COUNTING 4-VERTEX CONFIGURATIONS IN P-AND Q-POLYNOMIAL ASSOCIATION SCHEMES

Paul Terwilliger
Department of Mathematics
University of Wisconsin
Madison, WI 53706

Abstract

An open problem is whether certain symmetric association schemes arising from the finite projective, orthogonal, unitary, and symplectic geometries, all with the so-called P- and Q-polynomial property, are the unique ones with their own intersection numbers. The following result, which applies to all P- and Q-polynomial schemes, may shed light on this problem. If we say 4-tuples \((x_1, x_2, x_3, x_4)\) and \((y_1, y_2, y_3, y_4)\) of elements taken from the scheme \(Y = (X, [R_i]_{0 \leq i \leq d})\) have the same type if \((x_i, x_j) \in R_t\) implies \((y_i, y_j) \in R_t\) \((0 \leq i, j \leq 4)\), then we show the total number \(n^t\) of 4-tuples from \(Y\) of type \(t\) can be computed from the intersection numbers of \(Y\) and the numbers \(n_S\) for at most \([d/2]\) types \(S\).

AMS 1980 Subject Classification: Primary 05B05, 05C50, 51E05.

Partially supported by NSF grant DMS 8504055.

Copyright © 1985 by Hadronic Press, Inc., Nonantum, Massachusetts 02195, U.S.A. All rights reserved.
For any positive integer \(d \) set \(\{d\} = \{0, 1, \ldots, d\} \). A symmetric \textit{d-class}

association scheme (or simply, scheme) is a configuration \(Y = (X, \{R_i\}_{i \in \{d\}}) \)

consisting of a finite set \(X \) and symmetric relations \(R_0, R_1, \ldots, R_d \) on \(X \)

where

1) \(R_0 = \{(x,x) \mid x \in X\} \) is the identity relation,

2) for every \(x, y \in X, (x,y) \in R_i \) for exactly one \(i \in \{d\} \), and

3) for any \(h, i, j \in \{d\} \) and any \(x, y \in X \) with \((x,y) \in R_h \), the number of \(z \in X \) where \((x,z) \in R_i \) and \((z,y) \in R_j \)

depends only on \(h, i, j \). We denote this number by the intersection number \(p^h_{ij} \).

The set \(X \) of all \(d \)-dimensional (maximal isotropic) subspaces in a projective (orthogonal, unitary, or symplectic) geometry forms such a scheme, if we set \((x,y) \in R_i \) for any \(x, y \in X \) where \(\dim(x \cap y) = d - i \), and in fact these examples are among the few known schemes with the so called \(P \)- and \(Q \)-polynomial property (defined below). Here we give new information on \(P \)- and \(Q \)- polynomial schemes that may help in their classification. See Bannai and Ito[1], Cohen[2], Egawa[3], Huang[4], Leonard[5], Neumaier[6], Sprague[7], and Terwilliger[8–12].

We fix a scheme \(Y = (X, \{R_i\}_{i \in \{d\}}) \) with \(n = |X| \), set \(k_i = p^0_{ij} \) (\(i \in \{d\} \)),

and set \(k = k_1 \). Let \(EK_4 \) be the set of all 2-element subsets of a 4-element set \(K_4 \). The \textit{level} \(\lambda(T) \) of a function \(T: EK_4 \to \{d\} \) (henceforth called a \textit{type} function) is the minimal integer in its range, and any 4-tuple \((x_1, x_2, x_3, x_4)\) of elements in \(X \) is said to have \textit{type} \(T \) if \((x_i, x_j) \in R_{\lambda(T(i,j))}\) for all \((i,j) \in \)
Denote by n_T the total number of 4-tuples from X of type T, and for any $i \in [d]$ set $n_i^n = n_C$, where $C = C(i)$ is the constant function of level i. We prove the following.

