Lecture 20

The Hopf algebra $U_q(g)$

where $g = \text{f.d. s.s. Lie algebra}$

To motivate $U_q(g)$ for general g, first consider $g = \mathfrak{sl}_{n+1}$.

Recall Lie algebra \mathfrak{sl}_{n+1}

For moment assume $F = \mathbb{C}$

View $\mathfrak{sl}_{n+1} = \left\{ x \in \text{Mat}_{n+1}(F) \mid x^T x = 0 \right\}$

Lie bracket $[x, y] = xy - yx$ for $x, y \in \mathfrak{sl}_{n+1}$

Structure of \mathfrak{sl}_{n+1} is described by Cartan matrix

\[A = \begin{pmatrix} 2 & -1 & & \cdots & & \cdots & & \cdots & \cdots & & \cdots & \cdots \ 1 & 2 & -1 & & & & & & & & & & & & & & \end{pmatrix}_{n \times n} \]

As we now explain.
Notation

\[F_n = \mathbb{R}_i, \text{ for } \}

\[E_{ij} \in \text{Mat}_{mn}(\mathbb{F}) \]

has \((i, j)\) entry 1 and all other entries 0

Generators for linear span:

\[e_i = E_{i\cdot\cdot n} \]

\[f_i = E_{i,\cdot}\]

\[h_i = E_{\cdot i} - E_{\cdot \cdot i\cdot} \]
(i) \(\left[e_i, f_j \right] = \delta_{ij} h_i \quad \text{for all } i, j \)

(ii) \(\left[h_i, h_j \right] = 0 \)

(iii) \(\left[h_i, e_j \right] = A_{ij} e_j \)

(iv) \(\left[h_i, f_j \right] = -A_{ij} f_j \)

(v) \(\left(\text{ad } e_i \right)^{1-A_{ij}} (e_j) = 0 \quad \text{if } i \neq j \)

(vi) \(\left(\text{ad } e_i \right)^{1-A_{ij}} (f_j) = 0 \quad \text{if } i \neq j \)

where \(\text{ad} x (y) = [x, y] \)

By Serre's Theorem, \(\mathfrak{sl}_n \) is isomorphic to the Lie algebra \(\mathfrak{gl}_n \) over \(\mathbb{F} \) generated by symbols \(e_i, f_i, h_i \) (\(i \in \mathbb{Z} \))

subject to relations (i) - (vi) above.

Also, the universal enveloping algebra \(\text{U}(\mathfrak{sl}_n) \) is the associative algebra with gens \(e_i, f_i, h_i \) (\(i \in \mathbb{Z} \)) and relations (i) - (vi) above, where as integer \([xy] = xy - yx \).
Observations

1. For \mathfrak{g} is even, e_i, f_i, h_i span a Lie subalgebra of dimension 1000 of \mathfrak{g}.

2. Refer to (v) above, in $\mathfrak{u}(\mathfrak{sl}_n)$ the LHS is

$$
\sum_{a=0}^{1-A^{ij}} \left(\begin{array}{c}
1 - A^{ij} \\
-1
\end{array} \right) e_i^{a} e_j^{1-A^{ij}-a} e_i^{a}
$$
DEF \(\mathbb{F} \) an \(\mathbb{F} \)

\[0 \neq q \in \mathbb{F} \quad \text{not a root of 1} \]

For \(n \geq 1 \), the algebra \(U_q(\mathfrak{sl}_n) \) has\(k_i, k_i^{-1} \in \mathbb{F} \)

\[e_i, f_i, k_i, k_i^{-1} \quad \text{is a gen} \]

and relations

(i) \(k_i k_i^{-1} = k_i^{-1} k_i = 1 \)

(ii) \(k_i k_j = k_j k_i \quad 1 \leq i < j \leq n \)

(iii) \(k_i e_j k_i^{-1} = q^{\delta_{ij}} e_j \)

(iv) \(k_i f_j k_i^{-1} = q^{-\delta_{ij}} f_j \)

(v) \(e_i f_j - f_j e_i = \delta_{ij} \left(\frac{k_i - k_i^{-1}}{q - q^{-1}} \right) \)

(vi) \(\sum_{a=0}^{1-Aq} \left[\begin{array}{c} 1-Aq \\ a \end{array} \right] q^{\binom{a}{2}} e_i^{1-Aq^{-a}} f_j e_i^a = 0 \) if \(i \neq j \)

(vii) \(\sum_{a=0}^{1-Aq} \left[\begin{array}{c} 1-Aq \\ a \end{array} \right] (q)^{a} f_i^{1-Aq^{-a}} f_j f_i^a = 0 \) if \(i \neq j \)
Next goal: Before \(U_1(g) \) for a fixed \(g \) is locally.

