Recall R is a commutative ring with $1
eq 0$.

In R-modules, we continue to discuss rank and linear independence.

Assume R is an integral domain.

Given an R-module V and elements $\{v_i\}_{i=1}^n$ in V, consider the R-submodule

$$W = \sum_{i=1}^n Rv_i$$

Consider the map

$$\psi : R^n \rightarrow W$$

$$(c_1, c_2, \ldots, c_n) \rightarrow c_1v_1 + c_2v_2 + \cdots + c_nv_n$$

Observe ψ is a surjective R-module homomorphism.

Moreover TFAE

(i) $\{v_i\}_{i=1}^n$ are linearly independent.

(ii) ψ is an R-module isomorphism.
LEM 14. Assume R is an integral domain.

Given an R-module V and R-submodules U, U' of V such that $U \cap U' = 0$.

Given m indep elements of U:

u_1, u_2, \ldots, u_n

Given m indep elements of U':

u'_1, u'_2, \ldots, u'_m

Then

$u_1, u_2, \ldots, u_n, u'_1, u'_2, \ldots, u'_m$

are m indep in V.

pf. Given \{$c_i^1\}_{i=1}^n$, \{$c_i'^1\}_{i=1}^m \in R$

\[\sum_{i=1}^n c_i^1 u_i + \sum_{i=1}^m c_i'^1 u'_i = 0 \]

\[\forall u \in U, \forall u' \in U' \]

\[u \in U \cap U' = 0 \]

\{c_i, i=1, \ldots, n\} all 0 since * lin indep

\{c_i'^1, i=1, \ldots, m\} all 0 since * lin indep

\[\square \]
LEM 15 Assume \(R \) is an integral domain

Given an \(R \)-module \(V \) and linearly independent elements

\[u_1, u_2, \ldots, u_n \in V \]

If \(A \in \text{Mat}_n(R) \) consider the elements

\[v_j = \sum_{i=1}^n A_{ij} u_i \quad \text{for} \quad j = 1, \ldots, n \]

then \(v_j \) are linearly independent if \(\det(A) \neq 0 \)

pf. \(v_j \) are linearly independent if \(\det(A) \neq 0 \)

\[c = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \in R^n \]

we have

\[\sum_{j=1}^n c_j v_j = \sum_{j=1}^n c_j \left(\sum_{i=1}^n A_{ij} u_i \right) = \sum_{i=1}^n \left(\sum_{j=1}^n A_{ij} c_j \right) u_i \]

so

\[\sum_{j=1}^n c_j v_j = 0 \quad \text{if} \quad A c = 0 \]

Recall \(A c = 0 \) has a non-zero solution \(c \) if \(\det(A) \neq 0 \)

Result follows.
Cor 16. Assume R is an integral domain.

Given an R-module V and lin indep elements

$$a_1, a_2, \ldots, a_n \in V$$

Given

$$0 \neq a_i \in R$$

then the elements

$$a_1v, a_2v, \ldots, a_nv$$

are lin indep.

pf. The matrix

$$A = \text{diag} (a_1, a_2, \ldots, a_n)$$

has det $a_1 a_2 \cdots a_n$.

$\neq 0$ since R is integral domain.

Result follows by Lem 15.

\square
Assume R is an integral domain.

Given an R-module V

Given lin. ind. elements

$$v_1, v_2, \ldots, v_n \in V \quad n = \text{rank}(V)$$

So the R-submodule

$$W = \sum_{i=1}^{n} Rv_i$$

is iso R^n

LEM 17 With above notation, the quotient R-module V/W is torsion.

pf $\forall v \in V$ the elements v, v_1, v_2, \ldots, v_n are lin. ind.

So if $a, a_1, a_2, \ldots, a_n \in R$ not all 0

St

$$av + \sum_{i=1}^{n} a_i v_i = 0$$

$a \neq 0$ since v, v_1, v_2, \ldots, v_n are lin. ind. Also

$$av \in \sum_{i=1}^{n} Rv_i = W$$

So in V/W

$$a(v+W) = av + W = W$$

So $v+W$ is torsion.
We now reverse the logical direction.

