4.4 Bases and Dimension for vector spaces

Given a vector space V

Given vectors in V: v_1, v_2, \ldots, v_n

These vectors form a basis for V provided both

(i) v_1, \ldots, v_n are linearly independent

(ii) $\text{Span}(v_1, \ldots, v_n) = V$

Example

Recall the standard unit vectors in \mathbb{R}^n

$$e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{R}^n$$

Then e_1, e_2, \ldots, e_n form a basis for \mathbb{R}^n

"Standard basis for $\mathbb{R}^n"
the standard basis is not the only basis for \mathbb{R}^n. To see this, we extend a VM from Section 4.3.

Thm. Given n vectors in \mathbb{R}^n, say v_1, v_2, \ldots, v_n.

Define an $n \times n$ matrix A such that for $1 \leq i \leq n$,

$$\text{col}_i(A) = v_i$$

Then, the following are equivalent:

1. v_1, v_2, \ldots, v_n are linearly independent.
2. A is invertible.
3. $\text{span}(v_1, \ldots, v_n) = \mathbb{R}^n$.
4. v_1, v_2, \ldots, v_n is a basis for \mathbb{R}^n.

pf.

(i) ⇔ (iii) ⇔ (i): Shown in Sec 4.3.

(i), (iii) → (iv): This is def of basis.

(iv) → (i): By def of basis.
Ex For vector space \mathbb{R}^3 define

$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$

Determine if $\{v_1, v_2, v_3\}$ form a basis for \mathbb{R}^3.

Sol Define matrix A:

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$

$$\det A = \begin{vmatrix} 1 & 1 & 3 \\ 1 & 0 & 1 \\ 0 & 2 & 2 \end{vmatrix} = -1 \begin{vmatrix} 1 & 3 \\ 2 & 2 \end{vmatrix} + 0$$

$$= -2 + 4$$

$$= 2$$

A is invertible, so $\{v_1, v_2, v_3\}$ form a basis for \mathbb{R}^3.
Ex

Let V = subspace of \mathbb{R}^3 consisting of all vectors

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]

$x - 2y + 5z = 0$

Find a basis for V.

Sol

Given $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \in V$.

$x - 2y + 5z = 0$

View y, z as free

\[
y = 4, \quad z = 6, \quad x \text{ at free}
\]

\[
x = 24 - 5t
\]

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} = t \begin{bmatrix}
 -5 \\
 0 \\
 1
\end{bmatrix}
\]

\[
\text{Span } \begin{bmatrix} u, v \end{bmatrix} = V
\]

u, v linearly, since one is not a scalar multiple of the other

So u, v is a basis for V.
Next goal: Given vector space V

show any two bases for V have the
same number of vectors.

Thm: Given vector space V

Given a basis for V, say

v_1, v_2, \ldots, v_n

then any set of more than n vectors in V is linearly depen

pf

Given vectors in V

w_1, w_2, \ldots, w_m in V

Show these are linear depen

Find scalars c_1, c_2, \ldots, c_m (not all 0) such that

$c_1 w_1 + c_2 w_2 + \cdots + c_m w_m = 0$

Write each w_i in terms of v_1, \ldots, v_n.
\[w_1 = a_{11} v_1 + a_{21} v_2 + \cdots + a_{n1} v_n \]
\[w_2 = a_{12} v_1 + a_{22} v_2 + \cdots + a_{n2} v_n \]
\[\vdots \]
\[w_m = a_{1m} v_1 + a_{2m} v_2 + \cdots + a_{nm} v_n \]

(\text{X}) \quad \text{becomes}

\[
\begin{pmatrix}
 a_{11} c_1 + a_{12} c_2 + \cdots \\
 a_{21} c_1 + a_{22} c_2 + \cdots \\
 \vdots \\
 a_{n1} c_1 + a_{n2} c_2 + \cdots \\
\end{pmatrix}
\begin{pmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_n \\
\end{pmatrix}
\]

\[= 0 \]

But \(v_{n+1} \) is linearly independent so each coeff is 0:

\[
\begin{align*}
 a_{11} c_1 + a_{12} c_2 + \cdots + a_{1m} c_m &= 0 \\
 a_{21} c_1 + a_{22} c_2 + \cdots + a_{2m} c_m &= 0 \\
 \vdots \quad \vdots \quad \vdots \\
 a_{n1} c_1 + a_{n2} c_2 + \cdots + a_{nm} c_m &= 0
\end{align*}
\]

Linear system (\text{X}) has more variables than equations, so there exists a non-trivial sol \(c_1, c_2, \ldots \)
Thm 2 Given a vector space V, then any two bases for V have the same number of vectors.

pf

Call the bases $v_1, v_2, ..., v_n$ and $w_1, w_2, ..., w_m$.

Show $n = m$.

Interchanging the bases w_i across v_i, we find $n = m$.

Suppose $n < m$. Then $w_1, ..., w_m$ are linearly independent by prev Thm.

So $n = m$.

\square
Def: Given a vector space V

By the definition of V, we mean the number of vectors in any basis for V

Ex the dimension of \mathbb{R}^n is n

$\text{Caut} \text{ion} \quad \text{For some vector spaces the dimension} = \infty$

Ex let V denote the vector space of all polynomials in the variable x

$\left[\begin{array}{c}
1 + x - x^2 \\
2x - x^3 \\
1 + x^10 + x^{20} \\
\end{array} \right]$

One checks that

$\{1, x, x^2 \}$ ---

is a basis for V.