Theorem 1. Let Y be a d-class P- and Q- polynomial scheme and let T be any type function. Then n_T can be computed from the intersection numbers of Y and $n_1^n, n_2^n, \ldots, n_d^n$, where p is the minimum of $k(T)$ and the integer part of $d/2$.

We review some preliminaries found in Bannai and Ito[1] before proving the intermediate results Theorem 6 and Corollary 7, which may be of independent interest, and then prove Theorem 1.

Let $A(Y)$ be the Rose-Mesner Algebra of Y (over \mathbb{R}), acting on a Euclidean space V, $\langle \cdot, \cdot \rangle$, that possesses an orthonormal basis which we identify with X. Let $V = \oplus V_i (i \in [d])$ be the orthogonal decomposition of V into maximal $A(Y)$-invariant subspaces, let π_i denote the projection $V \rightarrow V_i$, and let the matrix E_i represent π_i relative to $X (i \in [d])$. The *Krein parameters* $q_{ij}^h (h,i,j \in [d])$ are defined by

$$E_i \circ E_j = n^{-1} \sum_{h \in [d]} q_{ij}^h E_h$$

where \circ is Hadamard multiplication. Y is called P- and Q- *polynomial* (with
respect to the given ordering of the relations and projections) if the intersection matrix, \(\text{B} \) and its dual \(\text{B}^* \), with \(i,j \)th entries \(p_{i,j}^i \) and \(q_{i,j}^i \), respectively \((i,j \in \{d\}) \), are tri-diagonal, with non-zero entries directly above and below the main diagonal. In this paper we always assume \(Y \) is \(P \)- and \(Q \)- polynomial. For convenience set \(F_i = \{ \pi_0, \pi_1, ..., \pi_i \} \) \((i \in \{d\}) \).

REMARK 2. Set \(m_j = \dim V_j \ (j \in \{d\}) \). By [8], for \(i,j \in \{d\} \) the cosine \(c_{i,j}^{(1)} \) of the angle between \(\pi_j(x) \) and \(\pi_j(y) \) \((x,y) \in R_1 \) is

\[
c_{i,j}^{(1)} = nm_j^{-1} \langle \pi_j(x), \pi_j(y) \rangle
\]

and can be computed from the intersection numbers of \(Y \). We also have

\[
m_r m_s c_{r,s}^{(1)} = \sum_{h \in \{d\}} q_{r,s}^{(1)} m_h c_{h}^{(1)} \quad (i,j \in \{d\}).
\]

We write \(c_i = c_{i}^{(1)} \), \(c_{j}^{(1)} = c_{j}^{(1)} \) \((i,j \in \{d\}) \), and by Bannai and Ito[1, p.355] have

\[
c_i \neq c_j \text{ and } c_{i}^{(1)} \neq c_{j}^{(1)} \text{ if } i \neq j \quad (i,j \in \{d\}).
\]

Let the matrix \(Q \) have \(i,j \)th entry \(m_j c_{i,j}^{(1)} \), \((i,j \in \{d\}) \). By Bannai and Ito[1] \(Q \) is essentially Vandermonde and hence nonsingular.

DEFINITION 3. Let \(G \) be the Cartesian product \(\{d\} \times \{d\} \), and write \(u = (u_x, u_y) \) for \(u \in G \). Let \(\delta(u,v) = |u_x - v_x| + |u_y - v_y| \) be the distance between \(u,v \in G \).
and for \(u \in G, r \in [d] \), let \(D(u, r) = \{ v \in G, d(u, v) \leq r \} \) be the diamond of radius \(r \) centered at \(u \). For \(i \in \mathbb{Z} \) let \(G_i = \{ u \mid u \in G, u_x > u_y + i \} \). We will use the following constants in Theorem 6.

