LECTURE 39 Wednesday April 27

The Rational Canonical Form

Let F denote a field.

For an indeterminate x, recall the polynomial ring $F[x]$.

We saw the ring $F[x]$ is a P.I.D.

Let V denote an $F[x]$-module.

Then V is an F-module (as a vector space over F).

And the map

$$T : V \rightarrow V$$

$$v \rightarrow xv$$

is an F-linear transformation.

Assume the $F[x]$-module V is $f.g.$.

Recall that V is the direct sum of finitely many cyclic $F[x]$-submodules.
Assume the $F[x]$-module V is cyclic and nonzero.

So if $0 \neq v \in V$ s.t.

$$V = F[T]v$$

So the vector space V is spanned by

$$v, \quad Tv, \quad T^2v, \quad \ldots$$

Case: the $F[x]$-module V is free.

The vectors v form a basis for V.

The $\dim V$ is finite.

Case: the $F[x]$-module V is torsion.

Write

$$\text{Ann}(V) = F[x]m(x)$$

where $m(x)$ is unique up to multi by nonzero scalar in F.

We call $m(x)$ is monic.

Obs.

$m(x)$ is the monic poly of least degree such that

$$m(T) = 0$$

Call $m(x)$ the \underline{minimal} polynomial for T.

\[4/27/16\]
Write
\[m(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_k x^k + r x^k \]
k ≥ 1, \quad b_0, b_1, \ldots, b_k, r \in F

Then the vectors
\[v, T v, T^2 v, \ldots, T^k v \]
form a basis from \(v \) vs \(V \) and
\[T^k v = -b_0 v - b_1 T v - b_2 T^2 v - \ldots - b_k T^k v \]
So \(v \) vs \(V \) has dim \(k \)

Let \(A \) = matrix in \(\text{Mat}_k(F) \) that represents \(T \)
with basis \(\{ x^k \} \)

Then
\[
A = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & -b_0 \\
0 & 0 & \cdots & 0 & -b_1 \\
0 & 0 & \cdots & 0 & -b_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & -b_k
\end{pmatrix}
\]

Call \(A \) the companion matrix for the poly \(m(x) \)
LEM 1 Given an $F[x]$-module V

TPAE

(i) $F[x]$-module V is finitely generated

(ii) Vector space V is finite-dimensional $\dim |V| < \infty$

pf (i) \rightarrow (ii) V is direct sum of finitely many cyclic $F[x]$-submodules, each of which is torsion and hence finitely generated.

(ii) \rightarrow (i) Write $n = \dim |V|$

Pick a basis $\{v_1, \ldots, v_n\} \rightarrow V$

$V = \sum_{i=1}^{n} Fv_i$

$= \sum_{i=1}^{n} F[x]v_i$

So $F[x]$-module V is finitely generated.

Now $F[x]$-module V is direct sum of cyclic $F[x]$-submodules. Now one free so all are torsion.

So $F[x]$-module V has rank 0 so V is torsion. \Box
Until further notice the \(F[x] \)-module \(V \) satisfies

LEMMA (i), (ii)

Consider the invariant factor decomp of the \(F[x] \)-module \(V \).

The inv factors are (monic polynomials in \(F[x] \)):

\[
m_1(x), m_2(x), \ldots, m_r(x)
\]

each with degree \(\geq 1 \) and

\[
m_1(x) \mid m_2(x) \mid \cdots \mid m_r(x)
\]

Recall

\[
\text{Ann}(V) = F[x] m_r(x)
\]

\(m_r(x) \) is monic pol at least deg \(\geq 5 \) \(m_r(T) = 0 \)

\[
\text{min poly of } T^n
\]
Thm 2: With above notation,

exists basis \(f_a \) vs \(V \) with respect to which the matrix representing \(T \) is

\[
\begin{pmatrix}
C_1 & & \\
& C_2 & \\
& & \ddots
\end{pmatrix}
\]

"Rational Canonical Form"

where \(C_i \) is the companion matrix of \(m_i(x) \) \(\forall i \leq \sigma \).

pf: F[x]-module \(V \) is ds of cyclic F[x]-submodule

\[
V = F[x]v_1 + F[x]v_2 + ... + F[x]v_r
\]

with

\[
\text{Ann} \left(F[x]v_i \right) = F[x] m_i(x) \quad \forall i \leq \sigma
\]