$(* \text{I}$ has ∞ vectors so $\dim V = \infty$)
Ex

Given linear system

\[X_1 - 3X_2 + 2X_3 - 4X_4 = 0 \]
\[2X_1 - 5X_2 + 7X_3 - 3X_4 = 0 \]

Find a basis for the solution space.

Sol

Solve the system

\[
\begin{bmatrix}
1 & -3 & 2 & -4 \\
2 & -5 & 7 & -3
\end{bmatrix}
\]

coeft matrix

Apply GJ

\[
\begin{bmatrix}
1 & -3 & 2 & -4 \\
0 & 1 & 3 & 5
\end{bmatrix}
\]

\[r_2 = r_2 - 3r_1 \]

\[
\begin{bmatrix}
1 & 0 & 11 & 11 \\
0 & 1 & 3 & 5
\end{bmatrix}
\]

\[r_1 = r_1 + 3r_2 \]

Back solve:

\[x_3 = 4 \]
\[x_4 = 6 \]
\[x_1 \text{ and free} \]
\[x_2 = -3 - 5x_4 \]
\[x_1 = -11x_4 - 11x_4 \]

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
= A
\begin{bmatrix}
-11 \\
-3 \\
1 \\
0
\end{bmatrix}
+ t
\begin{bmatrix}
-11 \\
-5 \\
0 \\
1
\end{bmatrix}
\]

\[u, v \text{ span sol space} \]
\[u, v \text{ linear indep} \]
\[u, v \text{ is basis for sol space} \]
Theorem 3. Given a finite dimensional vector space V.

Given a spanning set for V:

$$v_1, v_2, \ldots, v_n$$

Then there exists a subset of $(* \setminus v_i)$ that forms a basis for V.

Proof. Suppose $(*)$ is linearly independent. Then $(*)$ is a basis for V.

Suppose $(*)$ is linearly dependent.

So there exist scalars c_1, c_2, \ldots, c_n (not all 0) such that

$$c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0$$

There exists i (1 ≤ i ≤ n) such that $c_i \neq 0$.

Now $v_i \in \text{Span}(v_1, v_2, v_3, \ldots, v_n)$

Now remove v_i from list $(*).$ Modified list still spans V.

Iterate - procedure yields a basis for V. \hfill \square
Ex for \mathbb{R}^3 define

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$

let

$$V = \text{Span}(v_1, v_2, v_3, v_4)$$

Find a basis for V

Sol

Find the linear dependencies among v_1, v_2, v_3, v_4:

$$c_1 v_1 + c_2 v_2 + c_3 v_3 + c_4 v_4 = 0$$

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 1 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \end{bmatrix}$$

$$GJ$$

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \end{bmatrix}$$

$r_1' = r_1 - r_4$

$r_2' = r_2 - r_3$

$r_3' = r_3 - r_4$

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$r_4' = r_4 - 2r_3$
Backsolve

\[c_5 = 1 \quad c_4 = t \quad x = t \text{ free} \]

\[c_2 = 0 \quad c_1 = -2t \]

\[
\begin{pmatrix}
 c_5 \\
 c_4 \\
 c_3 \\
 c_1
\end{pmatrix} = t \begin{pmatrix}
 2 \\
 1 \\
 1 \\
 0
\end{pmatrix} + \begin{pmatrix}
 -2 \\
 -1 \\
 0 \\
 1
\end{pmatrix}
\]

Each vector gives a dependency among \(v_1, v_2, v_3, v_4 \)

\[-v_1 - v_2 + v_3 = 0 \quad \text{"discard } v_3 \text{"} \]

\[-2v_1 - v_2 + v_4 = 0 \quad \text{"discard } v_4 \text{"} \]

\[\text{Span } (v_1, v_2) = \mathbb{V} \]

\[v_1, v_2 \text{ line independent} \]

\[v_1, v_2 \text{ basis for } \mathbb{V} \]
Given vector space V with finite dimension n.

Given n vectors in V: v_1, v_2, \ldots, v_n.

Then the following are equivalent:

(i) v_1, v_2, \ldots, v_n are linearly independent.

(ii) $\text{Span}(v_1, \ldots, v_n) = V$.

(iii) v_1, v_2, \ldots, v_n is a basis for V.

Proof:

(i) \Rightarrow (iii): Suppose $\text{Span}(v_1, \ldots, v_n) \neq V$.

Then there exists a vector in V that is not in $\text{Span}(v_1, \ldots, v_n)$.

Call this vector v.

Then v_1, v_2, \ldots, v_n, v are linearly independent.

This contradicts that v_1, v_2, \ldots, v_n are linearly independent.

(iii) \Rightarrow (ii): By Thm 3, there exists a subset of v_1, v_2, \ldots, v_n that is a basis for V.

By Thm 2, this subset consists of all of v_1, v_2, \ldots, v_n.

(i), (ii) \Rightarrow (iii): Def of basis.

(iii) \Rightarrow (i): Def of basis.
Theorem. Given a finite dimensional vector space V,
Given m linearly independent vectors in V:

v_1, v_2, \ldots, v_n

Then there exists a basis for V that contains $(*).$

Proof.

Suppose $(*).$ spans V, then $(*).$ is a basis for V; done.

Suppose $(*).$ does not span V, then there exists a vector in V that is not in

$\text{Span}(v_1, v_2, \ldots, v_n)$

Call this vector v_m.

So v_1, v_2, \ldots, v_m

are linearly independent.

Add v_m to $(*).

Repeat (process ends by Rank $\geq 1.$) to get

a basis for V that contains $(*).$