Recall our connected graph $\Gamma = (X, \mathcal{R})$, $|X| = 2$

Fix $x \in X$, write $M^x = M(x)$, $T = T(x)$, $d = d_x$

Until further notice assume that Γ is distance-regular with respect to x.

Observe

- $c_i \neq 0$, $1 \leq i \leq d$, $c_0 = 0$
- $b_i \neq 0$, $0 \leq i \leq d + 1$, $b_d = 0$
- $a_0 = 0$, $q = 1$

LEM 13

(i) $k_i c_i = k_i b_i$, $1 \leq i \leq d$

(ii) $k_i = \frac{b_0 b_1 \ldots b_{i-1}}{c_1 c_2 \ldots c_{i-1}}$, $0 \leq i \leq d$

pf (i) Count in two ways the edges between $\Gamma_i (x)$ and $\Gamma_{i-1} (x)$.

(ii) By (i) and induction on i.
For $0 \leq i \leq d$ define

\[\Pi_i = E_i^* \Pi \]

\[= \sum_{\gamma \in \Gamma_i(\infty)} \gamma \]

So

\[\Pi_0 = x, \]

\[\langle \Pi_i, \Pi_j \rangle = \delta_{ij} \Pi_i \]

\[0 \leq i, j \leq d \]

\[E_i^* \Pi_j = \delta_{ij} \Pi_i \]

\[0 \leq i, j \leq d \]

We now consider the action of A on $\{ \Pi_i : i = 0 \}$.
LEM 14

(i) \(A \Pi_0 = \Pi_0 \)

(ii) \(A \Pi_i = b_{in} \Pi_{in} + a_i \Pi_i + c_{in} \Pi_{in} \quad 1 \leq i \leq d^+ \)

(iii) \(A \Pi_d = b_{dr} \Pi_{dr} + a_d \Pi_d \)

\(\rho^f \) (iii) For \(1 \leq i \leq d^+ \),

\[A \Pi_i = A \sum_{\gamma \in \Gamma_i(x)} \frac{\hat{Z}}{\gamma} \]

\[= \sum_{\gamma \in \Gamma_i(x)} \sum_{\tilde{z} \in \Gamma(\gamma)} \frac{\hat{Z}}{\tilde{z}} \]

\[= \sum_{\tilde{z} \in \chi} \frac{\hat{Z}}{|\Gamma(\tilde{z}) \cap \Gamma_i(x)|} \]

\[= b_{in} \sum_{\tilde{z} \in \Gamma_{in}(x)} \frac{\hat{Z}}{\tilde{z}} + a_i \sum_{\tilde{z} \in \Gamma_i(x)} \frac{\hat{Z}}{\tilde{z}} + c_{in} \sum_{\tilde{z} \in \Gamma_{in}(x)} \frac{\hat{Z}}{\tilde{z}} \]

\[= b_{in} \Pi_{in} + a_i \Pi_i + c_{in} \Pi_{in} \]

(i), (iii) Simlar.

\(\square \)
LEM 15. The vectors \(\{ \tilde{e}_i \}_{i=0}^d \) form a basis for the primary \(T \)-module. Relative this basis,

\[
A = \begin{pmatrix}
 a_0 & b_0 \\
 c_1 & a_1 & b_1 \\
 & \ddots & \ddots & \ddots \\
 & & & c_d & a_d \\
 & & & & 0
\end{pmatrix}
\]

\(E_i : \text{diag}(0, \ldots, 0, i, 0, \ldots, 0) \quad (0 \leq i \leq d) \)

pf. Let \(W \) denote the subspace of \(V \) spanned by \(\{ \tilde{e}_i \}_{i=0}^d \). By LEM 14, \(AW = W \).

We saw \(E_i^* P_i = \delta_{ij} P_j \quad (0 \leq i, j \leq d) \).

\(E_i^* W = W \) for \(0 \leq i \leq d \). So \(W \) is a \(T \)-module.

Let \(\tilde{W} \) denote the primary \(T \)-module. Show \(W = \tilde{W} \).

By construction \(x^* = 1 \circ e \in W \). Also \(x^* \in \tilde{W} \).

