Lecture 27

Ref 59

Let

(i) \(U^+_1 = \text{subs} \cap U_1 \text{ gen by} \{ e^x \mid x \in \pi \} \)

(ii) \(U^-_1 = \ldots \)

(iii) \(U^0_1 = \ldots \)
Theorem 6.0 The following algebras are isomorphic:

(i) \(U_q^+ \)

(ii) The algebra generated by symbols \(\{ e_x / x \in \mathbb{R} \} \)

subject to the q-Serre relations:

\[e_\alpha e_\beta + e_\beta e_\alpha = \frac{q^{|\alpha-\beta|} + q^{-|\alpha-\beta|}}{q^{|\alpha-\beta|} - 1} \quad e_\alpha^2 = 0 \]

\(\alpha, \beta \in \mathbb{R}, \alpha \neq \beta \)

pf Recall that the algebra \(\tilde{U}_q^+ \) is freely generated by \(\{ e_x / x \in \mathbb{R} \} \)

Recall \(I^+ \) is a two-sided ideal of \(\tilde{U}_q^+ \) generated by \(\{ e_{x+\alpha} / x, \alpha \in \mathbb{R} \} \)

So the algebra (ii) is iso

\[\tilde{U}_q / I^+ \]

Recall our map \(\tilde{U}_q \rightarrow U_q \)

Let \(L = \text{ker} \)

Since the restriction

\[\tilde{U}_q^+ \rightarrow U_q \]

is surjective, we find
\[U_1^+ \text{ iso } U_9^+ \]

Solution:

\[I^+ = L \cap \tilde{U}_q^+ \]

Show: \[I^+ \leq L \cap \tilde{U}_q^+ \]

\[I^+ \leq L \quad \text{since } q \text{-sine sub are away from } U_q^+ \]

\[I^+ \leq \tilde{U}_1^+ \quad \text{by def} \]

Show: \[I^+ \geq L \cap \tilde{U}_q^+ \]

Recall the mat map

\[\tilde{U}_1^- \otimes \tilde{U}_9^- \otimes \tilde{U}_q^+ \rightarrow \tilde{U}_9^- \]

\[a \otimes b \otimes c \rightarrow abc \]

\(C. \text{ iso of } v_5. \)
By Lemma 5.8,

\[L = \text{image under } (\ast) \text{ of } \]

\[U_\gamma \ominus \tilde{U}_\gamma \otimes \mathbb{I}^+ + \mathbb{I}^- \otimes \tilde{U}_\gamma \otimes \tilde{U}_\gamma^+ \]

(\ast\ast)

Given \(x \in L \cap \tilde{U}_\gamma^+ \), show \(x \in \mathbb{I}^+ \)

let \(\tilde{x} = \text{preimage of } x \text{ under } (\ast) \)

Since \(x \in \tilde{U}_\gamma^+ \),

\[\tilde{x} = 1 \otimes 1 \otimes x \]

\[\in 1 \otimes 1 \otimes \tilde{U}_\gamma^+ \]

Since \(x \in L \),

\[\tilde{x} \in (\ast\ast) \]

But since \(1 \notin \mathbb{I}^- \) by construction,

\[(\ast\ast) \cap 1 \otimes 1 \otimes \tilde{U}_\gamma^+ = 1 \otimes 1 \otimes \tilde{U}_\gamma^+ \]

Now \(1 \otimes 1 \otimes x = \tilde{x} \in 1 \otimes 1 \otimes \tilde{U}_\gamma^+ \)

So \(x \in \mathbb{I}^+ \)

\[\square \]
The following algebras are iso:

(i) \(\hat{U}_\eta \)

(ii) The algebra gen by symbols \(\{ f_\eta \mid x \in \pi \} \)

subject to the \(\eta \)-brane relations

\[U_{\eta \beta} = 0, \quad \eta, \beta \in \pi, \quad \eta \neq \beta \]

\[pf \sim to \#60. \]
Theorem 62

(i) The restriction of $\tilde{U}_\eta \to U_\eta$ to \tilde{U}_η^0 is a bijection $\tilde{U}_\eta^0 \to U_\eta^0$.

(ii) The vs U_η^0 has basis $\lambda \in \rho$.

(iii) The alg U_η^0 is iso of

$$
\tilde{\rho} \left[\lambda_1^{\alpha_1} \cdots \lambda_k^{\alpha_k} \right]
$$

λ_i, α_i are cong indeps.

Proof:

Let $L = \ker f \text{ map } \tilde{U}_\eta \to U_\eta$

Suff to show

$L \cap \tilde{U}_\eta^0 = 0$

Recall mult map

$$
\tilde{U}_\eta \otimes \tilde{U}_\eta \otimes \tilde{U}_\eta \to \tilde{U}_\eta
$$

is iso of vs.
\[L = \text{image under } \phi \]

\[\tilde{\mathbf{u}}_{\mathbf{g}} \otimes \tilde{\mathbf{u}}_{\mathbf{g}} \otimes I^+ + \mathbf{I} \otimes \tilde{\mathbf{u}}_{\mathbf{g}} \otimes \tilde{\mathbf{u}}_{\mathbf{g}}^+ \]

\[(***)\]

Given \(x \in L \cap \tilde{\mathbf{u}}_{\mathbf{g}} \), show \(x = \alpha \)

Let \(\tilde{x} = \text{preimage of } x \text{ under } \phi \)

