) \]

\[\theta_r + \theta_a = \beta \theta_i \]

\[\theta_r + \theta_a = \beta \theta_i \]
So far, the possible diagrams are

\[\cdots \cdots \cdots \]

In my case, without our ordering \(\theta_i \) satisfies \(\theta_{\alpha} \geq \theta_i \) for all \(i \in D \).

By claim 1

\[\theta_i^2 - \beta \theta_i \theta_n + \theta_n^2 = -(q-q^2)^2 (1 \leq i \leq 0) \]

By claim 3

\[\theta_i - \beta \theta_i + \theta_n = 0 \]

By (4) and since \(\beta = q + q^{-1} \), there exist \(a, b \in \mathbb{C} \) for any

\[\theta_i = a q^i + b q^{-i} \]

(0 ≤ i ≤ 0)
Evaluate (4) using Hess to get

\[ab = 1 \]

So

\[a_i = a_0 q^i + a^{-1} q^{-i} \quad (i \leq i \leq 0) \]

All diagonal entries of \(A \) are 0. Therefore

\[o = \text{trace} (A) \]

\[= \sum_{i=0}^{0} a_i \]

\[= a \left(1 + q + q^2 + \cdots + q^0 \right) + a^{-1} \left(1 + q^{-1} + q^{-2} + \cdots + q^{-0} \right) \]

\[= a^{-q^{-0}} \left(1 + q + q^2 + \cdots + q^0 \right) \]

\[= \left(a + a^{-q^{-0}} \right) \frac{q^{0+1} - 1}{q - 1} \]

But

\[q^{0+1} - 1 = -q^1 - 1 \neq 0 \]

So

\[a + a^{-q^{-0}} = 0 \]

Therefore

\[a^2 = -q^{-0} = q^2 \]
So \(a = \pm 2 \)

For \(\alpha = 2 \) get same list in reverse order

So wlog

\[\theta_i = \theta_i^{\text{op}} + \theta_i^{\text{op}} \quad (0 \leq i \leq 0) \]

Claim 4
In the diagram, no loop at \(\theta_0 \) or \(\theta_0 \). Also \(\theta_0, \theta_0 \) are not connected by an arc, provided that \(\alpha \geq 2 \).

pf cl
Use claim 3. One checks

\[\theta_0 - \beta \theta_0 + \theta_1 \neq 0 \]
\[\theta_0 - \beta \theta_0 + \theta_0 \neq 0 \]
\[\theta_1 - \beta \theta_0 + \theta_0 \neq 0 \]

By the above claim the diagram is

So \(E_i A X E_j = 0 \) if \(|i-j| = 1 \) \((0 \leq i, j \leq 0) \)
Until further notice \(\Gamma = (X, \Omega) \) denotes any connected graph.

To avoid trivialities assume \(|X| \geq 2 \).

Write
\[
\mathbf{1} = \sum_{x \in X} \mathbf{1}^x \quad \text{"all 1's vector"}
\]

Fix \(x \in X \) and write \(\mathbf{M}^x = \mathbf{M}^x(x) \), \(\mathbf{T} = \mathbf{T}(x) \), \(d = D(x) \).

For \(i \in Z \) define
\[
\Gamma_i^x(x) = \{ y \in X \mid 2(x,y) = i \} \]

So
\[
\Gamma_i^x(x) = \emptyset \text{ if } i < 0 \text{ or } i > d
\]

Also
\[
\mathbf{E} = \mathbf{E}(x) \quad \Gamma_i^x(x) = \Gamma_i(x)
\]

For \(0 \leq i \leq d \)
\[
\{ \mathbf{y} \in \Gamma_i^x(x) \} \text{ is a basis for } \mathbf{E}^x \mathbf{V}
\]

Define
\[
\mathbf{A}_i = \mathbf{A}_i^x(x) = |\Gamma_i^x(x)|
\]
So \[k_i = \dim E_i^* V \]

\[
\begin{align*}
k_0 &= 1 \\
k_i &= k_i(x) = \text{valency of } x \\
|\chi| &= \sum_{i=0}^{d} k_i
\end{align*}
\]

DEF 12 \(\Gamma \) is said to be **distance-regular** with respect to \(x \) whenever for \(0 \leq i \leq d \) and \(y \in \Gamma_i(x) \)

\[
\begin{align*}
c_i &= \left| \Gamma(y) \cap \Gamma_{i+1}(x) \right| \\
a_i &= \left| \Gamma(y) \cap \Gamma_i(x) \right| \\
b_i &= \left| \Gamma(y) \cap \Gamma_{i-1}(x) \right|
\end{align*}
\]

The intersection numbers \(\Gamma \) wrt \(x \)

Note: \(a_i, b_i, c_i \) are equal