Definition 4. A path \(P \) of length \(t \) in \(G_j \) is a sequence \((u_0, u_1, \ldots, u_t) \) with \(u_i \in G_j (i \in [t]) \) and \(\delta(u_i, u_{i+1}) \leq 1 \) (i.e., \(|t-1| \)). We say \(P \) goes from \(u_0 \) to \(u_t \) and write \(|P| = t \). Abusing notation we write \(P \in G_j \). If \(|P| \geq 1 \) set \(P^* = (u_0, u_1, \ldots, u_{t-1}) \) and \(P^{**} = (u_1, u_2, \ldots, u_{t-1}) \), with \(P^{**} = \emptyset \) if \(t = 1 \), and assign to \(P \) a sequence \(\{ f_u \mid u \in P^{**} \} \) of integers as follows. For each \(i \in [t-1] \), let \(u = u_i, \ u = (r, s) \) and set \(f_u \) equal to \(p^r_{1, r+1}, p^r_{r-1, -1}, -p^s_{1, s+1}, -p^s_{1, s-1}, \) or \(p^r_{r-1, -s}p^s_{1, s} \), depending on whether \(u_{i+1} = (r+1, s), (r-1, s), (r, s+1), (r, s-1) \), or \((r, s) \), respectively. For all paths \(P \) in \(G \) with \(|P| \geq 1 \) and \(P^{**} \in G_0 \) define the **positive weight**

\[
 w^+(P) = \prod_{u \in P^{**}} f_u (c_{u_x} - c_{u_y})^{-1}.
\]

Define the **negative weight** of any path \(P \) in \(G \) for which \(P^{**} \in G_0 \) by

\[
 w^-(P) = \prod_{u \in P^{**}} f_u (c_{u_x} - c_{u_y})^{-1},
\]

and set \(w(P) = 1 \) if \(|P| = 0 \). Finally for all \(t \in [d] \), all \(u \in G_{<t} \) and all \(v \in G_{\geq t} \), let \(a^2_{v,t}(u, t) = \Sigma w^+(P) \), the sum being over all paths \(P \) from \(v \) to \(u \) having
length \(t \) in case (−) and length \(t+1 \) in case (+).

Definition 5. For all \(x,y \in X \) and all \(i,j \in [d] \), set \(P_{ij}(x,y) = \Sigma z \), the sum (in \(v \)) being over all \(z \in X \) where \((x,z) \in R_i \) and \((z,y) \in R_j \).

Theorem 6. For \(t \in [d] \), \(u \in G_t \), and \(x,y \in X \), we have

\[
\text{equation (}u,t\text{)}: \quad \Sigma a_v(u,t) \pi(P_v(x,y) - P_v(y,x)) = 0 \quad (v \in F_t) \quad \forall \in D(u,t)
\]

and

\[
\text{equation (}u,t+1\text{)}: \quad \Sigma a_v(u,t) \pi(P_v(x,y) + P_v(y,x)) = 0 \quad (v \in F_t) \quad \forall \in D(u,t+1)
\]

The constants \(a_v(u,t) \) are from Definition 4.

Proof. Fix \(x,y \in X \). By Bannai and Ito [1, p126] we have

\[
\Sigma \langle \pi(x), \pi(y) \rangle \langle \pi(u), \pi(v) \rangle \pi(z) = 0
\]

\(\forall z \in X \)

for all \(r,s,t \in [d] \) with \(q^r_{st} = 0 \). Summing over the possible inner products first, the \(Q \)-polynomial property implies

\[
\Sigma c_i^{(r)} c_j^{(s)} \pi P_{ij}(x,y) = 0 \quad r,s \in [d], \quad v \in F_t, \quad t < r-s.
\]
Let $N = \{ e_i \mid i \in [d] \}$ be the standard basis for \mathbb{R}^{d+1}, let $N^* = \{ e_i^* \mid i \in [d] \}$ the ith column of G, $i \in [d]$ be another basis, and set $W = \mathbb{R}^{d+1} \oplus \mathbb{R}^{d+1}$.

