4.2 The vector space \mathbb{R}^n and subspaces

Earlier we discussed the vector space \mathbb{R}^3.

We now generalize

$$\mathbb{R}^3 \rightarrow \mathbb{R}^n$$

Def: the vector space \mathbb{R}^n consists of the set of column n-vectors $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ together with the operations of vector addition and scalar mult.

Vector addition and scalar mult obey these axioms (routinely checked):
\[u + v = v + u \]
\[u + (v + w) = (u + v) + w \]
\[u + 0 = 0 + u = u \]
\[u + (-u) = (-u) + u = 0 \]
\[a(u + v) = au + av \]
\[(a + b)u = au + bu \]
\[a(bu) = (ab)u \]
\[(1)u = u \]

We use the above axioms to define an abstract vector space...
Def A vector space (over IR) is a set V (of vectors) together with a binary operation + and a scalar mult, that obey the above axioms.

Ex Given pos integers m, n def V = set of all m x n matrices with entries in IR, then V together with the usual matrix addition and scalar mult is vector space.

Ex Let V = set of all functions f:IR->IR that are continuous everywhere. Define +:
Given f, g ∈ V the function f+g sends x → f(x) + g(x) f+g ∈ V since the sum of two contin functions is contin.

Define sc mult:
Given f ∈ V Given scalar a af ∈ V since scalar mult of contin function is contin.
Ex. Given a vector space \(V \)

Let \(W \) be a nonempty subset of \(V \) such that:

- Given any vectors \(u, v \) in \(W \), then \(u + v \) is in \(W \),

 "closure under addition"

- Given any vector \(u \) in \(W \), and given any scalar \(c \),
 then \(cu \) is in \(W \).

"closure under scalar mult"

Then the set \(W \), together with the addition operation and scalar mult inherited from \(V \), form a vector space, called a \underline{subspace of} \(V \).
Examples of subspaces

Ex Given a vector space V.

Define

\[W = \text{subset of } V \text{ consisting of single element } 0 \]

Then \(W \) is a subspace of \(V \)

"The zero subspace"

pf \ Check \(W \) is closed under +:

\[0 + 0 = 0 \]

Check \(W \) is closed under scalar mult:

\[c(0) = 0 \text{ for all } c \in \mathbb{R} \]

Ex Given a vector space \(V \)

Define

\[W = V \]

Then \(W \) is a subspace of \(V \)
Ex. Given a vector space \(V \)

Given a vector \(u \in V \)

Define
\[
W = \left\{ cu \mid c \in \mathbb{R} \right\}
\]

"set of all scalar multiples of \(u \)

Then \(W \) is a subspace of \(V \)

pf. check \(W \) is closed under +:

Given two vectors in \(W \), say,

\[cu, \quad cv \]

Then
\[
cu + cv = (c + c')u
\]

\[= sc \text{ multiple of } u
\]

\[\in W \]

Check \(W \) is closed under scalar multi:

Given vector in \(W \), say,

\[cu \]

Given scalar \(a \)

\[
a(cu) = (ac)u
\]

\[= \text{ scalar multiple of } u
\]

\[\in W \]
Ex. Given a vector space V

Given two vectors $u, v \in V$

Define

$$W = \left\{ au + bv \mid a, b \in \mathbb{R} \right\}$$

"set of all linear combinations of u and v"

"span of u and v"

Then W is a subspace of V.

pf. Check W is closed under $+$:

Given two vectors in W, say $au + bv$, $a'u + bv'$

Then

$$(au + bv) + (a'u + bv') = (a + a')u + (b + b')v$$

= linear comb of u, v

$\in W$

Check W is closed under scalar mult:

Given vector in W, say $au + bv$. Given scalar c

$$c(au + bv) = (ac)u + (bc)v$$

= linear comb of u, v

$\in W$
Ex. Given \(m \times n \) matrix \(A \).

Define

\[
W = \text{set of all solutions to } A\mathbf{x} = \mathbf{0}
\]

Then \(W \) is a subspace of the vector space \(\mathbb{R}^n \).

Proof (pf)

Check \(W \) is closed under \(+\).

Given two vectors in \(W \), say \(u, v \).

So \(A\mathbf{u} = \mathbf{0}, \quad A\mathbf{v} = \mathbf{0} \).

Then

\[
A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}
\]

So \(\mathbf{u} + \mathbf{v} \in W \).

Check \(W \) is closed under scalar multiples.

Given \(\mathbf{u} \in W \) so \(A\mathbf{u} = \mathbf{0} \).