So \(W \cap \tilde{W} = 0 \).
W/\sim is a non-T-module contained in \tilde{W}. T-module \tilde{W} is irreducible, so

$W/\sim = \tilde{W}$, i.e. $\tilde{W} \leq W$

By construction

$\dim W = d + t$

We saw earlier

$\dim \tilde{W} \geq d + t$

So $W = \tilde{W}$. \square
We now bring in some polynomials in one variable.

Let λ be indeterminate.

Let $C[\lambda] = C$-algebra of polynomials in λ that have all coeffs in C.

For $0 \leq i \leq m$, define $f_i \in C[\lambda]$ by

\[f_0 = 1, \quad f_1 = \lambda \]

\[\lambda f_i = b_{i-1} f_{i-1} + a_i f_i + c_i f_{i+1} \quad \text{for} \quad 1 \leq i \leq n - 1 \]

\[\lambda f_d = b_{d-1} f_{d-1} + a_d f_d + \frac{f_{d+1}}{\xi_{c_2} \cdots c_{d}} \]

Observe that f_d for $0 \leq i \leq d$

f_i has degree i, and coef f_1 is $\frac{1}{\xi_{c_2} \cdots c_{d}}$

Also

f_{d+1} is monoic with degree $d+1$.

LEM 16

(i) \(f_i(A) x^i = \Pi_i \) \(\text{osized} \)

(ii) \(\text{fddn}(A) x = 0 \)

pf Compare the def of \(f_i \) with LEM 14.

Recall that \(M \) is the subalgebra of \(\text{Mat}_N(C) \) generated by \(A \).

LEM 17

(i) the primary \(T \)-module is \(M x^i \)

(ii) For the action of \(A \) on \(M x^i \), \(\text{fddn} \) is both the min poly. and char poly.

pf (i) By LEM 16 \(M x^i \) has basis \(\{ x_i, x_i^2, \ldots \} \).

By LEM 15.

(iii) \(\text{fddn}(A) M x^i = M \text{fddn}(A) x^i = 0 \).

So min poly of \(A \) in \(M x^i \) divides \(\text{fddn} \).

\(A \) is diagonalizable on \(M x^i \) so on \(M x^j \).

min poly of \(A \) = char poly of \(A \).
chance that A in M_n has degree d_1.

Result follows.

DEF 18. Let $\{\theta_i\}_{i=0}^d$ denote the roots of \(f \).

[These roots are among the eigenvalues of $$.

Call $\{\theta_i\}_{i=0}^d$ the primary eigenvalues of f.

with respect to x.}
LEM 19 For any eigenvalue \(\theta_i \) of \(\Gamma \),

(i) Assume \(\theta_i \) is primary, then \(E_i \mathbf{x}^\theta \) is a basis for \(E_i \mathbf{M}^\theta \).

(ii) Assume \(\theta_i \) is not primary, then \(E_i \mathbf{x}^\theta = 0 \).

pf (i) By def \(E_i \mathbf{M}^\theta \neq 0 \), \(E_i \) is a prim independent.

\[
E_i \mathbf{M}^\theta = CE_i.
\]

So \(E_i \mathbf{M}^\theta = CE_i \mathbf{x}^\theta \neq 0 \).

(ii) By def of primary, \(E_i \mathbf{M}^\theta = 0 \).

\[\square \]

LEM 20 \(\{ E_i \mathbf{x}^\theta \}_{i=0}^d \) is an or-meg basis for \(\mathbf{M}^\theta \).