Needed facts on \(g \):

For now being, assume \(F = \mathbb{C} \).

Recall a f.d. Lie alg \(g \) over \(\mathbb{C} \) is semi-simple iff it is a direct sum of simple Lie algebras over \(\mathbb{C} \).

The simple Lie algebras over \(\mathbb{C} \) are:

\(A_n, B_n, C_n, D_n, E_6, E_7, E_8, F_4, G_2 \)

Let \(g = \text{f.d. Lie alg} / \mathfrak{g} \).

We associate with \(g \) a Cartan matrix \(A \).

For \(g \) simple, \(A \) is given in handout.

For \(g = g_1 \oplus g_2 \oplus \cdots \oplus g_r \) (\(g_i \) simple),

\[
A = \begin{pmatrix}
A_1 & & & \\
& A_2 & & \\
& & A_3 & \\
& & & A_r
\end{pmatrix}
\]

\(A_i \) = Cartan matrix for \(g_i \).

By the rank of \(g \) we mean \(n \) where \(A \) is non-zero.
Proof of Theorem: The idea of the proof is to classify all the possible cobweb graphs. By a cobweb graph, we mean a graph whose vertices are pairs of integers, and whose edges connect vertices if the difference between the integers is a fixed positive integer. The cobweb graph is the dual graph to the graph of the roots of a polynomial. The roots of a polynomial can be classified into three types: real roots, complex roots, and roots of multiplicity greater than one.

Table 1: Cobweb matrices

The restrictions on Δ for types A, B, and C are imposed in order to avoid

Diagram 1: Cobweb graph

Diagram 2: Cobweb graph
Fact 1 \[\det A > 0. \] In particular, \(A^{-1} \) exists.

Fact 2 \[A \text{ is symmetrizable}, \quad \text{this means} \]
\[\exists \text{pos. integers } \{ d_1, \ldots, d_n \}, \quad (n = \text{rank } A) \]
\[\begin{pmatrix} d_1 & 0 \\ 0 & \ddots \\ & & d_n \end{pmatrix} A \]
\[\text{is symmetric} \]

The \(d_i \) are not unique in gen.

We normalize the \(d_i \) so that

For \(q \) simple \[1 = \min \{ d_i \mid i \in q \} \]

For gen \(q \)

For each simple component of \(q \)
The entries \(d_i \) are normalized as above.
<table>
<thead>
<tr>
<th>Type</th>
<th>d_1, d_2, \ldots, d_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_n, B_n, C_n, E_6, E_7, E_8$</td>
<td>$l, 1, \ldots, 1$</td>
</tr>
<tr>
<td>B_n</td>
<td>$1, 1, \ldots, 1, 2$</td>
</tr>
<tr>
<td>C_n</td>
<td>$2, 2, \ldots, 2, 1$</td>
</tr>
<tr>
<td>F_4</td>
<td>$1, 1, 2, 2$</td>
</tr>
<tr>
<td>G_2</td>
<td>$3, 1$</td>
</tr>
</tbody>
</table>
Fact 9

Let \(g = \mathfrak{h} \oplus \mathfrak{sl}_n \mathfrak{g} \) be a Lie algebra with \(\mathfrak{h} = \text{Cartan matrix} \) and \(n = \text{rank } \mathfrak{g} \).