\(F[x]v_i \) vs \(F[x]v_i \) has basis w.r.t which main

rep \(T = C_i \). Result follows. \(\square \)
DE: \(\exists F \) \, \lambda \in F \) define
\[V_\lambda = \left\{ v \in V \mid T(v) = \lambda v \right\} \]

Call \(\lambda \) an eigenvalue of \(T \) iff \(V_\lambda \neq \emptyset \)

In this case call \(V_\lambda \) the \(\lambda \)-eigenspace for \(T \)

LEM: \[\text{Pick a basis } \{ v_1, v_2, \ldots, v_n \} \]

\[\text{Let } B \text{ denote the matrix rep } T \text{ w.r.t. } \{ v_1, v_2, \ldots, v_n \} \]

Then \(\det(B) \) is indep \(\lambda \).

pf: \[\text{Pick a second basis } \{ w_1, w_2, \ldots, w_n \} \]

Let \(S \in \text{Mat}_{n,n}(F) \) denote the transition matrix
\[\text{from } \{ v_1, v_2, \ldots, v_n \} \text{ to } \{ w_1, w_2, \ldots, w_n \} \]
The matrix rep. \(T \) w.r.t. \(\{ w_1, w_2, \ldots, w_n \} \) is
\[S^{-1}BS \]

Now \[\det(\lambda^{-1}BS) = \det(S) \det(B) \det(S^{-1}) \]
\[= \det(B) \lambda \]
\[\square \]
DEF 5 By the determinant of T, we mean $\det(B)$ where the matrix B represents T with some basis for V.

Prop 6 For $\lambda \in F$ $T \in M_n(F)$

(i) λ is an eigenvalue of T

(ii) $\lambda I - T$ is not invertible

(iii) $\det(\lambda I - T) = 0$

pf elem. lin. alg. \Box
Def: The characteristic polynomial of T is the following poly in $F[x]$:

$$ \det (xI - T) $$

$C(x) = \det (xI - T)$ is a monic with degree $= \dim (V)$.

We now describe how the char poly $C(x)$ is related to the $m_p(x)$.
Prop 8

With above notation

\[C(x) = m_1(x) m_2(x) \ldots m_r(x) \]

pf

Consider the basis \(\mathbf{v} \) as in \(\text{Ann} Z \).

Rel this basis

\[\mathbf{T} = \begin{pmatrix} \mathbf{c} & 0 \\ \mathbf{c} & 0 \\ \mathbf{c} & 0 \\ \mathbf{c} & 0 \end{pmatrix} \]

so

\[xI - T = \begin{pmatrix} xI - c_5 \\ xI - c_4 \\ xI - c_3 \\ xI - c_2 \end{pmatrix} \]

\[\det (xI - T) = \prod_{i=1}^{r} \det (xI - c_i) \]

\[\mathbf{m}_i(x) \]

4/27/16
Cor 9. the min poly of T divides the char poly of T.

\[m(x) \mid c(x) \]

\[m(x) = m_r(x) \]

By Prop 8, \(m(x) \mid c(x) \)

\[\square \]

Cor 10 (Cayley–Hamilton law)

\[c(T) = 0 \]

where \(c(x) \) is the char poly of \(T \).

pf \[c(T) = m(T) \cdot m_r(T) - \frac{m_r(T)}{1} \]

\[= 0 \]
Corollary 11

The characteristic polynomial of T divides some power of the minimal polynomial of T.

$$ \chi(x) \mid m^r(x) $$

Proof

By Proposition 8

$$ \chi(x) = m_1(x) m_2(x) \cdots m_r(x) $$

For (surjective)

$$ m_i(x) \mid m(x) $$

Write

$$ m(x) = m_i(x) M_i(x), \quad M_i(x) \in F[x] $$

Observation

$$ m(x)^r = m_1(x) M_1(x) \cdots m_r(x) M_r(x) $$

$$ = m_1(x) \cdots m_r(x) M_1(x) \cdots M_r(x) \chi(x) $$

So

$$ \chi(x) \mid m(x)^r $$