Given scalar \(c \).

\[
A(c\mathbf{u}) = c(A\mathbf{u}) = c\mathbf{0} = \mathbf{0}
\]

So \(c\mathbf{u} \in W \). \(\square \)
Cautions. Given an $m \times n$ matrix A

Given a **nonzero** $b \in \mathbb{R}^m$

Define

$$W = \text{set of all solutions to } A\mathbf{x} = b$$

Then W is **NOT** a subspace of \mathbb{R}^n. Indeed, W is not closed under +:

Given $u, v \in W, \text{ so }$

$$A\mathbf{u} = b \quad A\mathbf{v} = b$$

Then

$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = b + b = 2b \neq b$$

So $\mathbf{u} + \mathbf{v} \notin W$

Also, W is not closed under scalar multiplication.
Describe the nullspace of

$$A = \begin{bmatrix}
 1 & -4 & 1 & -4 \\
 1 & 2 & 1 & 8 \\
 1 & 1 & 1 & 6
\end{bmatrix}$$

Sol.

Find all the sols to

$$A \vec{x} = \vec{0}$$

$$\vec{x} = \begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}$$

App1. GJ

$$\begin{bmatrix}
 1 & -4 & 1 & -4 \\
 1 & 2 & 1 & 8 \\
 1 & 1 & 1 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
 1 & -4 & 1 & -4 \\
 0 & 6 & 0 & 12 \\
 0 & 5 & 0 & 10
\end{bmatrix}$$

$$r_2 = r_2 - r_1$$

$$r_3 = r_3 - r_1$$

$$\begin{bmatrix}
 1 & -4 & 1 & -4 \\
 0 & 1 & 0 & 2 \\
 0 & 5 & 0 & 10
\end{bmatrix}$$

$$r_2 = \frac{1}{6} r_2$$
\[
\begin{bmatrix}
1 & -4 & 1 & -4 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[r_3 = r_3 - 5r_2 \]

Backsolve

Leading vars: \(x, y \)

\[z = x \]
\[w = t \]

\[y = -2t \]

\[x = 4y - z + 4w \]
\[= -4t \]

\[
\begin{bmatrix}
 x \\
y \\
z \\
w
\end{bmatrix}
= \alpha
\begin{bmatrix}
-1 \\
0 \\
1 \\
0
\end{bmatrix}
+ t
\begin{bmatrix}
-4 \\
-2 \\
0 \\
1
\end{bmatrix}
\]

Null space of \(A \)

\[\{ su + tv \mid s, t \in \mathbb{R} \} \]

\[= \text{set of all linear combinations of } u, v \]
Ex

Given a vector space V

Given two subspaces U, W

Show that the intersection

$U \cap W$

is a subspace of V

Sol. • Check $U \cap W$ is closed under +

Given two vectors in $U \cap W$, denoted u, v

So $u \in U, v \in U, u \in W, v \in W$

show $u + v \in U \cap W$

$u + v \in U$

(by closure under $+$)

$u + v \in W$

(by closure under $+$)

So $u + v \in U \cap W$

• Check $U \cap W$ is closed under scalar mult

Given vector $u \in U \cap W$, scalar c

show $cu \in U \cap W$

$cu \in U$

(by closure under scalar mult)

$cu \in W$

(by closure under scalar mult)

So $cu \in U \cap W$
Describe the null space of

\[A = \begin{bmatrix}
1 & 5 & 1 & -8 \\
2 & 5 & 0 & -5 \\
2 & 4 & 1 & -9
\end{bmatrix} \]

Find all the null to

\[A \mathbf{x} = \mathbf{0} \]

\[\mathbf{x} = \begin{bmatrix}
x \\
y \\
z
\end{bmatrix} \]

Apply GJ

\[\begin{bmatrix}
1 & 5 & 1 & -8 \\
2 & 5 & 0 & -5 \\
2 & 4 & 1 & -9
\end{bmatrix} \]

\[r_2' = r_2 - 2r_1 \]

\[r_3' = r_3 - 2r_1 \]

\[\begin{bmatrix}
1 & 5 & 1 & -8 \\
0 & -5 & -2 & 11 \\
0 & -3 & -1 & 7
\end{bmatrix} \]

\[r_2' = r_2 - 2r_1 \]

\[\begin{bmatrix}
1 & 5 & 1 & -8 \\
0 & 1 & 0 & -3 \\
0 & -3 & -1 & 7
\end{bmatrix} \]

\[r_3' = r_3 + 3r_2 \]

\[\begin{bmatrix}
1 & 5 & 1 & -8 \\
0 & 1 & 0 & -3 \\
0 & 0 & -1 & -2
\end{bmatrix} \]

\[r_3' = -r_3 \]
Backsolve

x, y, z leading vars

$$w = t \quad \text{free}$$

$$t = -2t$$

$$y = 3t$$

$$x = -5y - z + 8w$$

$$= -5t$$

$$\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix} = t
\begin{bmatrix}
 -5 \\
 3 \\
 -2 \\
 1
\end{bmatrix}$$

Null space $\mathbf{N}(A) = \left\{ b\mathbf{u} \mid b \in \mathbb{R} \right\}$

$$= \text{set of scalar multiples of } \mathbf{u}$$