Then \(\mathfrak{g} \) is isomorphic to the Lie algebra \(\mathfrak{g} \) with generators \(e_i, f_i, h_i \) with

\[\text{and} \quad \gamma_2 \]

(\(i \)) \([e_i, f_j] = \delta_{ij} h_i \) \(\quad \text{for } i, j \in \mathbb{N} \)

(\(ii \)) \([h_i, h_j] = 0 \)

(\(iii \)) \([h_i, e_j] = A_{ij} e_j \)

(\(iv \)) \([h_i, f_j] = -A_{ij} f_j \)

(\(v \)) \((\text{ad } e_i)^{1 - A_{ij}} (f_j) = 0 \) if \(i \neq j \)

(\(vi \)) \((\text{ad } f_i)^{1 - A_{ij}} (e_j) = 0 \) if \(i \neq j \)

(\(vii \)) \(\text{ad} \times (\text{ad }) = [\eta, \eta] \)
Fact 5. Given a R.H. s.s. locally \mathbb{C}

\[
\exists \text{ nondeg symmetric bilinear form } g \times g \to \mathbb{C}
\]

such that

\[
([x, y], z) = (x, [y, z]) \quad \forall x, y, z \in g
\]

is not unique in g_0. It can be normalized so that

\[
(e_i, f_i) = \frac{1}{\delta_i} \quad \text{for } i \in \mathbb{N}_0
\]
For g as above define

$$H = \text{Span}(h_1, h_2, \ldots, h_n)$$

Observe H is a Lie subalgebra of g.

Call H a **Cartan subalgebra**.

Let $H^* = \text{dual space of } H$.

We have a non-degenerate bilinear form

$$\langle , \rangle : H \times H^* \to \mathbb{C}$$

$$h \mapsto f(h)$$

LEMMA 7. For g, H, H^* as above

\exists unique basis a_1, a_2, \ldots, a_n

$\forall h_i \in H^*$

$$\langle h_i, a_j \rangle = A_{ij} \quad 1 \leq i, j \leq n$$

$A = \text{Cartan matrix}$

Call a_1, a_2, \ldots the **simple roots** of g.

Write

$$\Pi = \{ a_1, a_2, \ldots, a_n \}$$

Proof: Since A exists.
LEM 8. We have

(i) \[(h_1', h_0) = \frac{A_{ij}}{\partial x_j} = \frac{A_{ij}'}{\partial x_i} \quad \text{if } j \neq i\]

(ii) \[(h_i', h_i) = \frac{2}{\partial x_i} \quad \text{if } i \neq j \neq i\]

(iii) \[A_{ij} = \frac{2 (h_i', h_j)}{(h_j', h_j)} \quad \text{if } i \neq j \neq i\]

Proof (i) \[(h_1', h_2) = \left([e_i, f_i], h_2 \right) = \left(e_i, [f_i, h_2] \right) = A_{ij} (e_i, f_i) = \frac{A_{ij}'}{\partial x_i} = \frac{A_{ij}'}{\partial x_j} \quad \text{by def of } A_{ij}\]

(ii) Set \(i = j \), \(A_{ii} = 2 \) in (i)

(iii) Conclude (i), (ii) \(\square \)
Corollary 9: The restriction of $\langle \cdot, \cdot \rangle$ to H is non-degenerate.

Proof: By Lemma 8 (i) and since A^* exists. \qed

The following map will be useful.

Lemma 10: For vector spaces $V \colon H \to H^y$

$\forall h \in H$

$\langle h', v(h) \rangle = (h', h)$ \hspace{1cm} $\forall h' \in H$

Proof: Each $\langle \cdot, \cdot \rangle$, (\cdot) is non-deq. \qed
Lemma 11 We have

\[\nabla (h_i) = \frac{\partial_i}{d_i} \]

Proof In this step we check:

\[\langle h_j, \frac{\partial_i}{d_i} \rangle = \langle h_j, \nabla (h_i) \rangle \]

\[\| A_{2i} \| (h_j, h_i) \]

\[\frac{A_{2i}}{d_i} \]

\[\text{Lem 8 (i)} \]
Via \(\nu : H \to H^* \) we transport the bilinear form \((\cdot, \cdot)\) on \(H\), to a bilinear form \((\cdot, \cdot)\) on \(H^*\).

Def 12. There exists a bilinear form

\[
(\cdot, \cdot) : H^* \times H^* \to \mathbb{C}
\]

such that

\[
(x, \eta) = (\nu^{-1}(x), \nu^{-1}\eta) \quad \text{for all } x, \eta \in H^*
\]

We observe \((\cdot, \cdot)\) is symmetric and degenerate.