We abbreviate $e_{ij} = e_i \otimes e_j$, $e_{ij}^* = e_i^* \otimes e_j^*$. For $t \in [d]$ define $H_t, W_t \in W$ by

$$H_t = \text{span} \{ e_{ij} \mid ||i - j|| > t, \; i, j \in [d] \}, \; W_t = \text{span} \{ e_{ij}^* \mid ||i - j|| > t, \; i, j \in [d] \},$$

and decompose $H_t = H_t^- \oplus H_t^+$, setting $H_t^- = \text{span} \{ e_{ij} - e_{ji} \mid (i,j) \in G_t \}$, and $H_t^+ = \text{span} \{ e_{ij} + e_{ji} \mid (i,j) \in G_t \}$. We decompose $W_t = W_t^- \oplus W_t^+$

similarly, and note $\dim(W_t^\pm) = (d-t+1)(d-t)/2$ $(t \in [d])$. Setting

$$e_u^-(t) = \sum_{(i,j) \in D(u,t)} a_{ij}^-(u,t) (e_{ij} - e_{ji}) \quad t \in [d] \; u \in G_t$$
and

$$e_u^+(t) = \sum_{(i,j) \in D(u,t+1)} a_{ij}^+(u,t) (e_{ij} + e_{ji}) \quad t \in [d] \; u \in G_t,$$

by (4) it suffices to prove $\{ e_u^-(t) \mid u \in G_t \}$ and $\{ e_u^+(t) \mid u \in G_t \}$ form bases for W_t^- and W_t^+, respectively. Define the linear transformations

$$M, M^*: \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{d+1} \text{ by}$$

$$M(e_i) = c_i(e_i) \quad M^*(e_i^*) = c^{(1)}(e_i^*) \quad (i \in [d]). \quad (5)$$

Let $M_1 H_0 \to H_0$ be the restriction of $M^1 : I \otimes M$ to its invariant subspace H_0, and let $M^*: W_0 \to W_0$ be the restriction of $M^1 : I \otimes M^*$ to W_0. By (3),
M_1 and $M_1 \Sigma$ are invertible, and in fact $M_1(H_1^{-}) = H_1^*$, $M_1 \Sigma(W_i^{-}) = W_i^*$ for all $i \in [d]$. Since by (2) and (1, p. 72) the matrices representing M and M_Σ relative to N_Σ and N are the tri-diagonal matrices $M_1^{-1}B_\Sigma$ and $k^{-1}B$, respectively, we have $M_1(W_i^{-}) \subseteq W_i^{-1}$ and $M_1 \Sigma(H_i^{-}) \subseteq H_i^{-1}$ for all i $(1 \leq i \leq d)$. Since Definition 4 and a routine induction on t shows $e_{rs}^{-}(t) = k^{-1}(M_1^{-1}M_1 \Sigma)^t(e_{rs} - e_{sr})$ and $e_{rs}^{-}(t) = kM_1 \Sigma e_{rs}^{-}(t)$ $(t \in [d], (r,s) \in G_t)$, it suffices to show

$$W_t^{-} = (M_1^{-1}M_1 \Sigma)^t H_t^{-} \quad (t \in [d]).$$

This equation follows from $H_0^{-} \cap W_t^{-} = W_t^{-}$ and $H_t^{-} \cap W_0^{-} = H_t^{-}$. If we can show

$$M_1(W_r^{-} \cap H_S^{-}) = W_r^{-} \cap H_S^{-} \quad (r \in [d-1], \; s \in [d])$$

(7)

and

$$M_1 \Sigma(W_r^{-} \cap H_{S+1}^{-}) = W_r^{-} \cap H_S^{-} \quad (r \in [d], \; s \in [d-1]).$$

(8)

To prove (7), it suffices to prove

$$M_1(W_{r+1}^{-}) = W_r^{-} \cap H_0^{-} \quad (r \in [d-1])$$

(9)

for we would then have $M_1(W_{r+1}^{-} \cap H_S^{-}) = M_1(W_r^{-}) \cap M_1(H_S^{-})$.
\[W_r^+ \cap H_0^+ \cap H_0^+ = W_r^+ \cap H_0^+ \cap H_0^+ \]
Since \(M_1(W_{r+1}^-) = M_1(W_{r+1}^- \cap H_0^-) \leq M_1(W_r^+ \cap H_0^-) \), to prove (9) we need only check

\[\dim(W_r^+ \cap H_0^+) = \frac{(d-r)(d-r-1)}{2} \]
\[= \dim(W_{r+1}^-). \]