Since \(x \in \tilde{\mathbf{u}}_{\mathbf{g}} \),

\[x = \lambda \alpha \phi \]

\[\in \mathbf{I} \otimes \tilde{\mathbf{u}}_{\mathbf{g}} \otimes \mathbf{I} \]

Since \(x \in L \),

\[\tilde{x} \in \mathbf{X} \mathbf{X} \]

Since \(1 \in I^+ \) \(, \) \(1 \notin I^- \),

\[(**) \land \mathbf{I} \otimes \tilde{\mathbf{u}}_{\mathbf{g}} \otimes \mathbf{I} = 0 \]

Now \(\lambda \alpha \phi \phi = \tilde{x} = 0 \)

So \(x = 0 \)

\[(iii), (iii) \) \(B_1 \) \((ii) \) and \(\text{Lem 98} \)

\(\square \)
Theorem 6.3

The map

\[U_q^- \otimes U_q^o \otimes U_q^+ \rightarrow U_q \]

\[a \otimes b \otimes c \rightarrow abc \]

is an isomorphism of vector spaces.

Proof

The quotient map

\[\sigma : \tilde{U}_q \rightarrow U_q \]

is an algebra homomorphism.

We have

\[\sigma^+ = \text{restriction of } \sigma |_{\tilde{U}_q^+} \]

\[\sigma^o = \text{restriction of } \sigma |_{\tilde{U}_q^o} \]

\[\sigma^- = \text{restriction of } \sigma |_{\tilde{U}_q^-} \]

we see

\[I^+ = \text{kernel of } \sigma^+ : \tilde{U}_q^+ \rightarrow U_q^+ \]

\[\sigma^o : \tilde{U}_q^o \rightarrow U_q^o \]

\[\sigma^- : \tilde{U}_q^- \rightarrow U_q^- \]
Consider the diagram:

\[\tilde{U}_\gamma \otimes \tilde{U}_\gamma \otimes \tilde{U}_\gamma \]

\[\sigma \otimes \sigma \otimes \sigma^+ \]

Show that the diagram commutes:

\[a \otimes b \otimes c \]

\[\sigma(a) \otimes \sigma(b) \otimes \sigma(c) \]

Show \(\Phi \) is injective.

Given \(x \in K \) show \(x = 0 \).
let \(\tilde{x} = \text{preimage of } x = \tilde{u}_- \otimes \tilde{u}_0 \otimes \tilde{u}_+ \)

under \(\sigma^- \otimes \sigma^0 \otimes \sigma^+ \) is

\[\tilde{x} \]

\[\downarrow \]

\[x \rightarrow 0 \]

Image of \(\tilde{x} \) under \(\text{mult} \) is in \(\ker \sigma^0 \)

So \(\tilde{x} \in \tilde{u}_- \otimes \tilde{u}_0 \otimes I^+ + I^- \otimes \tilde{u}_0 \otimes \tilde{u}_+ \)

by LEM 58.

But

\[\sigma^- \otimes \sigma^0 \otimes \sigma^+ \left(\tilde{u}_- \otimes \tilde{u}_0 \otimes I^+ \right) \]

\[= \sigma^{- \left(\tilde{u}_- \right)} \otimes \sigma(\tilde{u}_0) \otimes \sigma(\tilde{I}_+) \]

\[= 0 \]
and similarly

\[\sigma^- \otimes \sigma^0 \otimes \sigma^+ \left(\mathbb{1} \otimes \tilde{U}_x \otimes \tilde{U}_y \right) = 0 \]

So

\[\sigma^- \otimes \sigma^0 \otimes \sigma^+ \left(\tilde{x} \right) = 0 \]

\[\tilde{x} \]

We have shown \(\tilde{A} \) is iso.

\(\tilde{A} \) is surjective by construction, so \(\tilde{A} \) is an iso.
LEM 69

(i) \(\exists \) unique alg hom

\[\omega: \tilde{u}_1 \to \tilde{u}_1 \quad \text{(map } \omega: u_1 \to u_1) \]

that sends

\[e_x \to f_x \]

\[f_x \to e_x \]

\[k_x \to k_x \tilde{f}_1 \]

Morcan \(\omega^x = 1 \).

(ii) \(\exists \) unique anti-\text{aut}

\[\tau: \tilde{u}_1 \to \tilde{u}_1 \quad \text{(map } \tau: u_1 \to u_1) \]

that sends

\[e_x \to e_x \]

\[f_x \to f_x \]

\[k_x \to k_x \tilde{f}_1 \]

Morcan \(\tau^x = 1 \).

pf Routine
LEM 6.5 \quad E_n \propto E_T

(i) The elements \(\{ e^z \mid z \in \mathbb{R} \} \) are linearly independent in \(U_2 \).

(ii) \[\{ e^{iz} \mid z \in \mathbb{R} \} \quad \cdots \]

pf. By \(n_{60}, n_{61}, n_{63} \) \qed
LEMMA 66

\[F_\alpha \ni \delta \rightarrow \alpha \]

\[U_{\gamma} (\alpha \lambda \beta) \rightarrow U_\gamma \]

\[e \rightarrow e_\alpha \]

\[f \rightarrow f_\alpha \]

\[k^{\pm 1} \rightarrow k^{\pm 1} \]

is injective.

pf: By Lemma 63 and Lemma 65.