Lemma 18 Assume \(R \) is an integral domain. Given an \(R \)-module \(V \) and \(n \geq 0 \), assume \(\exists \) \(R \)-submodule \(W \) of \(V \) that is isomorphic to \(R^n \) and \(V/W \) is torsion. Then

\[
\text{rank} (V) = n \leq 1/n
\]

Proof

Observe

\[
n = \text{rank} (W) \leq \text{rank} (V) = N
\]

Show \(n \geq N \):

\[
\exists \text{ linearly independent } v_1, v_2, \ldots, v_n \in V
\]

For all \(n \leq N \) \(\exists \) \(\alpha_1, \alpha_2, \ldots, \alpha_N \in R \) such that

\[
\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_N v_N \in W
\]

Since \(V/W \) is torsion

By Cor 16

\[
a, b, a_2 v_2, \ldots, a_N v_N \text{ linearly dependent}
\]

Now

\[
n \geq N \text{ since } W \text{ has rank } n. \quad \square
\]
Prop 19 Assume \(R \) is an integral domain.

Given \(R \)-modules \(U, V \).

Then for the direct product \(R \)-module \(U \times V \),

\[
\text{rank}(U \times V) = \text{rank}(U) + \text{rank}(V)
\]

\[
\begin{array}{c|c|c}
& N & m \times n \\
\hline
\end{array}
\]

pf Write \(W = U \times V \)

View \(U, V \) as \(R \)-submodules of \(W \), so

\[
W = U + V \quad (\text{dir. sum})
\]

\[
\exists \ \text{lin. indep} \\
\quad u_1, u_2, \ldots, u_m \in U
\]

\[
\exists \ \text{lin. indep} \\
\quad v_1, v_2, \ldots, v_n \in V
\]

Show \(N \geq mn \)

The sum \(U + V \) is direct, so

by LEM 14,

\[
\begin{array}{c|c|c}
& u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n & \text{lin. indep in } W \\
\hline
\end{array}
\]
Show \(N \leq \min m \)

\[\exists \text{ lin indep elements} \]

\[w_1, w_2, \ldots, w_N \in W \]

For \(1 \leq i \leq N \) write

\[w_i = w_i^+ + w_i^- \]

\[U \quad V \]

\[U \quad V \]

Obs

\[w_i^+, u_i, u_2, \ldots, u_m \in \text{ lin dep} \]

So

\[\exists \ a \in \mathbb{R} \text{ st} \]

\[a_i w_i^+ \in \left(R_{u_1} + R_{u_2} + \cdots + R_{u_m} \right) \]

\[\overset{U}{\quad V} \]

Obs

\[w_i^-, v_i, v_2, \ldots, v_n \in \text{ lin dep} \]

So

\[\exists \ a \in \mathbb{R} \text{ st} \]

\[b_i w_i^- \in \left(R_{v_1} + R_{v_2} + \cdots + R_{v_n} \right) \]

\[\overset{V}{\quad} \]
\[\text{Obs} \]
\[a_i b_i w_i = a_i b_i (w_i^+ + w_i^-) \]
\[= b_i (a_i w_i^+) + a_i (b_i w_i^-) \]
\[\subseteq \bar{U} \oplus \bar{V} \]

By Cor 16
\[a_i b_i w_i \in \mathbb{N} \]
are lin indep.

By above lemma we have \(R \)-module isomorphisms
\[\bar{U} \cong \mathbb{R}^m, \quad \bar{V} \cong \mathbb{R}^n \]

So \(\bar{U} + \bar{V} \cong \mathbb{R}^{m+n} \)

So \(\text{rank} (\bar{U} + \bar{V}) = mn \)

But \(\bar{x} \) gives \(N \) lin indep elements in \(\bar{U} + \bar{V} \).

So \(N \leq mn \)
Assume R is integral domain.

Given $f,g \in R$-module V,

Describe V

Write $V = \sum_{i=1}^{n} Rv_i$.

Recall the map

\[\psi: \mathbb{R}^n \rightarrow V \]

\[\left(a_1, a_2, \ldots, a_n \right) \rightarrow a_1v_1 + a_2v_2 + \ldots + a_nv_n \]

is surjective R-module homomorphism.

Let $W = \ker \psi$.

So W is R-submodule of \mathbb{R}^n.

ψ induces R-module ψ.

\[\mathbb{R}^n/W \rightarrow V \]

\[x + W \rightarrow \psi(x) \]

To describe the solutions of V, it suffices to describe the R-submodule W of \mathbb{R}^n.

Given R-submodule W of R^n.

By LEM 13, W is torsion-free.

Write $m = \text{rank}(W)$.

Obv $m \leq \text{rank}(R^n) = n$.

Natural question: does there exist an R-module W so $W = R^m$?

We will show: ans is "No" in general.

ans is "yes" if R is a PID.

The next example illustrates why the ans is No in general.