For this, we produce a dimension \(d-r \) subspace \(S \subseteq W_r^+ \) that intersects \(W_r^+ \cap H_0^+ \) trivially, where

\[W_r^+ = W_r^+ \cap H_0^+ \cap S \]
\[r \in \{d\}. \]

We take \(S = \text{span}\{ e_{10}^n + e_{01}^n \mid r+1 \leq i \leq d \} \). Upon writing these vectors in terms of \(\{ e_{ij} \mid i,j \in \{d\} \} \) we find a linear combination

\[\sum_{i=r+1}^{d} \alpha_j(e_{10}^n + e_{01}^n) \in H_0^+ \]

is equivalent to \(q(0,0,0,0,\alpha_{r+1},\alpha_{r+2},\ldots,\alpha_d) = 0 \), so \(S \cap H_0^+ \) is trivial.

By writing the vectors

\[e_{xy}^n + e_{yx}^n - \sum_{i=r+1}^{d} h_{xy}(e_{10}^n + e_{01}^n) \quad ((x,y) \in G_r) \]

in terms of \(\{ e_{ij} \mid i,j \in \{d\} \} \) and applying (2), we find they are all in \(W_r^+ \cap H_0^+ \), yielding (11) and proving (10). Line (8) is proved by interchanging the roles of \(W_r, H_0, \) and \(M_1, M_1^* \) in the proof of (7). \(\square \)
COROLLARY 7. Let \(t \in \{d\} \) set \(L(t) = \{(i,j) | 0 \leq i \leq t \text{ or } 0 \leq j \leq t \} \), and pick \(u \in G \).
From \(t, u \), and the intersection numbers of \(y \) we can compute
\[
\{ g_v | g_v \in \mathbb{R}, \text{vel}(t) \}
\]
where
\[
\Pi_{\Pi}(x,y) = \sum_{\text{vel}(t)} g_v \Pi_{\Pi}(x,y) \tag{12}
\]
for all \(\pi \in F_1 \) and all \(x,y \in X \).

Proof. Set \(u = (r,s)(r,s \in \{d\}) \). The Corollary is true if it is true under the assumption \(u \in L(t+1) \setminus L(t) \ (t \in \{d-1\}) \), so we make this assumption and consider two cases.

Case 1. \(t = r < s \). Here (12) follows from equation \((s,0,t)^{-} \) of Theorem 6.

Case 2. \(t + 1 = s < r \). We first apply the equation
\[
a_y^{-}(r,0,t)(r,0,t+1)^{-} = a_y^{-}(r,0,t+1)(r,0,t)^{-}
\]
to obtain the vector \(\Pi_{\Pi}(x,y) \) in (12) as a linear combination of those \(\Pi_{\Pi}(x,y) \) for which either i) \(u \in L(t) \) or ii) both \(u \in L(t+1) \setminus L(t) \) and \(r' < s' \ (u' = (r',s')) \), and then apply case 1 to those \(\Pi_{\Pi}(x,y) \) of the second type. \(\square \)

Proof of Theorem 1. Let \(\lambda = \lambda(T) \). For each type function \(S \) let \(e(S) \) be the number of \(u \in EK_d \) for which \(S(u) = \lambda(S) \), except that \(e(S) = 1 \) if there are exactly two \(u,v \in EK \) with \(S(u), S(v) = \lambda(S) \), and these \(u,v \) are disjoint. Define a partial order \(\prec \) on the set of all type functions, letting \(R,S \) satisfy \(R \prec S \) if either i) \(\lambda(R) \prec \lambda(S) \), ii) \(\lambda(R) = \lambda(S) \) and \(e(R) > e(S) \), or iii) \(\lambda(R) = \lambda(S) \), \(e(R) = e(S) \), and \(R(u) \leq S(u) \) for all \(u \in \)
E_{K_4}, with strict inequality for some u. It now suffices to assume T is
either not constant or $\lambda > [d/2]$, and show n_T is computable from those n_T for
which $T \prec T$. There are 3 cases, the first being

1) $\lambda > [d/2]$.