pf By L19 and since

\[
\mathbf{M}^\theta = \sum_{i=0}^d E_i \mathbf{M}^\theta \quad \text{(ods)}
\]

\[\square \]
DEF 21 For $0 \leq i \leq d$ define

$$A_i = E_i \cdot k$$

$$m_i = \| A_i \|^2$$

Note

$$\hat{x} = \sum_{i=0}^{d} A_i^*$$

$$m_i \neq 0 \quad 0 \leq i \leq d$$

$$1 = \sum_{i=0}^{d} m_i$$

We have seen that both

$$\{ A_i \}_{i=0}^{d}, \quad \{ A_i^* \}_{i=0}^{d}$$

are orthogonal bases for M^∞. We now consider how these bases are related.
LEMMA 22: For $0 \leq i \leq d$

$$\langle \Pi^i, \Pi^i_z \rangle = f_i(\theta_1) m_i$$

Proof

$$\langle \Pi^i, \Pi^i_z \rangle = \left\langle \begin{array}{c} f_i(A) x_i \\
E_2 \end{array} \right| \begin{array}{c} E_1 \hat{x} \\
E_2 \end{array} \right\rangle$$

$$= \left\langle \underbrace{E_2 \ f_i(A) x_i}_{\Pi} \right| \begin{array}{c} E_2 \hat{x} \\
E_2 \end{array} \right\rangle$$

$$= f_i(\theta_1) \parallel E_2 \hat{x} \parallel$$

$$= f_i(\theta_1) m_i.$$

\square
We now give the transition matrices between our bases \mathcal{M}.

LEM 23

For $0 \leq j \leq d$

\[I_j = \sum_{i=0}^{d} f_j(\theta_i) I_i^* \]

\[I_j^* = \sum_{i=0}^{d} \sum_{k=i}^{d} \frac{f_i(\theta_j)}{k^i} I_i^* \]

pf (i)

\[I_j = f_j(A)^x \]

\[= I f_j(A) I^x \]

\[= \sum_{i=0}^{d} f_j(A) E_i^x \]

\[= \sum_{i=0}^{d} f_j(A) E_i I_i^x \]

\[= \sum_{i=0}^{d} f_j(\theta_i) E_i I_i^x \]
(iii) Use LEM 22. Write

\[\Pi^k \equiv \sum_{h=0}^{d} \lambda_h \Pi_h \quad \lambda_h \in \mathbb{C} \]

For \(0 \leq i \leq d\)

\[\langle \Pi_i, \Pi^k \rangle = \langle \Pi_i, \sum_{h=0}^{d} \lambda_h \Pi_h \rangle \]

\[= \lambda_i k_i \]

By LEM 22

\[\langle \Pi_i, \Pi^k \rangle = f_i(c_0)/m_i \]

So

\[\lambda_i = \frac{f_i(c_0)/m_i}{k_i} = \lambda_i \]

\[\square \]
The polynomials \(\{ f_i \}_{i=0}^d \) are "orthogonal" in the following sense.

LEM 24 \(\forall r, s, t \in \mathcal{D} \)

(i) \[
\sum_{i=0}^{d} f_r(\theta_i) f_s(\theta_i) m_i = \delta_{rs} kr
\]

(ii) \[
\sum_{i=0}^{d} f_r(\theta_i) f_t(\theta_i) ki_i = \delta_{rt} m_i
\]

pf (i)

\[
\delta_{rs} kr = \langle \Pi_r, \Pi_s \rangle
\]

\[
= \langle \sum_{i=0}^{d} f_r(\theta_i) \Pi_i, \sum_{j=0}^{d} f_s(\theta_j) \Pi_j \rangle
\]

\[
= \sum_{i=0}^{d} f_r(\theta_i) f_s(\theta_i) m_i
\]
\[\delta_{\text{rad } m_{r}} = \left\langle \Pi_{r}^{x}, \Pi_{a}^{x} \right\rangle \]

\[= \left\langle \sum_{i=0}^{d} \frac{f_{i}(\theta_{r}) m_{r}}{k_{i}} \Pi_{i}, \sum_{g=0}^{d} \frac{f_{g}(\theta_{a}) m_{a}}{k_{g}} \Pi_{g} \right\rangle \]

\[= \sum_{i=0}^{d} \frac{f_{i}(\theta_{r}) f_{i}(\theta_{a}) m_{r} m_{a}}{k_{i}^{2}} \]

Result follows.

\[\square \]
DEF 25. \(\Gamma \) is said to be

distance-regular whenever \(tx \in X \)

(i) \(\Gamma \) is distance-regular with respect to \(x \);

(ii) The intersection numbers of \(\Gamma \) with respect to \(x \) do not depend on \(x \).