8.1 Euclidean domains

Until further notice

R is a commutative ring

Recall the natural numbers

$\mathbb{N} = \{0, 1, 2, \ldots\}$

DEF 1 Assume R is an integral domain

A norm on R is a function

$N : R \rightarrow \mathbb{N}$

such that

$N(0) = 0$

The norm N is positive whenever

$N(r) > 0 \quad \text{for all} \quad r \in R$
DEF 2 Assume R is an integral domain.

Then R is called Euclidean whenever it has a norm N with the property:

$orall a,b \in R$ with $b \neq 0$,

exists $q,r \in R$ such that

$a = bq + r$

and

$r = 0$ or $N(r) < N(b)$

Ex: Integers \mathbb{Z} form a Eucl Domain

with $N(x) = |x|$ for $\forall x \in \mathbb{Z}$
Ex 3 Let \(F \) denote a field

so \(F \) is an integral domain.

Let \(N \) denote any norm on \(F \).

Then \(N \) turns \(F \) into a Euclidean domain:

\(\forall a, b \in F \) with \(b \neq 0 \),

define \(q = ab^{-1} \), \(r = 0 \).

Then \(a = bq + r \).
Example 9: Let F denote a field.

Let x be indeterminate.

Let $F[x] = \text{ring of polynomials in } x \text{ that have all coefficients in } F$.

Recall $F[x]$ is integral domain.

Define $N(f) = \text{degree of } f \quad f \in F[x]$.

Then N is a norm on $F[x]$.

N turns $F[x]$ into Euclidian domain.
Ex 5 Recall the Gaussian integers

\[\mathbb{Z}[i] = \left\{ a + bi \mid a, b \in \mathbb{Z} \right\} \quad i^2 = -1 \]

In \[R \]

R is integral domain

For \[r = a + bi \in R \] define

\[N(r) = a^2 + b^2 \]

\[N \] is positive norm on \[R \]

Show \[N \] turns \[R \] into a Euclidean domain.

pf Note that

\[N(rs) = N(r)N(s) \quad r, s \in R \]

Given \[x, y \in R \] with \[y \neq 0 \]

Display \[q, r \in R \] s.t.

\[x = qy + r \quad N(r) < N(y) \]

Write

\[x = a + bi \]

\[y = c + di \]

In \[\mathbb{C} \]

\[y^{-1} = \frac{c - di}{c^2 + d^2} \]
In \(\mathbb{C} \),

\[
x y^{-1} = \frac{(a + bi)(c - di)}{c^2 + d^2} = A + B i
\]

where

\[
A = \frac{ac + bd}{c^2 + d^2}, \quad B = \frac{bc - ad}{c^2 + d^2}
\]

\[
\exists \quad \alpha, \beta \in \mathbb{Z} \text{ such that } |A - \alpha| \leq \frac{1}{2}, \quad |B - \beta| \leq \frac{1}{2}
\]

Define

\[
t = \alpha + \beta i
\]

Define

\[
r = x - ty
\]

Show

\[
N(r) < N(t)
\]

Show

\[
\frac{N(r)}{N(t)} < 1
\]
\[
\frac{N(r)}{N(\gamma)} = \frac{N(\sqrt{x^2 - \gamma^2})}{N(\gamma)}
\]

\[
= \frac{N(x\gamma^2 - \gamma)}{N(\gamma)}
\]

\[
= N(x\gamma - \gamma)
\]

\[
= N\left(A - \alpha + (B - \beta)\right)
\]

\[
= (A - \alpha)^2 + (B - \beta)^2
\]

\[
\leq \frac{1}{4} + \frac{1}{4}
\]

\[
= \frac{1}{2}
\]

\[
< 1
\]

\[\square\]
Recall \(\forall a \in R \)

\[Ra = \{ ra \mid r \in R \} \]

is the ideal of \(R \) generated by \(a \).

Given any ideal \(I \subseteq R \),

\(I \) is principal whenever

\[\exists a \in R \text{ s.t.} \]

\[I = Ra. \]
Prop 6 Assume \(R \) is a Euclidean domain with norm \(N \).

Let \(A \) denote a nonzero ideal of \(R \).

Define
\[
m = \min \{ N(a) \mid a \in A, \ a \neq 0 \}
\]

Pick \(d \in A \), \(N(d) = m \).

Then \(A = Rd \).

In particular \(A \) is principal.

pf \(A \supseteq Rd \)

\(A \subseteq Rd \):

Given \(a \in A \) show \(a \in Rd \).
Since R is Euclidean,

$$\exists q, r \in R$$

set

$$a = qd + r$$

and

$$r = 0 \quad \text{and} \quad N(r) < N(d)$$

Obs

$$r = a - qd$$

$$\in A \quad \exists A$$

So

$$r = 0 \quad \text{and} \quad N(r) = m = N(d)$$

So

$$r = 0$$

Now

$$a = qd \in R$$
Recall the ring
\[\mathbb{Z}[\sqrt{-5}] = \left\{ a + b\sqrt{-5} \mid a, b \in \mathbb{Z} \right\} \]

is an integral domain.

This ring is not a Eucl domain.

If we display an ideal \(A \) of \(R \) that is not principal.

For \(r = a + b\sqrt{-5} \) define
\[N(r) = a^2 + 5b^2 \]

\(N \) is a positive norm on \(R \).

\[N(rs) = N(r)N(s) \quad \forall r, s \in R \]

For \(r \in R \)
\[N(r) \in \{0, 1, 4, 5, 6, \ldots \} \]

Define
\[x = 1 + \sqrt{-5} \quad y = 2 \]

So
\[N(x) = 1 + 5 = 6 \quad N(y) = 4 \]
Define ideal

\[A = Rx + Ry \]

Show \(A \) is not principal.

Suppose \(A \) is principal. Write

\[A = Rd \quad d \in \mathbb{R} \]

\[\exists \ a, b \in \mathbb{R} \text{ s.t. } \]

\[x = ad, \quad y = bd \]

\[N(x) = N(a)N(d) \quad N(y) = N(b)N(d) \]

\[\frac{11}{6} \]

\[N(d) \text{ divides } 4 \text{ and } 6 \]

\[N(d) \in \{1, 2, 3\} \]

\[N(d) \neq 2 \quad \text{so} \]

\[N(d) = 1 \]

\[d = \pm 1 \]

Hence \(d = 1 \)

\[\text{Hence } d = 1 \]
If \(r, a \in \mathbb{R} \) then
\[
r + ay = 1
\]
Write
\[
r = a + b \sqrt{-5}, \quad a = A + \beta \sqrt{-5}
\]
\[
a, b, A, \beta \in \mathbb{Z}
\]

\[
1 = \left(a + b \sqrt{-5} \right) \left(1 + \sqrt{-5} \right) + \left(A + \beta \sqrt{-5} \right) \cdot 2
\]

\[
= a - 5b + 2A + \frac{1}{2} \cdot \left(a + b + 2\beta \right) \cdot \sqrt{-5}
\]

\[
\mod 2,
\]

\[
1 \equiv a - 5b + 2A \equiv a + b
\]

\[
0 \equiv a + b + 2\beta \equiv a + b
\]

\[\square\]

So, \(a \) is not principal.
Recall our commutative ring R.

DEF 8. Given $a, b \in R$ with $b \neq 0$ write

$$b \mid a$$

whenever $a \in Rb$.

"b divides a"