If $\lambda < [d/2]$ then T is not constant, so we can label $K_4 = \{x, y, z, w\}$ so that

$T(x, z) > T(x, y) = \lambda$, and either

2) $T(y, z) = \lambda$

3a) $T(x, z) > T(u) > \lambda$ for all $u \in E_{K_4}$ containing x or y, or

3b) $T(y, w)$ and $T(x, w)$ equal λ, and $T(x, z) > T(u) > \lambda$ for all $u \in E_{K_4}$
containing z.

Let e, f, g, r, and s denote the integers $T(z, w)$, $T(x, w)$, $T(y, w)$, $T(y, z)$,
and $T(x, z)$, respectively. In case 1 we label K_4 so $T(x, y) = \lambda$. For
convenience set $(d, e) = ([d-2]/2, [d/2]+1)$, $(\lambda-1, \lambda+1)$, or $(\min(d, d-r),
\lambda)$, in case 1, 2, and 3, respectively, and let $J = [g+1] \setminus [-1]$. For each $i \in [d]$, let $S^{(i)}$ be the type function with $S^{(i)}(x, z) = i$ that agrees with T on
all $p \in E_{K_4}$ with $p = (x, z)$. Set $n_i = n_{S^{(i)}}(I \in [d])$ and note $n_s = n_T$. By (1),
for all $h \in [d]$ and in particular for all $h \in [d]$, we have

$$\sum_{i \in [d]} n_i c_i^{(n)} = \sum_{i \in [d]} n_h^{-1} \sum_{\pi_h P_{er}(u, v), \pi_h P_{fa}(u, v)}.$$ \hfill (13)
the second sum being over all \(u, v \in X \) with \((u, v) \in R_i\). By Corollary 7 we replace each vector \(\pi_h P_{en}(u, v) \) in (13) by a known linear combination of those \(\pi_{h'} P_{en}(u, v) \) for which \(e' \leq h \) or \(r' \leq h \). In each case 1, 2, 3a, 3b and for each \(h \in [d] \), evaluation of the inner product in (13) shows the right side of that equation is computable from the intersection numbers of \(Y \) and those \(n_T \) for which \(T \preceq T \). Now the constants \(n_j \) (\(J = \{e-1\} \)) each represent some \(n_T \) for which \(T \preceq T \), and the \(P \)-polynomial property implies \(n_j = 0 \) for \(j > e + a \), so using (13) we can compute \(\{ q_h | q_h \in \mathbb{R}, h \in [d] \} \) from the intersection numbers and those \(n_T \) for which \(T \preceq T \), such that

\[
\sum_{h \in [d]} n_j c_i(h) = q_h \quad (h \in [d]).
\]

By Remark 2 the coefficient matrix for the above system is essentially Vandermonde and hence nonsingular, allowing us to solve for each \(n_j \) (\(J \)).

Remark. For each \(i, j \in [d] \) let \(D = D(i, j) \) be the square matrix of degree \((d+1)^2\), with rows and columns indexed by \(G = [d] \times [d] \), where

\[
D_{i,j} = \sum_{x \in G} \langle \pi_j P_i(x, y), \pi_i P_j(x, y) \rangle \quad \forall x \in G, \ \forall y \in G,
\]

the sum being over all \(x, y \in X \) with \((x, y) \in R_i\). Equations like (13) show \(D \)
is determined by the free parameters $n_1^*, ..., n_i^*$, and the intersection numbers of Y. The positive semi-definiteness of each D yields bounds on the free parameters and hence estimates for the n_I's.
REFERENCES

